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VORTEX MODELS AND BOUNDARY LAYER INSTABILITY*

ALEXANDRE JOEL CHORINf

Abstract. Random vortex methods are applied to the analysis of boundary layer instability in two and
three space dimensions. A thorough discussion of boundary conditions is given. In two dimensions, the results
are in good agreement with known facts. In three dimensions, a new version of the method is introduced, in
which the computational elements are vortex segments. The numerical results afford new insight into the
effects of the third dimension on the stability of a boundary layer over a fiat plate.
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Introduction. The random vortex method as described in Chorin [7] is intended
for the approximation of flows at high Reynolds number R. Its main features are as
follows: (i) the nonlinear terms in the Navier-Stokes equation are taken into account by
a detailed analysis of the inviscid interactions between vortices of small but finite core
("vortex blobs"), (ii) viscous diffusion is taken into account by adding to the motion of
the vortices a small random Gaussian component of appropriate variance, and (iii)
no-slip boundary conditions are approximated by a vorticity creation algorithm. Fuller
details are given below. Developments, modifications, and applications of the method
can be found e.g. in Ashurst 1 ], Chorin 10], 11 ], Leonard [26], [27], McCracken and
Peskin [30], Shestakov [36]. Theoretical analysis can be found in Hald [181, Hald and
Del Prete [19], and Chorin et al. [12].

This grid-free method is suitable for the analysis of flow at high Reynolds number
because it has no obvious intrinsic source of diffusion. Most approximation methods
solve equations which are close to the equations one wants to solve; the difference
consists of higher order terms multiplied by small parameters. This is also the form of
the diffusion term, and as a result, in most methods, the effects of a small R -1 are
dominated by numerical effects and the physics of high Reynolds number flow are
suppressed. In vortex methods, the misrepresentation of the higher harmonics which
occurs in the usual discretization methods (which usually has a diffusive effect among
other effects) is replaced by the misrepresentation of the interaction of neighboring
vortices (an essentially inviscid phenomenon which is a source of error, but not of
diffusive error). In the absence of the nonlinear terms, the diffusion is approximated on
the average exactly. Thus one may hope that the results of the calculation approximate
the flow at whatever Reynolds number was intended, albeit with a statistical error,
rather than at some other lower Reynolds number intrinsic to the algorithm. A good
guess at the solution of the problem one wants to solve is better than an unambiguous
solution of the wrong problem.

The method produces a flow field which is random. The error in the calculation is
the sum of two parts: the expected value of the computed solution differs from the true
solution, and any realization of the computed solution (or more accurately, any
functional thereof) differs from the expected value by a random amount which can be
estimated by its standard deviation (see e.g., Lamperti, [25]). The expressions for these
quantities will be given below, when the appropriate notation will be available.

In the present paper we apply random vortex methods to the analysis of the
boundary layer over a flat plate in two and three space dimensions. The calculations
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have two main objects. In the two dimensional case we shall show that the vortex
method exhibits a physical instability at an appropriate Reynolds number. The ability to
do so is of course a basic requirement for any method which claims to have some use at
high Reynolds number. The specific problem we apply our method to has a simplifying
feature, inasmuch as the location of the sharp gradients is known in advance to be near
the wall, and thus the equations of motion can be solved in two dimensions by finite
difference or other non-statistical methods in appropriately scaled variables. The
interesting fact about our calculation is that it does not require such preliminary scaling
of the variables, i.e., the random walk can be relied upon to create the appropriate
diffusive length scale.

The second main goal of our calculation is to use the method to investigate the
much harder problem of boundary layer instability in three dimensions, and in
particular, two of the striking features of its solution’ The formation of streamwise
vortices and the creation of active spots. The three dimensional calculation requires a
generalization of our method, and both the two dimensional and three dimensional
problems afford the opportunity to use an improved algorithm for imposing the
boundary conditions accurately.

In the next four sections we present the calculation in two dimensions. In later
sections we present the three dimensional calculations.

The physical problem in two dimensions. Consider a semi-infinite flat plate placed
on the positive half-axis, with an incompressible fluid of density 1 occupying the half
space y _-> 0. At time < 0 the fluid is at rest. At 0, the fluid is impulsively set into
motion with velocity Uoo. The flow is described by the Navier-Stokes equations,

(la) 0t+ (u. 7)= R-1A:,
(lb) At# -,
(1 c) u OyO, v -OxO,

where u (u, v) is the velocity vector, r (x, y) is the position vector, : is the vorticity, 4
is the stream function, A =_ V2 is the Laplace operator, and R is the Reynolds number,
R UL/, where L is a length scale typical of the flow. The boundary conditions are

(ld) u=(Uo,0) at y =c, t>0,

(le) u=v=0 for y 0, x>0,

OV
(lf)

Oy
0 fory=O,x<O.

Initially, u (U, 0) everywhere.
If R is large, the Prandtl boundary layer equations should provide a reasonable

description of the flow near the plate and away from the leading edge. These equations
can be written in the form [Schlichting [35], Chorin [10], [11]],

(2a) 0,: + (u. V): uO,
(2b) -Oyu,

(2c) O,,u + Oyv O.

where , u, v, x, y have the same meaning as in equations (1), and , is the viscosity. If
Uoo 1 and L 1, R ,-1. The boundary conditions for equations (2) are: u Uoo for
y oo, u 0 for y 0. Equations (2) have a stationary solution, the Blasius solution,
which is a function of the similarity variable/.t y/x/. Let the displacement thickness 8
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be defined by

5 [, (1 u Uoo)dy;

the corresponding Reynolds number is R, Uoo5/u. In Blasius flow, 1.72x/xx, and
Ra 1.72,/, whereit is assumed that Uo 1. and R, are increasing functions of x.
For R, >= R,c the Blasius solution is unstable to infinitesimal perturbations which satisfy
equations (1) (see Lin [29]); R,c 520, (See Jordinson [21]). These unstable modes are
the Tollmien-Schlichting waves. The vortex interpretation of the waves is as follows:
The boundary layer is a region of distributed vorticity imbedded in a shear flow.
Vorticity imbedded in a shear tends to become organized into coherent macroscopic
structures ("negative temperature states", "local equilibria", see Onsager [32], Chorin
[8]). This tendency is counteracted by the diffusive effects. The latter become weaker as
x increases, since the vorticity gradients decrease as the layer spreads. Far enough
downstream (i.e., for R large enough), the tendency towards coherence can overcome
the diffusive effects; the Tollmien-Schlichting waves can be viewed as a weak train of
organized vortex structures.

The value of R, given above has to be lowered if the unperturbed flow is treated as
a nonparallel flow and if edge effects are taken into account (Townsend [37]). More
importantly, the boundary layer is unstable to perturbations of a finite amplitude for
values of R, smaller than R, (for analysis of similar situations, see Eckhaus [14],
Meksyn and Stuart [31 ]). A survey of finite amplitude stability theory for the flat plate
problem is given by Roshotko [33]). The boundary layer becomes more unstable if the
outside flow is turbulent or contains vortical structures (see Schlichting [35], Rogler and
Reshotko [33]). Since our calculation will by its very nature contain finite amplitude
perturbations, vortices, a substantial amount of noise, and edge effects, the appropriate
value of R, which separates stable from unstable regimes is unclear. Presumably, there
exists a value R such that for R, =< R all perturbations decay; the best guess of Rc
we can obtain by looking at the references above is R’, 300, with a substantial margin
of error. Cebeci and Smith [4] suggest a value R ---320.

For R, => R, the perturbations can grow, but I found little information as to what
they do in two dimensions; presumably they grow and reach some finite amplitude
equilibrium; this is the typical situation in other two-dimensional stability problems, for
example in the thermal convection problem (see e.g. Chorin [6]). All experimental
studies I know deal with the more important and more realistic three dimensional
problem which will be discussed further below.

The numerical methods in two dimensions. Consider first the Navier-Stokes
equations (1) in the whole plane. Assume that : i :J, where the :i are functions of
small support (:i is a "blob"). Let 6 = 6i, where Abj -:. (If we had :i cig(r- ri),
xi =constant, we would have concluded that 6i =-(xj/2cr)loglr-ril.) For :i smooth
but of small support, let xi =- dxdy, and we must have

lim 4Ji
I1-,oo (1/27r) loglr-rl

For Ir-rjl small, Ji differs from (x/2r)log[r-rl (or else it would introduce
undesirable unbounded velocities, see Chorin [7], Hald [18]). We set

(3a) log Ir-
Ji(r)= I xi I+const., Irl<,r.(3b)

cr
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This is the orm introduced in Chorin [7]; it differs from the forms described by Hald in
[18] or reasons which will become apparent below. Clearly scj -A,j is of small
support, tr is a cut-off which remains to be determined.

Equations (1) state that the vorticity moves with the velocity field which it induces,
i.e., let uj (ui, vi) be the velocity field induced by the jth blob, and let ri (xi, yi) be the
center of the ith blob, then

Y. ui, (ui evaluated at ri).
dt ji

This equation can be approximated by

(4) r+ r7 + k E u
ji

where k is a time step and r’=-ri(nk). Hald [19] has shown thata higher order method is
indeed more accurate but we shall use (4) for the sake of simplicity.

The heat equation is well known to be solvable by a random walk algorithm (see
Chorin [7]). As a result, equations (1) can be solved by moving the blobs according to
the law

(5) r’+=r’+k uj+l

where 1 (/, 2), /, 2 independent Gaussian random variables with mean 0 and
variance 2k/R.

Suppose we wish to solve equations (1) in a domain D with boundary OD. The
normal boundary condition u. n 0 on OD, n normal to OD, can be readily taken into
account by solving A=- subject to the appropriate boundary condition, with the
help of potential theory. In the case of flow over a flat plate, the method of images will
do the job. The no-slip boundary condition u.s 0, s tangent to OD, can be imposed
through the creation of the appropriate amount of vorticity: Let u0 be the velocity
component tangent to the wall created by the algorithm as described so far, and suppose
Uo 0. The no-slip condition and the viscosity will create a boundary layer in which the
total vorticity per unit length is

interior

f 0U
scdn= --dn=uo.

awall On

In the algorithm presented in [7], we reproduced this effect numerically by creating
a vortex sheet of strength u0 at the wall, dividing its vorticity among blobs, and allowing
these blobs to participate in the subsequent motion of the blobs according to the laws
(5). If a blob is created at every piece of boundary of length h, its intensity is

(6) x uoh.

If a blob inside the fluid happens to cross the boundary, it is removed. It should be
apparent that the amount of vorticity created at each time step depends on the cut-off
If tr is small, the backwash of the vortex may be large, and a vortex whose center is near
the boundary will create a vortex whose intensity will have an opposite sign, etc. If cr is
large, the backwash of a newly created vortex may not be sufficient to annihilate u0, and
more vortices will be created, all of the same sign. Presumably, on the average the total
amount of vorticity is independent of tr. The algorithm in this form is not accurate (see
Chorin et al. [12]). This lack of accuracy as well as the desire to reduce the amount of
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computational labor have led to the formulation of the vortex sheet algorithm with
which one can solve the boundary layer equations (2) (Chorin [10]). The computational
elements are segments ot a vortex sheet. Let Uo be the velocity component parallel to
the wall. A segment S of a vortex sheet is a segment of a straight line, of length h,
parallel to the wall, such that u above S differs from u below S by an amount so;
("above" means "further from the wall"), Uabove--Ubeow :. S is the intensity of the
sheet.

Consider a collection of N segments $,, with intensities :,, 1,..., N. Let the
center of S, be r, (x,, y,). To describe their motion, one begins with equations (2b) and
(2c). Equation (2b) can be integrated in the form

(7a) u (x, y) Uoo sO(x, a dcr,

where U is the velocity at infinity seen by the layer. Equation (2c) yields

(7b) v(x, y)= -Ox u(x, o) do

Equations (7a) and (7b) allow one to determine u, v if sc sO(x, y) is given. One can
visualize each sheet as casting a shadow between itself and the wall. The darker the
shadow, the smaller u becomes. Whatever fluid enters a shadow region from the left and
cannot leave on the right must leave upwards. From equations (7) one can derive the
following expression for u, (u,, v,) at the center r, of the ith sheet

(8a) u Uoo-1/2 s, -Y idi,

where dj 1- ]xi- xil/h is a smoothing function, and the summation is over all Si for
which 0 <- d. <- 1 and Yi >-- Y,. This is of course a small subset of all the sheets; only the
sheets which lie in a narrow vertical strip around ui affect ui. Similarly,

(8b)

where

(8c)

(8d)

(8e)

v, -(I/-I_)/h,

d. 1 -Ix, + hi2 xil/ h,
y’ min y, yi).

The sum Y./ (resp. Y._) is over all $, such that d -< 1 (resp. d- -< 1). The motion of the
sheets is then given by

n+l(9a) x x + kui,
n+l(9b) y, Y + kvi + "rl.

These formulas are analogous to (4); r/is a Gaussian random variable with mean 0 and
variance 2,k; it appears only in the y component because equations (2) take into
account diffusion in the y direction only.

This vortex sheet algorithm generates a velocity field u (u, v) which satisfies the
boundary condition u Uo at y 0% v 0 at y 0. The no-slip boundary condition
u 0 at y 0 can be satisfied by the following vorticity generation procedure (see [10]):
Continue the flow from y > 0 to y < 0 by antisymmetry, i.e., u(x, -y) -u(x, y). Since
j -Ou/Oy, and both u and y change signs, we have sO(x, y) sO(x, y); if u(x, O) Uo #
0, we also have a vortex sheet of strength 2u0 at the wall. This sheet can be divided into
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segments and allowed to participate in the subsequent motion. The antisymmetry can
be imposed by reflecting any sheet which crosses the wall back into the fluid. One can
require that all the sheets created satisfy the requirement Iil <- rax, where max is some
reasonably small quantity. To do this, one may have to create more than one sheet at
any one point at any given time step. The sheet method can be modified to make it more
efficient and to reduce the variance of the results (see 10]). The interaction of the sheets
is not singular and no cut-off is needed. The amount of vorticity created at the wall is
unambiguous, and the cost of the calculation is small. This is of course balanced by the
fact that the Prandtl equations are not uniformly valid approximations to the Navier-
Stokes equations, and the transition from sheets to blobs involves in general a decision
process which in turn is not unambiguous.

Note that the antisymmetry just described cannot be used directly with the vortex
blob method. Indeed, if u(x, -y)=-u(x, y), it does not follow in general that

(x, y) -= ---+ at (x, y) (x, y),

since x does not change sign. Thus, to impose the boundary conditions accurately on the
blob method we shall have to use the sheet method as a transition near the wall, see
below.

The version of the sheet method that we shall use is almost identical to the one
described in [10] and documented in detail in Cheer [5]; this includes tagging and
variance reduction techniques. The only difference is the following: In the earlier
program, sheets were created at the wall, and on the average, half of them disappeared
at each step. In the present program, we make exactly half of them disappear at each
step and this reduces the total number of sheets retained. This is accomplished as
follows: At each point at which sheets are created, their intensity is adjusted so that
their number is even. A rejection technique (Handscomb and Hammersley [20]) is then
used to ensure that any two successive ’s used at the wall will have differing signs. This
rejection technique can be used only at the wall, or else it would destroy the indepen-
dence of the successive ’s in the interior and thus fail to describe the diffusion process
correctly.

The sheets and the blobs are objects of a very similar nature; they are determined
by the same parameters, position and intensity. A computational element (x, y, ) can
be treated as either a sheet or a blob, depending on the circumstances. A sheet of
negative intensity casts a shadow which slows the fluid under it; by the equation of
continuity, this creates an upward flow to the left and a downward flow to the right, just
as if the sheet were a vortex. The circulation around a sheet of intensity is h, and if the
sheet becomes a blob, the latter’s intensity must be h, in agreement with equation
(5).

These facts can be used to create a transition between the blobs and the wall. Pick a
length such that a blob has a small probability of jumping more than 21 in one random
jump, i.e. a multiple of the standard deviation 2k/R of . Any vortex which finds
itself less than from the boundary (inside or outside) becomes a sheet and is reflected
accordingly, and also taken into account accordingly when u0 is computed. If a blob is
further outside the domain than it is removed (presumably this happens rarely), if a
sheet is inside the domain and its distance from the boundary is more than it becomes a
blob again.

The cut-off # remains to be determined. A natural condition to impose is the
following: consider a collection of blobs. As they approach each other and the
boundary, their interaction should converge to the interaction of the corresponding
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sheets. Consider a sheet of intensity sc at (X, Y), as well as vortex of intensity :h at
(X, Y), together with its image vortex at (X, -Y) required to satisfy the boundary
conditions (the sheets need no images). If o" h/zr, the velocity fields induced along the
vertical line x X are identical (Fig. 1). The lateral effects will tend to each other as
y 0. Thus, if r h/zr, the interaction of the blobs will approximate the interaction of
the sheets when the blobs approach the boundary. Hence r h/7r is a natural choice for
r. Note that the form (3) of ensures that for Irl -< the magnitude of u is constant. This
is the reason (3) is used. Remarks" (i) the value of r is twice the value used in [7]. (ii) The
choice of r has the greatest effect near the wall, and thus it is natural to determine the
value of r by considering what happens near the wall. (iii) Our value of r is large
compared to the mean distance between blobs which is of order R -1/2", this is in
agreement with the requirements in Hald’s proof. In summary the computational
elements should be viewed as sheets near the wall, and as blobs far from the wall.

(xi’Yi)
" (xi, Yi)

(a)

11 II ill II IIIli

,(xi ,_yi)

(b)

FIG. 1. Sheets and vortices near a wall.

A heuristic error analysis in [7] provides error estimates for the expected value of
the velocity field produced by our methods in the form" error=O(k)+O(R-1/2),
R Reynolds number based on a velocity and length scales typical of the flow away
from the wall. Hald’s analysis of the inviscid case suggests that this could be reduced to
O(k-)+O(R -1/) if the time integration were carried out more accurately. The
standard deviation of a smooth functional of the velocity should be O(R-I/).

Application of the numerical method in two dimensions. In this section we describe
the application of the vortex methods to the specific problem at hand. Note that if the
sheet method is used by itself on the fiat plate problem and if it converges in the mean to
a stationary solution of the Prandtl equations (2); that solution is a function of the
similarity variable/z only; more specifically, if two computer runs are made, with the
same numerical parameters k, h, :max, etc., the same sequence of random numbers, and
the same impulsive initial conditions, but with two distinct values of ,, the resulting
computed solutions will be identical for equal values of y// and x. These facts are
straightforward consequences of equations (8) (see Chorin and Marsden [11]). As a
consequence, the instability of the boundary layer cannot be seen with the sheet
method, and our main tool will be the blob method. We shall use the sheet method for
the following limited purposes: (i) to provide a rational argument in favor of the value
r h/zr; (ii) as a vorticity creation algorithm, (iii) as a way of imposing an approximate
Blasius flow before allowing unstable modes to grow; and (iv) as a diagnostic tool.

The number of vorticity elements required to describe the flow is large, since
enough of them must be included to resolve the Tollmien-Schlichting waves, and those
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have a short wave length. From linear stability theory (see e.g. [29], [21]) one finds that
the wave number ot unstable Tollmien-Schlichting waves is between roughly 0.1 /8 and
0.4/8 for moderate values of Rs, say very roughly 0.3/8 0.2/x/--xx. The corresponding
wave length is 107rx/-xxv; the number of waves between 0 and x is roughly x divided by
10rx/x, i.e. -..Rs/50. The first unstable modes occur whenR 500, i.e., one has to be
able to resolve at least 10 waves between the leading edge and the first occurrence of
growing modes. One can also see that the time period is correspondingly small. For this
reason stability calculations based on the Navier-Stokes equations are very expensive
indeed (see e.g. Fasel [15]).

There is an additional constraint in the present work. It is interesting to compare
the behavior of the growing modes in two dimension with the corresponding behavior in
three dimensions; the two cases are quite different, and the contrast is very instructive
when one is interested in the transition to turbulence. We wish to use comparable
numerical parameters in two and in three dimensions, so that the comparison of the
results be believable; the cost of three dimensional calculations is of course much larger
even than the cost of two dimensional calculations; we must therefore look for ways of
representing the boundary layer which are as economical as possible and yet exhibit a
correct behavior.

There is no obvious way in which the steady Blasius profile can be imposed exactly
on our array of vortex elements at the initial time. On the other hand, a calculation
which starts from impulsive initial data contains a large and rather long-lived transient
component whose behavior is not easily distinguishable from that of a growing mode.
Part of this problem can be removed as follows: Start the calculation by using the sheet
representation only (which is cheap and allows no instability), and run for a time
0 < < To, To large enough so that the Blasius profile will have been reached with some
not unreasonable accuracy. At time To allow some or all of the sheets to become
blobs. In all the two dimensional runs described below we set To 1.

It is quite obvious that we shall not be able to duplicate the results of linearized
stability theory. The initial data will not coincide exactly with the Blasius solution. The
perturbations will not be small. In Fasel [15] the perturbation amplitude was about 0.05
of the free-stream velocity--an impossibly low level for our method. Our results should
be compared with the behavior of finite amplitude perturbations in noisy flow. The
advantages of our numerical method can be seen from the fact that the method requires
no scaling. The very same program can be used to solve an interior flow problem. The
algorithm provides its own scaling and concentrates the computing effort where it is
needed. This should be particularly important in other problems where thin shear layers
occur at locations which are not known in advance.

In the calculations described below, the vorticity is created at walls in the form of
sheets, with all Iscil-< :max. If the amount of vorticity needed to satisfy the boundary
conditions is less than o, no sheets are created; here, :0 max/2. When sheets find
themselves at y > at time > To, they become blobs; they become sheets again if y < l.
must be such that the probability that r/> 2l is small. We checked that as long as

l---1.5 the standard deviation of r/, the results were insensitive to the value of l.
Detailed calculations were performed for 0 -< x =< 1; i.e., the typical streamwise length L

-1is 1, and thus R UL/, , Both sheets and blobs were followed for x > 1 but
allowed to move only with the random component in their laws of motion. When they
reached x X they were deleted. This was done to ensure that the right boundary at
x 1, which is introduced only for computational convenience, behaves as an absorbing
boundary and does not affect adversely the calculations in the region of interest
0-< x -< 1. We usually picked X 2.
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The interaction of two elements at least one of which was a sheet, was computed as
if both were sheets. Two blobs interacted as blobs. In the computation of the tangential
velocity at the wall, all elements were treated as sheets.

After much experimentation we picked :max 0.6. This is a large value of max and
produces a crude and noisy boundary layer; however, it is sufficient for exhibiting the
main effects. A relatively large value of :max reduces the number of elements in the
calculation, and, as explained above, this is of particular importance since we intend to
present a three dimensional calculation. The choices of h and k are described in the next
section.

In the steady state, the drag D(x) on the piece of boundary between 0 and x can be
computed by the momentum defect formula (see e.g. [35]).

(10a) D(x) u(U-u) dy, u u(x, y).

The normalized drag is defined as

(10b) d(x) D(x)/Do(x),

where Do(x) is the Blasius drag Do(x)= 0.6641x/-xx, which can be obtained from the
Blasius solution. The velocities for use in formulas such as (10) are computed as if all the
elements were sheets. We shall use d(x) defined by (10) as a measure of the amplitude of
the growing modes even when the flow is not steady and D(x) is not really the drag on
[0, x].

Finally, we observed that if k was too large the solution exhibited large oscillation
of no possible physical significance. This is readily understood. We are solving a
moderately large system of ordinary differential equations by Euler’s method. The
remedy is to reduce k. k <= h is adequate.

Numerical results in two dimensions. In Table 1 and Fig. 2 we display the
normalized "drag" d(x) at X= 1/2 as a function of R and t. (d(X) is the ratio
D(X)/Do, see formula (10) above). These calculations were made with k h =0.05;

d 2

o
0

I=R: 100,000, Ra: 584
rr R=50,O00, Ra=272

/N=I0,000,R=I22

1.5 2 2.5 ;5 5.5

FIG. 2. Growth of an unstable layer in two dimension.
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TABLE
Drag as a function o[ Reynolds number and time.

R 10000 R 50000 R 100000
(R8 122) (R8 272) (R 384)

1.11 1.11 1.11
1.5 1.23 1.87 1.97
2 0.89 1.18 1.39
2.5 1.15 1.44 1.57
3 .77 1.25 1.65

the other parameters are as described in the preceding section: max=0.6, X 2,
r h! r. The pointX 1/2 is in the middle of the region of interest. In our units, , R -1

andR /, 1.72v/R/2. From Table 1 and Fig. 2 one can see that d(X) is growing for
R8 394, R 105; d(X) is not growing for R 122, R 104, and d(X) is initially
excited but ultimately slowly decaying for R 272, R 5 104. This last fact is
debatable’, the value R 272 seems to be the approximate value of R’c. These results
are reasonable in view of what is known from the theory and from experiments.

In Fig. 4 we exhibit the edge of the boundary layer as a function of x for 3,
R 104. The edge is defined as the smallest value of y for which u U. The edge is not
at infinity because we have finite number of vortex elements and thus the tail of the
probability distribution of the locations of the elements is not accurately approximated.
The layer is stable at this value of R, yet the edge is ragged and the layer appears to be
"intermittent" (for a definition of intermittency see e.g. Cebeci and Smith [4]). The
"intermittency" is due to the presence of discrete vortices; this connection will be

A

o R I0,000
z R= IO0, O00 Tr Z o

/ o /

0.5
U

FIG. 3. Velocity profiles in two dimensions.
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2O

0,2 0.4 0.6 0,8 1.0

FIG. 4. Boundary layer shape.

exploited elsewhere for producing models of intermittency. It is obvious from Fig. 4 that
the wave length of the growing modes cannot be determined directly from the
instantaneous velocity distribution. However, it can be estimated indirectly. Consider
the following question: how small must h be to allow us to distinguish between stable
and unstable layers? Suppose that for h > h0 this distinction can be made, but for h =< ho
the layer appears to be stable even when it should not be. Then h0 is an estimate of the
wave length of the growing modes, since when h <-h0 these modes are suppressed. In
Table 2 we present the values of d(X) at X 1/2 as a function of h for R 105. We see
that 10 < h0 < 15, in a reasonable if rough agreement with the Tollmien-Schlichting
theory.

TABLE 2
Drag as a function of h, R 100000, Rs 384.

h=1/20, k=1/20
1.5 2 2.5 3

d 1.11 1.97 1.39 1.57 1.65

h=1/15, k=1/15
1.27 2 2.67 3.33

d =0.98 1.48 1.66 1.70

t=l 2 3
h=l/lO, k=l/lO =0.98 1.10 1.08

In Fig. 3 we display the velocity as a function of/x y/uatX for R 104 and
R 105, averaged over 10 steps between 2.5 at 3. Curve I is the laminar steady
Blasius profile, and curve II was drawn in what appears to the eye as a reasonable
neighborhood of the points obtained at R 105. The fluctuations are large (as one may
well expect since max 0.6), but the points at R 104 are in a reasonable agreement
with the Blasius curve; curve II (an unstable case) has a different shape. The gradients
are first sharper, then smaller than in the stable case. This is consistent with experience
in the unstable regime of thermal convection (see e.g. [6]). It is also consistent with data
for a turbulent boundary layer in the following sense: The Tollmien-Schlichting waves
are large scale structures in comparison with boundary layer thickness, while in the
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stable regime there are no organized structures. In the turbulent regime one can
associate a velocity with an eddy size; the changes in the profile due to the transition
from the stable to the unstable regime should be of the same nature as the changes in the
velocity profile which occur when the eddy size increases. This is indeed the case (see
Favre et al., [16]; their data are reproduced in Lighthill, [28]).

A typical run from 0 to 3 with the numerical parameters used here took
about 10 minutes on the UC Berkeley CDC 6400 computer. At the end of the
calculation, there were about 200 sheets and 300 blobs.

The physical problem in three space dimensions. We now consider the three
dimensional version of the preceding problem.

Consider a semi-infinite flat plate placed on the half plane z 0, x > 0. A fluid of
density I occupies the half space z > 0. At time < 0 the fluid is at rest, at 0 the fluid is
impulsively set into motion with velocity U 1. The Navier-Stokes equations in three
dimensional space can be written in the form"

(lla) 3,+ (u. V)-(. V)u= R-A,
11b) curl u,

(11 c) div u O.

u (u, v, w) is the velocity vector, and r- (x, y, z) is the position vector. The boundary
conditions are
(12a) u=(U, 0, 0) for z =o, t>0,

(12b) u=O forz=O,x>O,
Ow

(12c) --=0 forz=O,x<O.
Oy

Appropriate Prandtl equations can also be written. We shall need below only a
simplified version of the equations, as well as the following fact about three dimensional
boundary laminar layer approximations: The vertical component of the vorticity
vanishes, i.e., for a solution of the Prandtl equations, - (:1, :2, 0).

The Prandtl equations in three dimensions admit a two dimensional solution, the
Blasius solution. That solution is unstable at high enough R. Squire’s theorem (Lin, [29,
p. 27]) states that the problem of instability to three dimensional infinitesimal pertur-
bation is equivalent to a two dimensional problem at lower R.

Once the two dimensional perturbations begin to grow, several striking
phenomena occur. In particular, before turbulence sets in, streamwise vortices (i.e.
vortices whose axis is parallel to the mean flow) make their appearance. Intense
secondary instabilities follow, and spots of intense motion emerge at random locations.
An experimental investigation of boundary layer instability can be found in Klebanoff
et al. [23]. Experimental investigations of turbulent boundary layers, in which
phenomena resembling those which first arise immediately after the onset of instability
persist and may be responsible for some of the observed features, are described e.g. in
Favre et al. [16], Kline et al. [24], Willmarth [38]; theoretical aspects of several aspects
of instability are found in Greenspan and Benney [17], Benney [3], Lighthill [28]. One
of the major conclusions from the experimental data in Klebanoff et al., [23] is that the
perturbed flow is periodic in the transverse direction (i.e., y direction). It is therefore
natural to consider in three dimensions equations (11) with the added periodicity
conditions

(13) u(x, y +q, z) u(x, y, z), (x, y + q, z) 2(x, y, z),
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etc. Furthermore, from Klebanoff et al. (1962) we conclude that q is roughly equal to
the streamwise wave length of the first unstable Tollmien-Schlichting waves; roughly,
q 0.1 in our units. We shall therefore be solving equations (11) with the boundary
conditions (12) and (13), and q 0.1.

The numerical methods in three dimensions. We consider first the three dimen-
sional analogue of the blob method. The three dimensional problem is more difficult
because the vorticity is now a stretchable vector quantity which must satisfy div 0.

In earlier three dimensional calculations (Leonard, [26], [27], Del Prete [13],
Chorin, (unpublished)), the vorticity field was represented as a sum of vortex filaments.
The difficulties with this approach are: (i) a huge amount of bookkeeping is required to
keep track of the changing vortex configurations; (ii) there is no obvious way to generate
the filaments at the boundary in a consistent manner. We bypass these difficulties by
representing the vorticity as a sum of vortex segments (Fig. 5). Each vortex segment
moves in the flow field induced by all the others. The condition div 0 will be satisfied
only approximately. The segments have no independent physical significance. The two
dimensional blobs do not have one either; physical vortices or vortex tubes are expected
to emerge from the superposition of the computational blobs or segments. A segment A
is defined by seven quantities" The coordinates r1) (x 1), y), z)) of the center of its
base, the coordinates r2) (x 2), Y 2), z 2)) of the center of its top, and its intensity K. We
shall write Ai--(X (1) y) ), X2), y2), 2),z z K), 1 , N, N number of segments.
The base and the top are circles of radius tr, (the cut-off), which will be determined
below.

Given a vorticity yield (r), the velocity field in a fluid which fills out the whole
space is given by the Biot-Savart formula (see e.g. [2]):

(14)

1 I a (r’)
u(r)

4r a3 dr’

If the vorticity field is a sum of N closed vortex lines with the ith line having
intensity ri, (14) becomes

(15) u(r)
1 I as

t(’i 3 ds.
4r th line a

s s(r’) is the unit tangent vector to the ith line at r’, ds ds(r’) is the arc length along the
ith line, and as before a =r-r’. We now seek an interaction law between vortex
segments which will approximate the motion induced by (14) or (15).

FIG. 5. A vortex segment.
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Inside the segment the velocity field must be kept bounded, just as is the case in two
dimension. Furthermore, the field must be modified inside the segments in such a way
that the segments will be compatible with the boundary calculations (see below). The
problem of the finding the correct formulation of the vortex method in three dimensions
is difficult, (see e.g. Leonard [27]). The formulation offered here is plausible but not
rigorously justified.

We require that the motion of a vortex ring or line made up of vortex segments
should preserve the shape of the ring or line. This can be accomplished by ensuring that
the configuration of the vectors a and of the velocity vectors which enter the formula for
the motion of the tips of the segment is the appropriate translate of the corresponding
configurations which determine the motion of the bases. Thus, let Ai, A be two vortex
segments; define

.(1) (X(1) (1) (1) _(2) (2) (2) 12)Yi ,Zi ), --(X YiI’i Z )7
_(2) _(1)

$i ri ri
_(1) _(1) _(1) _(2) _(2)_r2) with aii la etc.klij r --r klij r

The velocity fields GI), ..,,!?) induced by A. at r and r will be approximated by"
(2) :>(1) > and aIf aii ---o" --o"

(1)

,(1)(16a) ,,...,.i] err (a(1))3’ii

(2)

(16b) !?)
"’ 4rr (a (2))3

(1) (1)If either a0

-r’a !.1)__ a s.
0.2 (1)"" 4 a i]

(17b) i] 4 a(

The equations of motion for each segment can now be obtained by summing the
contributions of all the other segments and then adding to that sum the appropriate
random component. This yields

(1)n+l 1.l)n(18a) ri + k E -"i] "’’q,
]#i

(18b) _(2)n+l _(2)n i!.2)ri =ri +k Y’. +1,l]
]1

where rll)’--= ri(X)(nk), etc., and is a vector 1 (r/, ’12, r/3), with T/l, r/2, */3, Gaussian
random variable with means 0 and variances 2k/R, independent of each other. q in
(18a) is identical to 1 in (18b), since diffusion does not introduce rotation or stretching.
The boundary condition at the wall can be satisfied as before by the introduction of
appropriate image segments.

One can write the boundary layer equation in three dimensions and solve them by a
method in which the computational elements are pieces of a vortex sheet (--"tiles")
with sides h in the x direction and h2 in the y direction. Each tile carries a two
dimensional vortex with components q, :2. As observed earlier, 3 0 in the boundary
layer equations. However, we shall use the tiles only near the boundary, where vortex
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stretching is presumably negligible, or to create an initial Blasius profile, in which
stretching is exactly zero. Therefore, the boundary layer equations we shall be solving
reduce to

021 02Z2
c3t: - (11" V):I b’ 2, Ot2 -Jr- (11" V):2 / 2

Oz Oz

OV c3u
div u 0, u (u, v, w).

These equations can be solved by a straightforward extension of the sheet method
described earlier. No vortex stretching will be taken into account, and we shall not take
the trouble to write out the equations in full. The rejection and variance reduction
techniques carry over from the two-dimensional case. Care is taken to ensure that

4’21’’’’’- 22 :max.
A tile created near the wall can become a segment if > T or if zi > I. A segment

which falls below becomes a tile again. The transformation of tiles into segments (and
vice versa) must obey the following conditions:

(i) A tile must become a segment parallel to the wall; i.e., if a tile (Xi, Yi, Zi, li, 2i)
(1) (1) 12), (2) _(2) /i) we must havebecomes a segment (xl1, Yi Zi X Yi zi

(19a) zl2 -zl2 =0.

(ii) A flow which is two dimensional when described by tiles must remain two
dimensional when described by segments. The two dimensionality of a flow described
by segments will be preserved only if the flow fields seen by the tips of the segments are
translates of the flow fields seen by the bases, with a translation vector normal to the
plane of the flow and pointing in the direction of a fixed normal n to that plane.

(iii) The stretching of the several segments represents the stretching of vorticity,
which will be represented accurately only if the length of the segments is reasonably
small. A reasonable normalization of that length in our problem is

(19b) y12) yl) h2 when a segment is created.

(iv) The circulation around a vortex line made up of tiles must equal the circulation
around a vortex line made up of segments. If y2)--Yi is normalized by (19b) this
requirement leads to

(19c) Ki hlx/sc + :i sgn (’. n),

where t’ (SCl, sc2), n is the fixed normal to the plane of the flow and sgn(c) 1 if c => 0,
sgn(c) 1 if c < 0.

The remaining connecting formulas between segments and tiles are obviously
(1)(19d) xi =xi,

(19e) yl1 =yi,

(1)(19f) z zi.

Formulas (19) are of course invertible, and the computational elements can be treated
as either tiles or segments, as the occasion warrants.

When two segments interact, their interaction is given by formulas (19); when a
segment and a tile interact, they are both viewed as tiles.

Finally, the cut-off must be determined. We must require that if we consider on one
hand the interaction of two infinite vortex lines parallel to the y axis represented by
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segments, and on the other hand the interaction of the same vortex lines represented by
tiles, the former should approach the latter as the lines approach the wall. This
requirement obviously reduces to the condition imposed on r in two dimensions, and
yields r hl!’rr. This conclusion is of course legitimate only if most of the vorticity does
indeed point in a direction parallel to the y axis.

Application of the numerical methods in three dimensions. In this section we
discuss some of the features of the numerical method which are specific to the particular
application at hand. Most of the numerical parameters are chosen just as they were
chosen in the two-dimensional case; in particular, and L. We picked h k 5, since
the two-dimensional calculations showed that this was a minimal but adequate choice.
We picked h2 q/4, after some experimentation showed that this value was sufficient to
exhibit important effects.

The two major difficulties we encountered in three dimensions were: the large
amount of computational labor, and the difficulty in imposing periodic boundary
conditions on a grid-free method. The amount of labor is large not only because
three-dimensional calculations are always more costly than two-dimensional cal-
culations, but also (and especially) because the specific nature of the secondary
instabilities which arise in three dimensions (see the next section) requires the creation
of large amounts of vorticity at the walls. In consequence we used max 1. This value
seems to yield results which are compatible with two-dimensional results obtained with
smaller values of max, but it is obviously so large that one may legitimately argue that
what we have is a model rather than an approximation.

Periodic boundary conditions can be imposed on a vortex calculation, but the price
in computing labor is high. There again we did the least we could reasonably do. For
each vortex segment with base located at (x, y, z) (or its image created to satisfy the
normal boundary condition, with a base at (x, y,-z)) we created two more segments,
based at (x, y 4- q, z), q the period and took their velocity fields into account when we
moved the segment. Similarly, new tiles must be created outside the strip 0 =< y -< q with
locations and strengths determined by periodicity. Some rather complex programming
is needed to keep track of the several image systems as the tiles become segments and
vice versa.

Finally, we note that if 1 0 at 0, i.e., if there is no streamwise vorticity at all at
0, none will ever be created by our algorithm. Thus, if we are to observe the effects of

streamwise vorticity, we must introduce some by artificial means. We proceeded as
follows: At =0, for one time step, we changed the velocity at infinity. Instead of
u(x, y, oo)= (U, O, O) we set

Numerical results in three dimensions. Calculations done in three dimensions with
A 0 (i.e. with no perturbation which could trigger three dimensional effects) produce
results similar to the results of two dimensional calculations. They afford a check on
both, but are not worth discussing separately.

u(x, y, oo) =(uoo,( A, 0)

(Uoo, 0, 0) elsewhere.

We usually picked A 10-3 (note that U 1). For > k, we reverted to u(x, y, oo)=
(Uoo, 0, 0) everywhere. The effect of this initial perturbation is to create a small
streamwise vortex at the boundary, whose subsequent history is determined by
diffusion, transport, and stretching.
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FIG. 6. Amplification of streamwise rotation.

Even a very small value of A (i.e. a very small three dimensional perturbation) has
a substantial effect at all values of R we tried. The first phenomenon one observes when
A # 0 is that the boundary layer becomes thicker than in the case A 0. The mechanics
of this effect are somewhat complex. A reasonable qualitative explanation is as follows:
the rotation whose axis is parallel to the flow induces the creation of new streamwise
vorticity at the wall. The new vorticity is then collected in streamwise strips in which the
flow induced by the streamwise vortex leads away from the wall, while the regions
where the induced flow points to the wall are depleted (see Fig. 6). The part of the
boundary layer which thus expands can expand substantially, while the part which
contracts cannot contract below zero. As a result the computed boundary layer
thickness 8 increases; at (X, Y) is defined by

| (1-u(x, y, )/U) dt.
J0

In Figs. 7 and 8 we plot the ratio 8/b where =computed boundary layer
thickness at X 1/2 averaged over a period in y, and b boundary layer thickness at
X 1/2 computed from the steady Blasius solution. In Fig. 7, R 20000. Note that at

3, R8 computed with the steady is R8 187, and thus the layer should be steady.
However, if R is evaluated with the computed boundary layer thickness, R atX 1/2 is
approximately 300, andR at X 1 is approximately 440, well over the value at which
the layer becomes unstable in the two-dimensional calculation. In Fig. 8, R 100000,

R:20,O00 5D

\

2D

0.5 .5 2 2.5 :

FIG. 7. Growth o[ boundary layer thickness, R 20000.
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R=IO0,O00
5D

0.5 1.5 2 2.5 5

FIG. 8. Growth ot boundary layer thickness, R 100000.

and the same effect is reproduced. The computed values of the drag are not greatly
affected by this thickening of the layer. (This is quite plausible, in view of the extra factor
u in the integrand in the formula for the drag; the effect of this factor is to reduce the
dependence of the drag on the velocity profile near the wall.)

When the layer becomes unstable to Tollmien-Schlichting waves, the streamwise
vorticity begins to grow. The possible mechanisms for this growth are well known" The
waves stretch lines; furthermore, they can create situations in which a horizontal
streamwise line tilts away from the horizontal; its higher parts move faster than the
lower parts, and stretching results. All segments are initially created with length h2. If
they stretch their length becomes 11"12)- 1’I1) I. The ratio g Ir2- rl[/h2 is the stretching
ratio. In Figs. 8 and 9 we plot , the average value of g, averaged over all segments. It is

R=200,O00

o
0 2 5

FIG. 9. Amplification of boundary layer disturbances in three dimensions, R 20000.
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seen to grow slowly with time. These figures are for R 20000 and 100000. Note that at
the time when g begins to grow with R 20000 the layer had become thicker as a result
of secondary motion and R is larger than the critical value. In Fig. 9 we also plotted s,
the total streamwise vorticity, and r, the ratio of newly created streamwise vorticity to
newly created transverse vorticity. Roughly, r is an indication of the rate of growth of s.
All these quantities are seen to grow slowly and steadily. The growth can be started
earlier by increasing A. At value of R smaller than 10000, we never did succeed in
inducing such growth within a time we could afford and without using very large values
of A (i.e. A of order lmnot a plausible value for our problem).

The more interesting graph in Figs. 9 and 10 is the graph of the maximum value
gmax Of the stretching ratio. This value can become very large (---17), i.e., some vortices
are stretched by a large amount. This suggests an extraordinary spottiness of the
stretching process. This spottiness can be explained as follows: because our method is
random, the local velocity profile can differ from point to point. At some points the local
profile may be much more unstable than at others, and as a result secondary instabili-
ties, whose growth rate is very large (Greenspan [17]) will occur at some points and not
at others. One can also argue that as a result of the variation in local profiles, at some
points the segments may depart from the horizontal more than at others, and therefore
the stretching mechanism is more intense there. These two explanations may of course
be identical. The "spots" make the major contribution to the growth of the mean
quantities. Their presence indicates that the layer contains a mechanism for amplifying
greatly small differences in local conditions. However, one should remember that our
numerical layer is much noisier than a real layer is likely to be.

In Table 3 we display the values of the streamwise component of u at x ihl,
y =/’h2, z 0 and R 2 105, 2.6. The details of the fluctuations do not seem to
have any particular physical significance. The values of R and were picked somewhat
arbitrarily; the table shows the spottiness of the field, and also shows that, as expected,
the streamwise component of increases as the layer thickens.

R 2 O, O00

g m

0 2 3

FIG. 10. Amplification of boundary layer disturbances in three dimensions, R 100000.
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When g increases, more and more segments and tiles have to be created; this is why
we needed a large value of max. A further consequence is that computing for larger
times than what we displayed is more expensive than we could afford. A typical run for
0 <-t <-3 took about one hour of CDC 6400 time at Berkeley.

TABLE 3
Streamwise vorticity at the boundary, R 2 x 105, 2.6

i= 1 2 3 4

i= 1 .000 .000 .000 -.001
2 .000 .000 .000 .000
3 .000 .000 .000 .000
4 .003 .000 .000 .000
5 .028 .000 .001 .000
6 .000 .000 .000 .001
7 -.046 -.012 .001 .001
8 -.046 -.004 -.008 -.010
9 -.038 -.028 -.002 -.244

10 -.187 -.054 -.007 -.093
11 .091 -.065 .030 .076
12 -.062 -.310 .136 .205
13 2.260 .507 .480 1.070
14 -.077 .150 .826 -.621
15 -.552 .422 .001 -.273

12ondusions. Our vortex methods, including the new three dimensional version
and the new vorticity creation procedure, seem to be able to reproduce important
features of boundary layer behavior in two and three dimensions and at Reynolds
numbers where instability is expected. The three-dimensional calculation does exhibit a
growth of streamwise vorticity as well as spottiness; however, it was not performed for
times long enough tor anything resembling fully developed turbulence to be present.
Unlike other methods, our methods are not limited at high R by the difficulty in
distinguishing real from numerical diffusion; they are however limited, like other
methods, by the fact that effects not resolved cannot be seen; i.e., if there are not enough
computational elements to represent a phenomenon, that phenomenon will not be
observed. Since tully turbulent flow is very complicated, our methods do not remove the
need for careful modeling in some practical applications.
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Abstract. In solving systems of nonlinear equations, f(x)= 0, most investigations have concentrated on

methods that are efficient if the initial guess is close to a zero of f. For many problems a good initial guess is not

available, and a more robust method is needed.
We introduce a new idea based on the singular-value decomposition. Partial-rank "pseudo-Newton"

steps are defined which are a natural bridge between the steepest-descent method and Newton’s method, and
are particularly useful when the Jacobian matrix has partial rank.

Illustrative examples show the improvement possible over the usual hybrid methods which combine

steepest descent and Newton’s method.

Key words, nonlinear equations, singular-value decomposition, partial-rank matrices, Newton’s method,
steepest descent

1. Introduction. We consider the problem of finding a root x* of a system of n
nonlinear equations in n unknowns, f(x) 0, given a starting iterate x0. Most investiga-
tions have concentrated on efficient local convergence, when Xo is close to x*. Various
methods have been analyzed and proven quadratically or superlinearly convergent, if x0
is close enough to x*, and some useful computer programs exist. For many problems,
however, a good initial guess is not available, and a more robust algorithm is needed.

We introduce a new idea based on the singular-value decomposition (SVD).
Partial-rank "pseudo-Newton" steps are defined using the SVD. These pseudo-
Newton steps are a natural bridge between the steepest-descent method and Newton’s
method. The steepest descent method often works well if x is far from a root, since there
the Jacobian matrix is likely to be effectively of rank one. The quasi-Newton method
works well when x is near a zero, if the Jacobian is of full rank. The new idea overcomes
some of the difficulties which previous algorithms have when the Jacobian effectively
has intermediate rank, between 1 and n.

2. Methods with rapid local convergence. All the rapidly-converging methods are
based on a linear approximation to f, valid near Xk, the kth iterate,

f(x, + p) f(x) + J(x:)p: f +Jp.

Here J(Xk) Of/Ox is the Jacobian matrix of f at Xk. Newton’s method sets the left side to
zero, solves the resulting set of linear equations

JkPk
for the correction Pk, and then sets Xk+l "--Xk " Pk.

If Xk is not close to x*, there is no guarantee that Xk+ is any better than Xk; the
iteration process need not converge. Since the relative distances of Xk and Xk/1 to Xg are
not known, frequently the norms [[fkl[ and IIfk+lll are used instead. (We use the Euclidean
norm throughout the paper.) The new iterate, Xk+I, is rejected if Ilf/ll>llfll. A
common modification to Newton’s method is to let Xk/l Xk + h Pk, and choose h so that
IIf/lll < I[11, If ]k is exact, it is easy to show that such a h exists.

If the Jacobian matrix is singular, the linear equations have either no solution or a
whole family of solutions, and Newton’s method as usually implemented fails. One
might expect singular Jacobian matrices to be rare, and this seems to be the case in

* Received by the editors August 31, 1979.

" Bell Laboratories, Murray Hill, New Jersey 07974. Currently at Center for Applied Mathematics,

National Bureau of Standards, Washington, D.C. 20234.

22



ROBUST METHODS 23

practice. However, it is quite common for I to be ill-conditioned, especially when x is
far from x*; in finite precision, I may be effectively singular.

Even if the Jacobian matrix is not singular, a linear approximation to f may be
entirely inadequate. Then the correction p may be more or less random; experimentally
it is usually much too large. If the Jacobian is sufficiently ill-conditioned, the correction
p may not be computed accurately enough. This is especially likely if the Jacobian is
calculated by a numerical approximation rather than analytically, or if the Jacobian is
updated after each iteration rather than calculated anew.

For many problems, obtaining the Jacobian matrix analytically is impractical or too
expensive. A numerical approximation requires at least n evaluations of f. Instead of
calculating a new Jacobian at each step, a rank-one update may be used, such as [4],

[/ :I (x/ x)](x/ x)
Jk+l Jk -t-

giving a quasi-Newton method. Final convergence is superlinear, rather than quadratic
[5].

3. Hybrid methods. Powell’s hybrid method [14], [16] is a significant advance. It
attempts global rather than local convergence. We give only the main idea; many details
of the algorithm are omitted. Powell’s idea is to combine a quasi-Newton method with a
steepest-descent method. The steepest-descent dir6ction is -1/2Vllf]l2 --.ltk. A steepest-
descent step is defined by

with/Xk chosen so that, if t is linear, I[t(Xk-/Xltk)[I is minimized as a function of

A Newton step, Pk, is defined as the solution of JkPk----fk. It may be shown that
IIg.II <-- IIp.ll.

Powell’s hybrid method also uses a parameter, A, the maximum allowed step size
[[x+- xl[. The algorithm also includes a prescription for updating A. Powell chooses
Xk+l as follows.

If IIp[l_-<A, x+ =Xk +p.
Else if IIgll_-<a --<llpll, x+-x+g +(1--ak)Pk, and choose

cek, 0<k =< 1, so that
Else Xk+x=Xk

The convergence is monitored by IIf ll, When convergence is not going well, Ak can be
decreased, giving a bias towards steepest descent, which often works well when x is far
from x*. When convergence is going well, Ak can be increased, giving a bias towards the
quasi-Newton method, which often works well when x is near x*. Eventually, final
convergence is superlinear because a quasi-Newton method is used.

Powell’s algorithm starts by obtaining an approximation J0 to the Jacobian matrix
at the starting point, x0. Then J0 is inverted to obtain jl. Thus his method fails
whenever the initial Jacobian is singular to working precision, even though the
steepest-descent method could be used. (Powell does a rank-one update to J-, rather
than to J.)

More modern methods, such as 1], avoid this problem by using a QR factorization
of the Jacobian. The initial factorization takes O(n 3) operations; rank-one updates take
O(n 2) operations, as does solving the linear equations to obtain Pk. When the Jacobian



24 JAMES L. BLUE

is singular, and even when its estimated condition is too large, the Newton step can be
avoided.

In many problems, good progress is made initially with steepest descent; good
progress and final convergence is made later with the hybrid method; but slow progress
is made in between. (Figure 4, to be discussed later, is a graphic demonstration of one
example.) The slow intermediate progress usually occurs when the Jacobian matrix is
effectively singular, so that Newton’s method cannot be used, but steepest descent is
slow. The slow intermediate progress of steepest descent is not surprising [9].

4. A new idea. In order to shed light on the problem, we consider a singular-value
decomposition (SVD) of $. Dropping the subscripts referring to the iteration number,
we have

J=usv

where U and V are n n orthogonal matrices and S diag (0-1, 0-2, , 0-,) is an n x n
diagonal matrix, with 0-1 -> or2 -> => 0-, => 0. Let b Urf. If 0-, > 0, the Newton step is

p -VS-lb =-V diag (1/0-1, 1/0-2, ", 1/0-,)b.

The steepest-descent step is

g=-V{ IlSbll2 S}b.IlSSbll=
Suppose $ is exactly a rank one matrix. Then 0"2 0"3 0", 0, and

g=-V diag (1/0"1, 0, , 0)b.

In this case, S-1 does not exist, but its pseudo-inverse is -1 =diag (1/0"1, 0, 0,. , 0).
Thus, for a rank-one Jacobian, the steepest-descent step is exactly equal to the Newton
step using the pseudo-inverse of $. We call the latter step a rank-one pseudo-Newton
step. For a general $, the rank-one pseudo-Newton step is not necessarily close to the
steepest-descent step.

Experimentally, the situation is frequently as follows. When a steepest-descent
step gives good progress (llt/ll<lltll/2, say), the Jacobian is usually of rank one or
effectively so, with 0"1 >> 0"2. A Newton step can be used only if the Jacobian is of full
rank. When the Jacobian is effectively of intermediate rank, a Newton step cannot be
used, a steepest-descent step usually gives little improvement, and convergence is slow.

Intermediate-rank Jacobian matrices contain more information than the steepest-
descent method can extract. We can utilize this information using intermediate-rank
pseudo-inverses of . If 0"i > 0, we define the rank-] pseudo-Newton step, p(i), to be

p(i) -V diag (1 / 0"1, 1 /0"2," 1 / 0"i, 0, 0,. -)b.

Since V is orthogonal, lip (i)[I2 Y.= (b,/r,)2, and therefore lipi+

Thus we have a number of possible pseudo-Newton steps which are candidates for
using to obtain the next x. As in the hybrid method, we prefer to maintain a maximum
allowable step size, Ak. Let or,, r <= n, be the smallest positive singular value; r is the rank
of the matrix.

If [[p)ll -< Ak, xk+l x + p’). If r n, this is a quasi-Newton step.
Else if IIpll_-<a <llp+X)ll for some/’-> 1, Xk+l =Xk

where t is chosen so that IIx +x-x ll-- A.
(1) (1Else Xk+l Xk -’p Ak/llp )ll. If r 1, this is along the steepest-descent

direction.
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If O’1 >> 0"2, SO that the rank is effectively one, it is almost a steepest-descent
step.

Thus a desired step length Ak can be used to determine the rank of the step. As a
solution progresses, Ak is increased and the lengths Ill(J)ll decrease; larger-rank pseudo-
Newton steps can be used. As with the hybrid methods, final convergence is superlinear
because Newton’s method (or a quasi-Newton method) is used.

If the problem is linear, it may be shown that a step of any A reduces Ilfll. If J is exact,
it may be shown that there is some A which reduces

We mention in passing that this idea is also useful when the number of equations is
less than, rather than equal to, the number of unknowns.

5. Other methods. The essence of the idea presented in the previous section is to
use a replacement for S-1 which, depending on A, can give Newton’s method if J is of
rank n, can give the steepest-descent method if J is of rank 1, and do something
reasonable if ] is of intermediate rank.

Another reasonable replacement for $-1 is that of Levenberg [10] and Marquardt
[11],

0.1 0"2S-1 diag 0. +/3
2, 0.22 +/32,.

with /3 chosen to give a step size of A. If fl =0, this gives Newton’s method. If
0"1 >>/ >> 0"2, this gives (approximately) the steepest descent method.

A priori, there is no reason to expect one replacement to be markedly better than
another. The Levenberg-Marquardt method has the computational advantage that the
SVD can be avoided, as Mor6 has shown in the context of unconstrained optimization
[12].

For systems of nonlinear equations, ] is frequently calculated by a numerical
approximation, and rank-one updates to ] are typical. After a number of partial-rank
steps, before final convergence, we expect sizable errors to accumulate in ], especially in
the higher-rank portions. Philosophically, we prefer not to use any of the highest-rank
components, since they may be entirely garbage part of the time.

Practically, we find that the Levenberg-Marquardt method is quite satisfactory.
For several test problems, we also calculated each step Xk/I- Xk using the Levenberg-
Marquardt replacement for $-1. The results were comparable with the results using the
pseudo-Newton replacement.

6. Illustration. In this section, we choose one t and three different starting points
x0. For each, we illustrate the situation for the first step in an iterative solution process.
We consider the Chebyquad family of problems [6]. Let T*,,, (u) be the ruth Chebyshev
polynomial, shifted to the interval [0,1]. Let t=(fl, fE,’’’,fn) 7" and x=
(x,x, ,x,,).

1 T(x.,)_Io T(u) du.

Since | is unchanged by a permutation of the x,,, the Jacobian is singular when any two
or more ot the x,,, are equal; such points are saddle points.

The examples were done in single precision on a Honeywell 6070, relative
precision e 1.5 x 10-8. The Jacobian matrices were approximated by forward
differences, using a difference step of e  /=llxoll.

We choose n 9, which is a difficult problem when the initial guess is not a good
one. First we use the standard guess: Xo (1/10, 2/10,. , 9/10) r. The initial norm is
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TABLE
Chebyquad 9, standard starting point; ten possible first

steps.

o-1/o- A Ilflll/llfoll

SD .021 .738

.019 .785
2 1.06 .019 .785
3 1.16 .019 .785
4 1.48 .022 .735
5 2.00 .022 .735
6 3.06 .039 .617
7 6.50 .039 .617
8 3.5E1 .712 4.1El
9 1.6E2 .713 4.2E1

0.01 0.1 0.4
STEP SIZE A

FIG. 1. For Chebyquad 9, I111/11oll vs. A, first Xo, [or hybrid steps (H), pseudo-Newton steps (PN), and for
Levenberg-Marquardt steps (LM).
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11o11=0.17. The steepest-descent step (SD) has length 0.021, and produces IIll--
II (xo / goll 0.73811o11, as entered in line SD of Table 1. Table 1 also has similar data for
nine pseudo-Newton steps. To obtain the [th step, A is chosen equal to For
example, Ilp(6)ll 0.039, and I111--II(xo + p(6)) 0.61711o11. The ratios of singular values
are also shown. (The repeated values occur because of the symmetry of the problem and
the starting point.) For this problem and starting point, Newton’s method diverges
rapidly. In Fig. 1, we plot IIll/lloll against A, for hybrid steps, pseudo-Newton steps, and
Levenberg-Marquardt steps.

With a worse starting point, x0 (51-, ,’’’, ), the initial norm is Ilfoll- 1.35 x 105.
Results are given in Table 2. The matrix is effectively of rank one, since O’1/O"2 100.
An initial steepest-descent reduces IIf[[ by a factor of approximately 1/e. Since the
condition number is about 3.5 107 and the machine precision is about 1.5 10-8, the
last few singular values and pseudo-Newton steps may not be computed very
accurately, although the rank-8 step seems to be satisfactory.

TABLE 2

Chebyquad 9, worse starting point; ten possible first
steps.

SD .158 .370

.158 .370
2 1.1E2 .554 .633
3 4.6E3 .814 .494
4 8.4E4 1.15 .537
5 4.2E5 1.17 .538
6 4.2E5 1.18 .536
7 6.9E5 1.24 .535

8 1.5E6 1.60 .534
9 3.5E7 4.53 1.3E2

TABLE 3

Chebyquad 9, third starting point" ten possible first steps.

/i a I111/11oll

SD .0047 .991

.0024 .996
2 3.95 .0232 .976
3 1.5El .239 .884
4 7.0El .578 2.2E2
5 2.0E3 2.4E1
6 8.8E4 1.0E3
7 4.4E6 1.8E4
8 4.7E7 1.5E5
9 2.4E8 3.4E6

The steepest-descent step and the rank-one pseudo-Newton step, which are nearly
identical, reduce Ilfll most. In Fig. 2, we plot I111/11oll against A, for hybrid steps and for
pseudo-Newton steps. The plot for Levenberg-Marquardt steps is essentially the same
as for pseudo-Newton steps, because the relevant singular values are widely spaced.
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1.0

- 0.5

0
0.1

H
PN,LM

1.0 4
STEP SIZE A

FIG. 2. For Chebyquad 9, II|ll/lloll os, A, second x0, [or hybrid steps (H), pseudo-Newton steps (PN), and
for Levenberg-Marquardt steps (LM).

A final starting point is a point reached by ZONE [1] in solving Chebyquad 9
starting point (1, 2,..., 9) r. The point is Xo=(.8340, .8416, .9510, .9534, .9645,
.9659, .9877, .9982, 1.0053) r. Many steepest-descent steps have resulted in reaching a
place where steepest descent gives very little improvement. The Jacobian is ill-
conditioned, since Xo is near a saddle point. As in the previous example, the last few
singular values and pseudo-Newton steps may not be computed very accurately. The
initial norm is I1oll-- 1.338. Results are given in Table 3.

For this Xo, the usual hybrid methods are unable to make good progress. In Fig. 3,
we plot I111/11oll against A for three types of steps. The minimum values are approxi-
mately .99 for hybrid, .845 for pseudo-Newton, and .88 for Levenberg-Marquardt.

7. Examlies. We have implemented a version of the partial-rank pseudo-Newton
method in an experimental program, ZSVD [2]. The singular-value decomposition is
done by a standard method [8], using program MINFIT from Eispack [7]. Given a
matrix, 3 USV, and a vector, f, MINFIT is used to produce the diagonal matrix S, the
orthogonal matrix V, and the product Ur|. The matrix U need never be formed directly.
Because the SVD takes O(n 3) operations, and because there is no known economical
method of updating the SVD after a rank-one change to 3, ZSVD will have considerably
higher overhead than the usual hybrid method. Therefore, ZSVD is usually operated in
a mode in which the SVD is done only when it seems to be necessary, and a standard
hybrid method is employed otherwise. For the examples reported here, except the
calculations for Fig. 4, ZSVD was changed so that it always did the SVD. The Jacobian
matrices were approximated by forward differences, using a difference step of e /=llxll,

Figure 4 illustrates the progress of ZONE and ZSVD for Chebyquad 9 with a
terrible guess, x0 (1, 2,. ., 9) r. The log of I111 is plotted against the number of calls to
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1.5

1.0

0.5

001 0.1 0.4
STEP SIZE /

FIG. 3. For Chebyquad 9, Ilfxll/lloll vs. A, third Xo, for hybrid steps (H), pseudo-Newton steps (PN), andfor
Levenberg-Marquardt steps (LM).

the function subprogram. The horizontal lines about 9 calls wide indicate function calls
used to evaluate new Jacobians. Each curve shows initial rapid convergence, when
steepest-descent works well. Then comes an intermediate region, where convergence is
slower. Since the Jacobian is effectively of intermediate rank here, the convergence of
the hybrid method, ZONE, is much slower than that of ZSVD. Finally, each program
converges rapidly, with quasi-Newton steps. Table 3, given earlier, illustrates the
situation near the knee of the ZONE curve, at function call 144.

Few high-quality nonlinear equation programs are widely available for comparison
with ZSVD. Results are presented for two programs in MINPACK1 [13], available
from Argonne National Laboratory. BRENT1 is an implementation of an algorithm by
Brent [3]. It requires that each component of be available separately, which is not
always possible; BRENT1 is not robust, but is efficient when it does converge.
HYBRD1 is a modern version of Powell’s hybrid method, and is more robust than
BRENT1 or Powell’s implementation [16].
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0 1)0 200 3)0 4)0
NUMBER OF FUNCTION CALLS

500

FIG. 4. For Chebyquad 9, loglollf[I vs. number of function calls, for starting point Xo= (1, 2,..., 9)r.
ZSVD marked with A, ZONE marked with V.

All examples were done in single precision on a Honeywell 6070, relative precision
e 1.5 10-8. The convergence tolerances were I111 10- for ZSVD and HYBRD1,
and I1[[[ 10-5 for BRENT1. The first two problems were run with three starting
vectors. Besides a vector Xo, chosen to be close to the solution, we used 10Xo and 100Xo,
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to test the effect of very bad initial guesses. The number of function calls for each
program is given. For BRENT1, the equivalent number of vector function calls is given,
i.e., the number of component evaluations divided by n, rounded to the nearest integer.
To test the effect of moderately bad initial guesses, we used 20 random initial guesses in
(0, 1), using the nearly-portable random number generator RAND in 17]. The initial
seed for the generator was 12345; the same numbers were used for all three programs.
The average number of function calls for the successful runs is given. For the random
starts, the number of successful solutions is given in parentheses.

Two-ioiat boundary value lroblem. The first example is from [15]. The standard
central finite difference approximation to

u"(t)=1/2[u(t)+t+l]3 0<t<l, u(0)=u(1)=0,

with h 1/(n + 1), Xk u(kh), and Xo xn+l 0, gives the system

[k(X)=2Xk--Xk_--Xk+l+1/2hE(xk+kh+l)3, l<-k<-_n.

The close initial guess Xo has components Xk "-kh(kh-1); all components of the
solution are in [-0.5, 0]. Table 4 gives the results for n 10.

For this relatively easy problem, there is no advantage in using ZSVD.

TABLE 4

Xo 10Xo 100Xo random

BRENT1 14 27 60 21 (20)
HYBRD1 13 15 42 14 (20)
ZSVD 17 17 40 17 (20)

TABLE 5

Xo 10Xo 100Xo random

BRENT1 10 33 78 22 (20)
HYBRD1 14 230 div 30 (20)
ZSVD 14 73 122 27 (20)

TABLE 6

Xo 10Xo 100Xo random

BRENT1 6 82 div 38 (20)
HYBRD1 22 717 div 41 (16)
ZSVD 19 148 188 44 (20)

TABLE 7

Xo 10xo 100xo random

BRENT1 23 div div 72 (13)
HYBRD1 48 div div 27 (7)
ZSVD 55 178 321 81 (20)
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TABLE 8

x0 random

BRENTI div div (0)
HYBRID1 52 73 (16)
ZSVD 65 71 (20)

Chebyquad. The standard starting point is x0 (1/(n + 1), 2/(n + 1),. , n/(n +
1)). Except for the smallest values of n, even a small change in the starting point, if it is
far from a solution, can result in a completely different path being taken. The problem is
nonetheless illustrative; it is extremely difficult if the initial guess is not good.

Tables 5, 6 and 7 contain the results for n 5, 7 and 9. ZSVD is more robust than
the other two routines, which diverged for some of the random guesses and some of the
very bad guesses.

Sum oI exponentials. A final example has a Jacobian matrix which is of rank 1 at
the solution, and of low rank far from the solution.

fi exp [- (xj- 1)2] 1,
j=l

l__<i__<n-1,

The close guess is x0 (1/2, 1/2,. , 1/2). For n 10, the results follow. BRENT1 diverged
with all guesses. HYBRD1 converged for the standard guess and for 16 out of 20
random guesses. ZSVD converged for all guesses.
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Introduction. In this paper we would like to discuss the application of some
nonlinear programming methods to the numerical study of a class of nonlinear
mechanical problems in finite elasticity. These problems concern the structural
behavior of flexible and inextensible pipelines; for simplicity we shall suppose that we
have a large displacement, but small strain, situation, i.e., the nonlinearity is geometric.
Similar and related problems have been considered by many authors, from different
points of view (mathematical, computational, etc and a list of related references is
given in 10.

In our opinion our specific augmented Lagrangian method (directly inspired from
Fortin-Glowinski 1, Chap. 3]) is more important than the particular class of problems
on which it has been tested and we have the feeling that it has a broad field of
applications in finite elasticity, particularly for the numerical simulation of incompres-
sible media (in fact this belief has been very recently justified by the promising
numerical results obtained by P. Le Tallec and the third author for a class of
Mooney-Rivlin incompressible materials).

1. A class of pipeline problems. The increasing development of off-shore oil
exploitation has strongly motivated the numerical simulation of the related structures.
Among these structures, pipelines of various types play an important role, and
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* COFLEXIP, 75116 Paris, France.
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particularly the COFLEXIP pipelines designed and manufactured by the French
company COFLEXIP which is the pioneer in this advanced technology. Engineers have
been interested in the static and dynamic behavior of these pipes, by the effects of
streams and waves, by the contact problems on the sea bed and other obstacles (on the
pipe itself for example), etc Figure 1.1 explains some further notation associated
with the problem to follow.

" / stream /
/ /\ Sea /

0 /

x

FIG. 1.1. A,B: extremities of the pipe" s" curvilinear abscissa" s(A)= O, s(B)= L (L: length of the pipe).
M(s)" generic point o[ the pipe with coordinates x(s), y(s).

1.1. Simplifying hypotheses. For simplicity, but also because it provides interest-
ing preliminary results on the behavior of the pipe we suppose that:

(i) torsional effects are neglected;
(ii) the pipe is inextensible
(iii) the pipe diameter is small with respect to the length L,
(iv) we only consider two-dimensional displacements of the pipe;
(v) the pipe is flexible and therefore can handle large displacements while still

obeying a linear strain-stress relation.
Remark 1.1. With the numerical methods described below we can simulate the

effects of streams (see 7), waves, contact with obstacles (possibly nonhorizontal) and
also solve time dependent (dynamic) problems (see 8).

2. Mathematical modeling of the static problem. We only consider in this section
static problems; we suppose also that there is no stream acting on the pipe (the static
problem with stream is considered in 7). Considering the pipe as a nonlinear beam we
have from the inextensibility condition

(2.1) Xt2 + y,2 1 on [0, L]

(where x’= dx/ds, y’ dy/ds, x" d2x/ds z, y"= dZy/ds2), that the displacement fields
corresponding to stable equilibrium positions are solutions of the local minimization
problem

(2.2) Min loc -g- (Xn2 + y,,2) ds + pg y ds
{x,y}

where in (2.2),
(i) El(> 0) is the flexural stiffness of the pipe;
(ii) g is the gravity acceleration; and
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(iii) O is the linear density of the pipe. If the pipe lies under water, to take into
account the hydrostatic pressure we have to use p defined by

P Po- O’pw,

where Po, cr are the intrinsic linear density and the cross-section of the pipe,
respectively, and where pw is the volumic density of the water.

Finally the local minimizers we are seeking have to be found in the (nonconvex) set

’ defined by

’ {{X, y}lX, y C1[0, L], x", y" 6 L(0, L), plus convenient
(2.3)

boundary conditions, and x ’z + y,z 1 on [0, L]}.

Remark 2.1. The nonlinear, nonquadratic, nonconvex character of the local
minimization problem (2.2) is clear from (2.3).

Remark 2.2. With the numerical methods to be described in the following, we can
handle cases in which E1 and/or p are functions of s and where more complicated
external forces and energy terms are present in the functional to be minimized.

3. Mathematical analysis of the static problem. The mathematical analysis of
problems like (2.2) is by itself a fascinating subject which goes back to Euler (the elastica
problem); however since this work is mostly computationally oriented we shall limit our
analysis to a very simple existence theorem and to some comments on nonuniqueness
properties; for a very complete mathematical analysis of related problems we refer to
Antman-Rosenfeld [2] (see also Benjamin [3]). We suppose that the boundary condi-
tions are given either by

X (0) XA, y (0)
(3.1)

x (L) xn, y (L) yn

with XA, YA, XB, YB given, or by

x(O) x,,, y(o) y, x’(O) o, y’(o) to,
(3.2)

x(L) xn, y(L) yn, x’(L) aL, y’(L) =/3L,

where, in (3.2), XA, ya, Xn, yn, aO, 0, a, are given with a +/3 1, c +/3 1.
Let us prove the following about existence properties.

THEOREM 3.1. Suppose that IXBI<L and that (3.1) or (3.2) holds, then the
minimization problem (2.2) has at least one solution.

Proof. Since [--l < L, the set ’ defined by (2.3), with (3.1) or (3.2), is not empty.
Let {x,, y, }, be a minimizing sequence; then we clearly have some constant C such that

(3.3) Ilx, llc,to.,._-< c, [[y, ll,to.a_-< C Vn->_0,

(3.4) c, Ily;ll=(o.)_-< C Vn.

It follows from (3.3), (3.4) that {x,},, {y,}, are bounded in H2(0, L); then the
compacmess of the embedding of HZ(O,L) in CI[0, L] implies the existence of a
subsequencestill denoted by {x,, y,},and of {, 37} Hz(O, L)x HZ(O, L) such that

(3.5) {x,, y,}-->{JT, 37} strongly in C[0, L]x C[0, L],

(3.6) {x’,’, y}-> {", 37"} weakly in L2(0, L) x L2(0, L).

Since {x,, y,}e ’, ’qn, it follows from (2.3), (3.1), (3.2), (3.5), (3.6) that {, y} ’. It
follows also from (3.5), (3.6) and from the weak semi-continuity, on H2(0, L)x
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H2(0, L), of the functional J" H2(0, L) x H2(0, L) defined by

El lor (x,,2 y,,2 fo
r"

(3.7) J(x, y) -- + ds + pg y ds,

that

(3.8) J(, 7)_-<limJ(x,, y,)= Inf J(x, y).
(x,y}

Clearly, (3.8) and {$, )7} ge imply that J(g, )7) Inf J(x, y); this completes the proof
of the theorem. 1 x.y

Remark 3.1. If (3.1) holds and if L, then (2.2) clearly has a unique solution
which is given by

s $
$(s) XA +- (XB --XA), )7(S) YA+ (YB YA).

If I---1 L and if g is defined from (3.2), then g’ is empty, in general.
Remark 3.2. Existence results similar to those obtained above, can be proved by

similar methods for boundary conditions different from (3.1) or (3.2).

3.1. Comments on the nonuniqueness of the solutions. If E1 0 in J(., (see
(3.7)) and if the boundary conditions are given by (3.1), then (2.2) has a unique solution
corresponding to a catenoid curve (we suppose of course that [--1-<-L). If pg 0 in
(3.7), then (2.2) reduces to the elastica problem considered by Euler; if the boundary
conditions are given by (3.1), then to each solution of (2.2) corresponds the solution
obtained by symmetry with respect to the line AB. If EI > 0 and if pg > O, then we also
have nonuniqueness in general, and it will be interesting to study the branches of
solutions, their limitpoints and bifurcation points, using for example, the methods of [2].

To illustrate this nonuniqueness of the solutions of (2.2) let us consider, for
example, the particular problem (2.2) corresponding to

(3.9)

X (0) XA 0, y (0) YA 0,

x(L)=xn=(1-A)L with -I=<A-<I, y(L)=yn=0,

x’(0) 1, y’(0) 0, x’(L) 1, y’(L) 0.

If A 0, problem (2.2) has clearly a unique solution which is given by

(3.10) $(s) s, 37(s) 0;

if lag 0 we have two branches of stable solutions, starting from the solution (3.10) as
indicated by Fig. 3.1.

FIG. 3.1
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In order to study the behavior of the solutions in the neighborhood of A 0, if
pg O, we use the standard transformation

(3.11) x’ cos 4, y’ sin

which reduces the above particular problem (2.2) to

(3.12) Minloc{Elfo’, -- [qb ds + pg -s sin 6 ds

with

(3.13)
L L

=/bH(0, L),Io coscds=(1-A)L, Io sinbds=0}.
This problem (3.12), (3.13) can be studied by the methods of [2]; since our goal is

more modest and since we are mostly interested in the behavior of the solutions in the
neighborhood of the solution (3.10), we shall restrict our analysis to a second-order
approximation of the problem (3.12), (3.13). The formulation of this approximate
problem is

(3.14)

with - [’12 ds + pg -- s 49 ds

L L

Since all the functionals occuring in (3.14), (3.15) are C overH (0, L), it follows
easily from, e.g., Berger [4, 3.1 F] that to each solution 4’ of the minimization problem
(3.14), (3.15) we can associate two Lagrange multipliers 3’ and ( ) such that the
triple {, y, } obeys

(3.16) -NIO"+O=-og -s - on (O,L),

(3.17) 0(0) (L) 0,
c

O ds 21L,(3.18)

L

(3.19) Jo O as o.

In fact (3.16)-(3.19) characterizes as a stationary point on of the functional
]" Hi(0, L) N defined by

(3.20) f() [ ds + pg -s as;

it does not guarantee that is a local minimizer.
Let us consider the solution of the system (3.16)-(3.19); assuming that and 8 are

known it is fairly easy to compute from (3.16), (3.17) and then adjust y and 6 to satisfy
(3.18), (3.19). In all the discussion which follows we suppose that A > 0.

3.2. ypothesis pg = 0. The analysis of this situation in which gravity has been
neglected, is reduced to the discussion of a linear eigenvalue-eigenfunction problem.
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3.2.1. Case 1: ?> 0. It is convenient to set y to2 (to > 0); if 6 # 0, it follows from
the maximum principle that the unique solution of (3.16), (3.17) has the sign of 8 on
(0, L); thus (3.19) cannot be satisfied. If 8 0, then /= 0 is the unique solution of
(3.16), (3.17) and (3.18) cannot be satisfied if A > 0.

(3.21)

3.2.2. Case 2: y< 0. We set this time y _to2 (to > 0); then the solution of (3.16),
(3.17) is given by

s
O,,o(S) A sin nr, n integer_-> 1 if 8 O,

and

-5( to to LsinE/S) if0.(3.22) Ov,(s)
6

1 -cos --1s tg 2

Using (3.18), (3.19) we obtain that in (3.21), n 2m, m integer 1, A 2.
Using (3.19) we have that, in (3.22), w has to be a solution (positive for example) of

wL L
(3.23) 2tg

2
The positive solutions of (3.23) make a sequence {to2n}n>l with

(3.24) to2n T n,

where {n}nl is the sequence of the positive solutions of

(3.25) = 2tg-.
We have (see Fig. 3.2) that

2nrr < :, < (2n + 1)rr,
(3.26)

lim ((2n + 1)or so.) 0;

once w2, is known, adjusting 8 to satisfy (3.18) is an easy task which produces 82, and
a2n (2n > 0).

FIG. 3.2. Solutions of 2tg(/2).
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3.2.3. Recapitulation. If pg 0, the local minimization problem (3.14) has only
two solutions

S(3.27) (s)= 2x/ sin 2zr, ]-(s)=.-2x/ sin 2r
which in fact are global minimizers. In addition to , the functional ] possesses an
infinity of stationary solutions on * (of saddle-point type), given by

(3.28) O=n-l+ (S) +/-2x/ sin 2nTr, n > 2,
L

(3.29) O:,(s) +/- 1-cos n-7--sin n n >= 1.
(.02n

3.3. Hypothesis pg > 0. As will be seen below, gravity effects will complicate the
structure of the solutions of (3.16)-(3.19), compared to the nongravity case discussed
above.

3.3.1. Case 1: y> 0. Setting again 3’ 0)2 ((.o > 0) we can easily show, since A > 0,
that (3.16)-(3.19) has no solution corresponding to # 0. Taking - 0 in (3.16) we
obtain as a solution of (3.16), (3.17), (3.19),- - sh to/x/l) L/2 -3.3.2. Case 2: y<0. We set y =--(.0

2 ((.O >0); with regards to the solutions
of (3.16), (3.17), (3.19) we can prove the following results.

(i) If to tOEn-1 2nrr(x/I/L), n _-> 1, then (3.16), (3.17), (3.19) has no solution.
(ii) If to # ton, n -> 1, then (3.16), (3.17), (3.19) has a unique solution, for which

-0, and which is given by

(3.31) pg L s) L sin (o/,)((L/2)- s)}.sin (o/)(L/2)

(iii) If w =O)2n, n_>-l, then (3.16), (3.17), (3.19) has a unique solution (with
yz,, -on) given by

,v:,,(s)=-w2, - s - sin (wz,/,-)(L/2
(3.32)

tOEn O)2n L tOEn++(1-cos sin
wzn- s V-I 2 -Is)"

3.3.3. Determination of to and & Recapitulation. We suppose first that 6 0; the
multiplier 3/ is obtained from (3.18), (3.30), (3.31) and (3.32) (with t =0); in that
direction it is convenient to plot, as done in Fig. 3.3, the graph of the function

L

sign (3/)-> J0 I’v’(s)[2 ds.

The feasible 3/ are obtained by taking the intersection of this graph with the
horizontal line of ordinate 2AL (two positions of this line have been shown on Fig. 3.3)
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2A2L

2AlL

to sgn (,)

FIG. 3.3. Determination of y.

The poles of the above function are the negative multiples of wl 27r(/-/L) (see Fig.
3.3). If w wz, (situation corresponding to a bifurcation phenomenon) the feasible 3 are
obtained again from (3.18). In (3.32) we see easily that the first (resp. second)
component of Ov_,,a is an odd (resp. even) function of ((L/2)-s); from these properties
these two components are L2(0, L)-orthogonal. Hence the graph of the function

L

| 2 as
J0

is a parabola, symmetric with respect to the ordinate axis and strictly above the 3-axis
(see Fig. 3.4).

2A2L

2AlL

FIG. 3.4. Determination of 6.

For h sufficiently large and n given we have two solutions 31, 32 with 31 --32; this
implies that for h sufficiently large (h > (1/2L)llv2,o 112(O,t)), we have two stationary
solutions of type (3.32) for each value of n, n >- 1.

It follows from the above analysis that we have a (countable) infinity of stationary
points of the functional/’, VA > 0; it follows also that we have an infinity of bifurcation
points. Finally it can be proved that the branch of solutions associated to o sign (3’)6
(-ol, + c) corresponds to global minimizers of/" on -*.

4. Numerical solution of the static problem. I: Generalities. The numerical
solution of problems closely related to (2.2) has been considered by several authors; let
us mention among others Hibbit-Becker-Taylor [5], Maier-Andreuzzi-Gianessi-
Jurina-Taddei [6].



42 J. F. BOURGAT, J. M. DUMAY AND R. GLOWINSKI

This problem (2.2) is actually a nontrivial one from a computational point of view,
as can be observed by introducing a Lagrangian functional associated to the functional J
of (3.7) and to the nonlinear (inextensibility) constraint (2.1)

1 f’ ,
(4.1) (x, y,/z) =J(x, Y)+ J0 /z(x’2+y -1)as.

Suppose that a Lagrange multiplier function , exists, corresponding to a local minimizer
{y, )7} g’; from the stationarity of we obtain that the triple {Y, 7, , } has to satisfy

4-

(4.2) EI-ss- ds ’ 0 on (0, L) + boundary conditions,

(4.3) Ei
d4 d( d_ssds---- -s A pg on (0, L)+ boundary conditions,

(4.4) a?’2 + )7’2-1 0 on [0, L].

It appears from (4.2)-(4.4) that , can be seen as a generalized eigenvalue, with
{, 7} the corresponding generalized eigenvector.

Since the main difficulty in problem (2.2) lies in the nonlinear inextensibility
constraint (2.1), it seems quite natural to overcome it using the transformation
x’= cos b, y’= sin b, where b is clearly the angle formed by the oriented tangent at
the pipe, at M {x, y}, with Ox, and where d4/ds is the curvature of the pipe at M
(see Fig. 4.1).

FIG. 4.1.

This transformation, which has been used computationally in related problems (see
e.g. [6]) and also in problem (2.2) by M. O. Bristeau and the third author, leads to a
second-order differential problem (compared to the fourth-order original problem)
which has a more complicated nonlinear structure since it involves transcendental
functions, like cos and sin, whose repetitive use may be costly; furthermore, as can be
seen on the specific problem (2.2), (3.9) which leads to (3.12), (3.13), boundary
conditions of type (3.1), (3.2)on x, y imply nonlinear integral relations on b (cf. (3.13)).

Another argument to work directly with x, y and (2.1), instead of b, is that it is a
good starting point toward the solution of much more complicated finite elasticity
problems, related to incompressible media in which the domain under consideration is
two- or three-dimensional (and in fact, as mentioned in the introduction, the
methodology described in 6 has led to a class of very efficient algorithms for
calculating two-dimensional hyperelastic incompressible media of Mooney-Rivlin
type).

5. Numerical solution o| the static problem. II: Approximation.
5.1. Approximation o| H2(0, L) and . Since is a subset of H2(O, L) /-/2(0, L),

a most important step toward the numerical solution of (2.2) is to define a convenient
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approximation of H2(0, L); let us introduce r{s}=0 such that s [0, L], Vi, So 0, SN L
and si < si/l, Vi 0,..., N-1. We then approximate H2(0, L) by

(5.1) Vh {I)h E cl[0, L], l)h[[si,si+x]E P3, Vi 0,’" ", N- 1},

where, in general, Pk space of the polynomials in one variable of degree =< k; we have
Vh c H(O,L) and dim Vh =2(N+ 1). As usual h =maxi(s/-si). If Vh Vh it is
convenient to define it from

{I)h(Si)}iN=o, --s (Si)
i=O

Using these degrees of freedom it is clear that Vh corresponds to a finite element
approximation ofHermite cubic type (see Fig. 5.1).

0 Si_ S Si+l/2 Si+ L s

FIG. 5.1.

Since Vh X Vh H2(0, L) x H2(0, L) we have that the functional J (cf. (3.7) for its
definition) is defined on Vh X Vh; moreover, since Xh, Yh Vh implies that (x2+

#2xl
Yh )l[s,,s,+l]Ee2, the two integrals occurring in J can be computed exactly using
Simpson’sformula on each sub-interval [s, s/l], 0, 1,..., N- 1. By restricting J to
Vh x Vh one obtains a functional of 4(N+ 1) variables.

5.2. Approximation of g’. Since we use a piecewise Hermite cubic approximation
there is no difficulty to approximate boundary conditions like those given by (3.1), (3.2).
Concerning the inextensibility condition (2.1), the obvious choice is to use

(5.2) x’2(s,)+y’2(x,) 1 Vi=0, 1,... ,N.

Since {x , (si)}/u=0, {y , (s)}V=o are precisely part of the degrees of freedom definingx and
y, the computer implementation of (5.2) is fairly easy. We have observed however that
for some stiff problems (involving strong variations of curvature) we can obtain a poor
accuracy using (5.2), unless we use a local refinement of the mesh in the sensitive parts
of the pipe. Such a procedure may increase N considerably and with regard to accuracy
we have found more convenient to approximate (2.1) by

X th2 (Si) + y th2 (Si) 1 Vi O, 1,’’’, N,
(5.3)

Xth2(Si+l/2)+yth2(Si+l/2) 1 Vi=0,... ,N-l,

where Si+x/2 =(si + si+) (see Fig. 5.1).
In fact the numerical results presented in 9 have been obtained using (5.3) to

approximate (2.1).
Using (5.2) (resp. (5.3)) to approximate (2.1), introduces about N (resp. 2N)

quadratic equality constraints (the exact number depends upon the boundary condi-
tions).

In the following, the approximation of ff obtained by approximating (2.1) by either
(5.2) or (5.3) will be denoted by ’h; it is obvious that ’h is a closed subset of Vh x V.
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5.3. Approximation of the minimization problem (2.2). From the considerations
developed in 5.1, 5.2 we shall approximate (2.2) by

(5.4) Min loc J(xh, Yh),
{Xh, Yh h

where

(5.5) Erlo ) IoJ(Xh, Yh) -- (X2 + Y dx 4r pg Yh ds.

Concerning the existence of solutions for the approximate problem (5.4) we have the
following discrete variant of Theorem 3.1.

PROPOSITION 5.1. Assume that h is not empty (a sufficient condition is I--1 < L if
the boundary conditions are given by (3.1) or (3.2)); then problem (5.4) has at least one
solution.

Proof. Since ’h is not empty we can introduce a minimizing sequence ({x , y})n for
J on ’h, i.e.,

and
{X, Yt) E ’h Vn

lim J(x, y) Inf J(Xh, Yh).
+oO {Xh,Yh) h

Since qh is a closed subset in the finite dimensional space Vh Vh, and since J is
continuous, if we can prove that ({x , y })n is bounded, the result to be proved can be
obtained by elementary compactness arguments. Let us prove, therefore, the
boundedness of ({x , y})

We have s [si, Si/l], /i 0, , N- 1,

Xth (S) Xth (Si) "[ X(O’) do-

which implies, combined with (5.2) or (5.3) and using Schwarz’s inequality,

We similarly have

Jy,(s)l <-- 1 + h

We have, on the other hand,

Vs s [0, L], V{Xh, Yh} ’h.

Vs [0, L], V{Xh, Yh} E ’h"

Xh(S) xn(O) + x(o-) do’,

y/(S) yh(0) + y(o’) do’.

If the boundary conditions are given by (3.1) or (3.2) we have Xh (0) XA, Yh (0) YA, /h,
and from the above estimates on IX’h(S)I, lY(S)I we obtain

IXh(S)[<=[XAI+L(I/h/IlxZlI=(o,)) Vs[0,L], V{X,yh}E h,
1/2lyh(s)l<--lYAl+L(l+h Ilyhll=(0,))s[0,L], f{Xh, Yh}h.

It is clear from the above relations that ({x , y }), will be bounded if we can prove that
(x)", (y)" are bounded in L2(0, L).
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We clearly have from the above estimates that
L

I.[o yh(s) ds ----<LlyAI+L2(I+ hl/2llyllLe(O,L)) V(Xh, Yh h

which implies that

EIf (xZ + yT,) ds--ogtlYal-ogZ=( + h /=lly Zllo,)J(Xh, Yh) ->
2 Jo

V{Xh, Yh} E h.

Using the above inequality it is then very easy to prove that for the minimizing sequence
({x,, y,})n we have (x,)", (y)" bounded in L2(0, L).

5.4. Convergence of the approximate solutions. We shall prove in this subsection
several results concerning the convergence, as h --> 0, of the solutions of the approximate
problem (5.4). The following lemma will play an important role in the proofs of these
results.

LEMMA 5.1. Suppose that Vh, {Xh, Yh}E Vh Vh and satisfies either (5.2) or (5.3);
suppose also that

(5.6)

then

lim {Xh, Yh} {X, y} weakly in H2(0, L) x H2(0, L);
h0

(5.7) x,2+ y,2 1 on [0, L].

Proof. It follows from (5.6) that there exists a constant C such that

(5.8)

It follows also from (5.6) that Vs, s’ s [0, L] we have

(5.9) IX’h (S’) X’h (S)I X’(O’) do" <- Is’ sll/=llx’ll,=(o,,> < Cls’ s Vh.

We similarly have

(5.10) lY’h(S’)--y’h(S)l<--Cls’--s[ 1/ Vh.

If {Xh, Yh} obeys (5.2) and if s [si, s/+1], 0,. , N- 1, we clearly have from (5.9),
(5.10) that

(5.11) Ix’ (s)[ lx’ (o-i)l l<- c

(5.12) [ly ,(s)[ ly,(ri)l 1_-< C Vh,

where o’i si if s [si, si+1/2) and ri Si+l if s [si+1/2, si+1]. If {Xh, Yh} obeys (5.3) and if
s [si, si/l], 0,. , N- 1, we have

C 1/2(5.13) IIx’(s)l--lX’h(i)ll<-- h Vh,

C
(5.14) lyZ(s)l- lyZ()[ I-< h

where (setting hi Si+l Si) O’i Si if S [Si, Si "[- hi/4), O’i Si+l/2 if S S
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[si + hi/4, Si/l hi tri Si/l if s (si/l-hi si/l]. It follows from (5.6) that

(5.15) lim ]lx x’ll coto,,.j 0,
h0

(5.16) lim IlyZ y’llcoto,=j-- 0.
h-*0

Since (5.8) implies that Vh and Vs [0, L] we have

(5.17) IX’h(S)l<--C L+ (1)1/2

We finally have from (5.2), (5.3), (5.11)-(5.17) that

x,2 + y,2 lim {x ,2 (s) + y ,2 (s)} 1 Vs [0, L].
h-*0

Remark 5.1. Since (5.3) implies (5.2), we can prove (5.7) if (5.3) holds, using only
(5.11), (5.12). We have found it interesting to show that using (5.3) produces a better
approximation of the inextensibility constraint (2.1), since the constants occcuring in
(5.13), (5.14) are smaller than those in (5.11), (5.12). Numerical experiments confirm
that (5.3) is a better approximation of (2.1) than (5.2). l]

We now introduce the concept of isolated solution of the local minimization
problem (2.2).

DEFINn:IOt 5.1. Let {g, 17} be a solution of (2.2); we say that {g, )7} is an isolated
solution of (2.2) if there exists a neighborhood r/of {g, 17} such that

(5.18)
V{x, y} r/N

We then have the convergence results given by
THEOREM 5.1. Suppose that the boundary conditions occuring in the definition of

are given by (3.1) or (3.2). Suppose also that h is defined from (5.2), then:
If {, } is an isolated solution of (2.2), then for h sufficiently small the approximate

problem (5.4) has a solution {$h, 17h} in the neighborhood of {, 17}; we have moreover

(5.19) lim {.h, ht-- {.1, } strongly in H2(0, L) x H2(0, L).
h0

Proof. Let {g, 37} be an isolated solution of (2.2); there exists then > 0 such that

J(:f, )7)<J(x, y) V{x, yIsBN g’, {x, y}{:, 37},

where in (5.20), B- denotes the closed ball of n2(0, L)x n2(0, L) of center {f, 17} and
radius 8.

We now consider the finite dimensional problem

(5.21) MinJ(Xh, Yh), {Xh, yh}EnO Ch.

Using compactness arguments it can be easily proved that (5.21) has at least one solution
;h}.
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Let 7’/"h be the interpolation operator defined on C1[0, L] by

"l]"hl.) E Vh L E cl[0, L],

rhV(Si) V(Si) /i 0,’’ ", N,

(rhV)’(Si) V’(Si) ti 0," ", N.

If ’h is defined from (5.2) we clearly have

(5.22) {rhX, q’l’hy} h {X, y} .
On the other hand we have from standard results on finite element approximation (see,
e.g., Strang-Fix [7], Oden-Reddy [8], Ciarlet [9]) that

lim {rhX, q’t’hy} {X, y} strongly in HE(0, L) x HE(0, L)
(5.23) h-,O

V{x, y} HE(0, L) x HE(0, L).

It follows, in particular, from (5.22), (5.23) that

(5.24)
and also that

{q’rh., qT"h;} B8 CI h for h sufficiently small

(5.25) lim J(Trh, q’l’h;) J(,,
h0

Let us now consider the behavior of ({h, ;h})h as h 0; since this family is bounded
in HE(O,L)x H2(O,L) there exists a subsequence--still denoted by ({Xh, yh})h--and
{X*, y*} e H(0, L) x H(0, L) such that

(5.26) {,h, ;h}" {Xg, y *} weakly in HE(O, L) x HE(O, L).

Since B is a closed ball of HE(0, L)x HE(0, L) and from Lemma 5.1 we have, from
(5.26), that

(5.7) {x*, y*}i .
We have on the other hand, from (5.24), that

(5.28) J(,h, Yh)J(71"h, q’h;) for h sufficiently small.

From (5.23), (5.25), (5.26) and also from the continuity and convexity of J over
HE(0, L) x HE(0, L), we have at the limit in (5.28),

(5.29) J(x*, y*)_-< lim inf J(:h, )Th) =< lim sup J(h, h)J(,, ).
Combined with (5.20), (5.27), the above relation (5.29) implies that {x*, y*} {:,
therefore the whole ({$h, Yh})h converges to {$, )7} with

(5.30) lim J($h,
h-*O

Let us now prove that the strong convergence of ({h, #h})h to {, )7}; we have
LEIf(Z2 )2) J’o(5.31) J(ih, )Th) =-- JO

+ ds+pg ;hdS.
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Since limb-,0 h ds ds we have from (5.30), (5.31) that

L L

limh0 f0 (22 + 32) ds= f0 (2"2 + ’’2) ds

which combined with (5.26) implies the strong convergence in Hz(0, L)x H2(0, L).
From this strong convergence property we have that for h sufficiently small {h, ;h}
belongs to the interior orbs, and therefore is a local minimizer for J on ’h. This completes
the proof of the theorem. [q

Using similar techniques we can also prove the following
THEOREM 5.2. Suppose that ge and h are the same as in the statement of Theorem

5.1. Then if ({h, ]h})h is a family ofglobal minimizers ofJupon h we have (at leastfor a
subsequence)

lim {2, 37h} {2, 37} strongly in H2(0, L) Hz(O, L),
h-O

where {2, )7} is a global minimizer ofJ upon
Remark 5.2. The proof of the convergence if h is defined from (5.3) is much more

difficult and has not been considered here.
We have also omitted the analysis of the behavior of the approximate solutions in

the neighborhood of turning points and genuine bifurcation points; in that direction let
us mention the work of F. Kikuchi [10], Yamaguti-Fujii [11], Kesavan [12], Brezzi-
Rappaz-Raviart 13].

6. Numerical solution of the static problem. III: Iterative solution.
6.1. Generalities and synopsis. The equality constraint (2.1) (or its discrete vari-

ants (5.2), (5.3)) is the major difficulty to overcome if one wishes to solve numerically
the local minimization problem (2.2) working directly with the displacements x, y.
Roughly speaking, to solve (2.2) and its discrete variants we have the two following
classes of methods.

6.1.1. Multiplier and penalty methods. As seen in 4 we can associate a Lagrange
multiplier function , to the equ.ality constraint (2.1); doing so we have to solve, with
respect to {2, )7, ,}, the nonlinear differential system (4.2)-(4.4) (in fact its discrete
variants). Actually the discrete variants of (4.2)-(4.4) may be solved by the variable
metric methods developed by Powell [14], which generalize the celebrated Davidon-
Fletcher-Powell method (see also Strang[15] for related methods oriented to nonlinear
mechanics). We have the feeling that these methods are more delicate to handle than
the methods to be described in 6.2, and also more storage demanding for large scale
problems.

It is of course natural to associate to the Lagrangian functional, defined by (4.1),
the augmented Lagrangian r defined (with r > 0) by

Lr fo y,2(6.1) ,(x, y, ix)= (x, y, it)+ (x’2+ -1)2 ds.

If &o is replaced by ,, the stationarity ofr leads to the following variant of (4.2)-(4.4),

(6.2) El2(4) d (dss) d((2,2 ,2 d-)-ss ’ -rss +)7 -1) =0

on (0, L) + boundary conditions,
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(6.3) EI(4) sS r (2,z + 1)

on (0, L) + boundary conditions

(6.4) .,2_+_ ),2_ 1 0 on [0, L]

which is obviously equivalent to (4.2)-(4.4). Clearly the above augmented Lagrangian
approach seems to complicate an already complicated problem, since (6.2)-(6.4) is
"more nonlinear" than (4.2)-(4.4); moreover (6.2), (6.3) are "more coupled" than (4.2),
(4.3). If one takes =0 in (6.2), (6.3) and does not consider (6.4) we obtain the
necessary optimality conditions for a problem obtained from (2.2) by penalty.

6.1.2. Direct minimization on manifolds. Instead of relaxing (2.1) by Lagrange
multiplier and/or penalty we can try to minimize directly on the manifold defined by
(2.1), as it is done in Lichnewsky [16] (by steepest descent and conjugate gradient
methods); however the methods of [16], very elegant in their principle and very
effective on many problems, since they basically carry out the minimization along the
geodesic curves of the manifold, are rather difficult to use if the number of constraints is
very large, which is the case for the discrete variants of (2.2) (see 5).

The methods that we have used are quite different from the two types of methods
mentioned above; they have however common features in that:

(i) They are based also on an augmentedLagrangian procedure; but in our case the
constraints which are treated by Lagrange multiplier and penalty are linear, which is a
great simplification.

(ii) We kept the idea of direct minimization on a manifold associated (in some
sense) with the nonlinear equality constraint (2.1).

6.2. Iterative solution o (2.2) using a decomposition-coordination principle via
an augmented Lagrangian. We use in fact an idea, which from a numerical point of view
seems to go back to Glowinski-Marrocco [17]; for a general study of this class of
methods, in a convex context, we refer to [1] (see also Gabay-Mercier [18]). The basic
idea behind these methods is very simple and is to decouple as much as possible
nonlinearities and derivatives by introducing new variables, coupled to the old ones by
linear equality constraints.

For the present problem the starting point is the obvious
PROPOSITION 6.1. Problem (2.2) is equivalent to

x.y.p,q - + y ds + tog y ds

with

(6.6) ({x, y, p, q} 6 W (L2(0, L))Zlx’ p, y’= q, pZ + q 2 1},
where W is the subspace of H2(0, L) H2(0, L) defined from the boundary conditions
specified [or {x, y} in the definition of .

The next step is to relax the functional relation between {x, y} and {p, q} by
introducing the following augmented Lagrangian (with r > 0),

(6.7)
r(x, y, p, q, A,/z) - (x,,Z + y,,Z) ds + pg y ds + A (p-x’) ds

IoL ’) rloL rloL+ /x (q y ds +- IP x’lz ds +- Iq y’l2 ds.
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By analogy with the convex case we suppose that {, y, p, q, A, fi } is a (local) saddle-point
for r over W S (L2(0, L))2 here

(6.8) S {{p, q} s (Lz(O, L)), pz + q2 1 a.e.}.

We have then that {, )7}s with ’, )7’ and that ],/2 are Lagrange
multipliers for the linear equality constraints p-x’ 0, q- y’= 0. From that saddle-
point property it is then natural to extend to r the following iterative method whose
convergence has been proved in the convex case under rather general assumptions (see
[1] for more details).

6.2.1. Description of the basic iterative method: Variants. We use an algorithm of
Uzawa (see [19, Chap. 2], [20]) to obtain the saddle-points of r over W xSx
(I(o, L)). If

(6.9) ho 0
tz are given

then for n > O, assuming thath "+
Ix are known, we compute x y p q A tx by"

find {x", y", p ", q"} E W S such that V{x, y, p, q} W x S,
(6.10)

(x" ")=y p q h Ix < r(X, y, p, q, h" Ix") (locally at least)

(An+I=A +\P"- ds 1’
(6.11)

,+, (q., = + ---;/.

The only nontrivial part in (6.9)-(6.11) is the solution of the minimization problem
(6.10). From the very particular structure of r (cf. (6.7)), it is quite natural to solve
(6.10) using a block-relaxation method in which one minimizes alternatively with
respect to {x, y} and {p, q}; if we restrict in particular the number of inner iterations to
only one, we obtain the following variant of (6.9)-(6.11). If
(6 12) h 0 yOx are given;

then for n > 1, assuming thatx"- "- "}y Ix are known, we compute {p", q"}, {x", y
and {h "+x,/d, n+l} by"

find {p ", q"} S such that V{p, q} S,
(6.13)

=)r(Xn--X n--1 --1 .--1y ,p ,q ,A ,/z ),r(X y ,p,q,A ,/2. ),

find {x "-a/2, y.-/2}s W such that V{x, y}s W,
(6.14)

r(xn--1/2 yn--1/2,p ,q ,h ,tx )<:.r(X,--- y,p", A",/z),
n-1 1/2

--XX --’X +(.O(X 1),
(6.15) ,_ ,_/y"=y +.(y y"-)

(where o > 0 is a relaxation [actor),

n+l=An q_ pn
ds /

(6.16)
.+a [ dy"

=, +,q"--v-.as/
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The iterative methods that we have computationally used have been described for
the continuous problem whose formalism is much simpler; but in fact (6.9)-(6.11) and
(6.12)-(6.16) have been used on the discrete variants of (2.2), discussed in 5. From a
practical point of view it is of fundamental importance to have more explicit formula-
tions of (6.13), (6.14); in this direction we observe that in fact (6.14) is equivalent to the
following system of fourth-order two-point boundary value problems:

d4x n-1/2 dax-/2 d
(6.17) E1

ds4 r
ds ds

(h + rp + boundary conditions,

d4yn-1/2
(6.18) EI-tds

d2y-/2 d
ds ds

(tx + rq og + boundary conditions.

If the boundary conditions are given by (3.1) or (3.2), then (6.17) and (6.18) can be
solved independently and their discrete versions are linear systems with the same matrix,
which is sparse, symmetric, positive definite and independent ofn if r is fixed; in this case
we do a Cholesky factorization, once andfor all and thus, at each step of (6.12)-(6.16)
we only have to solve 4 sparse, well-posed, triangular systems to obtain {x "-l/z,
and therefore {x ", y"} (via (6.15)).

Let us now discuss the solution of (6.13); to obtain {pn, q"} we have to solve a.e. on
[0, L] the two-dimensional minimization problem

Min
r q2 ( dxn-1

{p(s),q(s)} " (p2(s) + (S)) + h "(S)-- r ds

(6.19)

(s))p(s)
+ tx"(s)-r

ds
(s) q(s)

with {p(s), q(s)} g2, p2(s + q2(s 1.

But since p2(s)+q2(s)= 1, (6.19) reduces

( dxn-1
Min h "(s)- r.

(6.20)

Let us define

(6.21)

(s) p(s)+ "(s)-r ds (s) q(s)

with {p(s), q(s)} R, pZ(s) + q2(s) 1.

X"(s)=h"(s)-r
ds

Y" (s) l" (s) r
ds

(s),

(s);

then, if {X"(s), Y"(s)} # O, we have

(6.22)

p (s)=

q (s)=-
4Ix" (s)l +IY" (s)l"

Remark 6.1. We have seen that (6.13) is a well-posed problem if the boundary
conditions are given by either (3.1) or (3.2). The minimization problem (6.19), (6.20) is
also well-posed as long as {X" (s), Y" (s)} {0, 0}; if X"(s) Y"(s) 0 the whole circle
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p2 + q2 1 is a solution. Actually in all the experiments we have done, we observed that
for r sufficiently large this cumbersome situation never occurred; an a posteriori
semiexplanation of such a behavior is possible, but it will not be given here.

6.2.2. On the choice of r, ti, o. For related convex problems, the larger r is, the
faster the convergence of algorithm (6.9)-(6.11) if we use t5 r (and if round-off errors
are not considered). However, for large r, problem (6.10) is not well-conditioned and its
solution by inner iterations can be a costly task. On the other hand analyzing the
convergence of (6.12)-(6.16) is a complicated problem, even in convex situations for
which we refer (if o 1) to [1], [18].

We shall see in 6.3 the relations existing between algorithm (6.12)-(6.16) and
some alternate direction methods (ADI); from these relations it will then be possible to
consider (6.12)-(6.16) as resulting from the approximate integration in time of some
dynamic problem by a fractional-step method, with r as the inverse of a time-step. From
this interpretation it follows that a larger r yields a safer algorithm (cf. Remark 6.1).

Once r has been chosen, we have used fi r by analogy with the convex cases
analyzed in 1 ], 18], since it seems to correspond to a quasi-optimal choice. Concerning
the choice of o, all the experiments discussed in 9 have been done with o 1 (the
influence of o will be discussed elsewhere, once enough experiments in this direction
have been done).

Remark 6.2. In algorithm (6.12)-(6.16) we first solved the problem in {p, q} and
then the problem in {x, y}; we can use, of course, the opposite order. However the
convergence analysis done (with o 1) in [1], [18] for convex problems, seems to show
that it is essential for the second step to correspond to the minimization of a functional
whose gradient has good monotonicity properties. We have therefore taken the {x, y}
problem as second step since it is a linear problem associated to a strongly elliptic
operator (unlike the {p, q} problem which is in fact associated to a multivalued,
nonmonotonic operator).

6.3. Relations between algorithm (6.12)-(6.16) and alternate direction methods.
6.3.1. An elementary model problem in Hiibert spaces. We consider for simplicity

a model problem (possibly nonlinear) less complicated than (2.2). Let V be a Hilbert
space on R. Let f s V; we consider the following problem

(6.23) A(u) =f,

where the operator A is defined from V--> V. We suppose that A is the derivative of a
functional J0 (i.e., A J’o) differentiable (Fr6chet or Gteaux), strictly convex such
that

o(v)
(6.24) lim +

From these properties of J0, (6.23), which can also be written equivalently as:

(6.25)

(or

(6.26)

find u V such that

yo(U)-(f, u)_-<Yo(v)-(f, v) Vv s v

J(u)-f-O)

has a unique solution (cf., e.g., [20], [21]). Suppose now that

(6.27) Jo J1 + -/2,
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where each Ji is also a convex differentiable functional, with

(6.28) Jl Ai.

Hence

(6.29) A =J =J +J =AI+A2.

We give also a decomposition of f, i.e.,

(6.30) f fl -]- f2, j V,

Since (6.23), (6.25) are clearly equivalent to the following minimization problem

find {u, p} such that /{v, q} ,
(6.31)

where

(6.32)

(6.33)

j(u,p)<-j(v,q),

j(v, q)=Jx(v)-(f, v)+J.(q)-(f2, q)

={{v, q}s vx v, v-q =0},

we naturally associate with (6.23), (6.25) the following augmented Lagrangian (with
r>O),

r
(6.34) r(V, q,/X) =/(V, q) +- llv qll + Oz, v-q).

We can easily prove (see [1]) the following
PROPOSITION 6.2. Suppose that the above hypotheses upon A, Jo, J1, J2 hold. Then

.r has a unique saddle-point {u, p, A} on V V x V, such that p u, A A2(u)-f2
fl-Al(U), where u is precisely the solution ofproblem (6.23), (6.25).

From the above results we introduce the following algorithm to solve (6.23), (6.25).
This algorithm is closely related to algorithm (6.12)-(6.16).

(6.35) pO, A arbitrarily given in V x V,

then for n >- 1, assuming that pn-X, A are known, we compute u n, pn and A n+ by"

find u V such that /v V,
(6.36)

r(u n, pn-l, X n) __< ,(v, pn-i X n)

find pn 6 V such that Vq 6 V,
(6.37)

,p ,A )_-<,(u ,q,A ),

(6.38) hn+ An +tS(un--pn);

in fact (6.36), (6.37) reduce to (the well-posed) problems

(6.39) ru +Al(Un) W
n-1 --f --, n,

(6.40) rp + A2(pn) ru +f2 + h n,
respectively.

6.3.2. Caavergeaee | Mgrihm (6.35)-(6.40). Supposing that A 1, A2 obey very
reasonable monotonicity and continuity properties it is proved in 1] (see also [22]) that
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V{p, A a} V V and

(6.41) Vfi (0, 1 +2/ r)
we have

lim Ilu u 0,

(6.42) lim lip" u o,
-t-oo

lim An=A weakly in V.

If Jl(" is linear (or ane) it is proved in [18] that (6.42) holds if fie (0, 2r).

6.3.3. An A.D.I. interpretation of algorithm (6.35)-(6.40). Suppose that fi r; it
follows then from (6.38), (6.40) that

(6.43) n+a A2(pn)-f2.

It follows in turn from (6.39), (6.43) that we have

(6.44) ru +Al(U) rp- +f-A:(p-).

From (6.39) we can eliminate + ru in (6.40); doing so we obtain

(6.45) rp +A.(pn) rpn- +[_Al(Un).

Putting pn-1/2= u we finally obtain from (6.44), (6.45) that

(6.46) rpn+l/2+A(p+/2) rp +f-A2(p),
(6.47) rpn+ +A2(p+) rp +[-A(pn+l/2)
which is an alternate direction algorithm of Douglas-Rachford type (see [23]).

In Lions-Mercier [24] the convergence of (6.46)-(6.47) is proved for situations in
which A, A1, A2 are possibly not the gradients of functionals Jo, Jx, J2, which are
possibly multivalued but still maximal monotone operators (see e.g. [25] for this last
concept).

6.3.4. An initial value prob’iem interpretation of algorithm (6.35)-(6.40). We can
associate to the steady state problem (6.23) the initial value problem

(6.48)
du
--+A(u)=f, u(0) u0.dt

From the particular structure of A and [, it is quite natural to use for the approximate
time integration of (6.48), splitting techniques like fractional step or alternate direction
methods based on (6.29), (6.30). One of those methods will lead to (6.46), (6.47); with
that interpretation, r appears as the reciprocal of time step (r= 1/At) and this fact
explains why a larger r gives a safer algorithm (6.12)-(6.16) (see 6.2).

Applications of several alternate direction methods to the time integration of
initial value problems like (6.48) (with A maximal monotone, possibly not the gradient
of a functional and possibly multivalued) are considered in [24], where proofs of several
interesting convergence results are given.

6.3.5. Applications to more general problems in Hilbert space. In order to
generalize 6.3.1, we consider the following family of minimization problems whose
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connection with (2.2) is quite clear (see 6.2):

(6.49) Min J(v),
vV

where J is a ditterentiable, convex function such that

(6.50) ](v) ](Av) + ]=(v)

where A (V, H), where H is an Hilbert space whose norm is l" and whose inner
product is denoted by (., ); we suppose also that J1, J2 are convex and differentiable on
H and V, respectively. We have that (6.49) is equivalent to

(6.51) Min ](v, q),
{v, q}

where

(6.52)

and

(6.53)

v={{v,q}e VH,q-hv=O}

](v, q) J(q) + J:z(v).

We then associate (6.51) with the augmented Lagrangian

r
(6.54) r(V,q, tx)=j(v,q)+-lq-Av + (be, Av q).

Using the above r we obtain the following generalization of algorithm (6.35)-
(6.40) (with slightly different notation)

(6.55) u, A arbitrarily given in V H,

then for n >= 1, assuming that u n-, A are known, we compute pn, u and A/ by"

findp H such that /q H,
(6.56)

r(U-, p, A ") <= r(U-, q, A ),

find u" e V such that v e V,
(6.57)

r(U p, A) < r(V, p A ")

(6.58) A"+ A" +(Au"-pn).
The analogies between algorithms (6.12)-(6.16) and (6.55)-(6.58) are obvious;

actually (6.56), (6.57) reduce to

(6.59) rp" +J’ (p") rAu"- + A ",

(6.60) rA*Au" +J (u") rA*p" A*A ",

respectively.
Assuming that t5 =r, there is notuin generalua simple A.D.I. interpretation of

(6.59), (6.60), (6.58) as was the case in 6.3.1 (some partial results in that direction are
given in [24]); by elimination of A we obtain some relations between {p"}, and
which indicate however an alternate direction behavior; we have more precisely

(6.61) A*(rp" +J (p"))= rh*hu"--] (u"-),
(6.62) rA*Au +J. (u") rA*Au"- A*J (p").
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We observe that if A* is an isomorphism from H onto V (which is not the case in many
important applications) then (6.61), (6.62) is actually an alternate direction algorithm.

7. Computations with stream.
7.1. Generalities. We would like to extend in this section the computational

methods of the above sections to situations where the pipe is subjected to the
hydrodynamical forces generated by a horizontal stream. We suppose that the stream
velocity is time-independent, possibly a function of the depth; we suppose also in this
report that the stream is parallel to the plane of the pipe.

We suppose finally that the forces acting on the pipe and originated from the
stream are given by the so-called Morison formulas to be given below. (See the notation
of Fig. 7.1.)

Stream

(In this case

FIG. 7.1..V is the stream velocity (in the sequel V .V )" s., the positively oriented unit vector, tangential at
the pipe atM; the unit vector, normal at the pipe atMsuch that angle z:/2 a, the angle y, ); Fs resp.
F,), the component along (resp. of the hydrodynamical forces (per unit length).

Using these notations the Morison formulas are, for a pipe with a circular
cross-section,

(7.1)

(7.2)

F, 1/2OwCaDV2 sin a,

C DFs pw rrr v cosa,

where Ow is the volumic density of the water, Ca and Cr some friction coefficients, andD
the pipe diameter. If one uses the M.K.S.A. system, we have Ca 1.2, Cr 0.03; for sea
water we take pw 1,026 kg/m3.

7.2. Formulation ot F., Fs with respect to x’, We introduce

(7.3)

then

C, 1/2pwCdD, CCs pw ’rrrD"

Fn CnV2 sin a, F C,V2 cos a.

Using the fact that angle (y, 0x)= 0 or r and also that x’= cos 4,, yl__ sin 4, we
obtain

(7.4)

(7.5)

where

(7.6)
C. C. cos (y, 0x),

Cs Cs cos (y, Ox).
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7.3. Formulation of the static problem with a horizontal stream. Using the virtual
feasible displacement principle we obtain that any solution of the static problem with
stream has to satisfy

(7.7)

L L L

Fifo (x"(’ + y"ll") ds +t)g fo l dS- fo (Fsx +Fnx)(ds

L

-Io (Fsy+F,y)nds=O q{,n}eD(x,y),{x,y}e,

where the set of the feasible displacements D(x, y) is defined /{x, y} *, by

D*(x, y) {{, rt} H2(0, L) HZ(O, L); the boundary conditions on

(7.8) {:, rt} are compatible with

the boundary conditions in if; x’(:’) + y’rt ’= 0}.

Remark 7.1. If the boundary conditions in ’ are defined by (3.1) (resp. (3.2)) the
above compatibility condition implies that

(7.9) :(0) (L) 0, r/(0) rt(L) 0,

respectively

(7.10) :(0)= :(L)= 0, ,7(o)= n(L)= O, :’(0) ((L)= O, n’(O) n’(L)= O.

Remark 7.2. Using the finite element approximations of H2(0, L) and if, introduced
in 5, we can easily approximate (7.7) by a finite dimensional problem of the same
structure (see 9.3 for additional details).

"/.4. Iterative solutions of (7.7). The discussion will be done on the continuous
problem since its formalism is simpler than the one of the discrete problem. Obviously
the algorithms to be computationally used, are in fact discrete variants of the algorithms
described below.

From (7.3)-(7.8), problem (7.7) is "more" nonlinear than (2.2): we have in
particular to realize that .V is possibly a function of y (.V(y) in the sequel), since we
have supposed that the horizontal stream may vary with the depth. Another difficulty
lies in the fact that the hydrodynamical forces are not the derivative of any functional.
Such a negative property seems to preclude the use of augmented Lagrangian tech-
niques like those described in 6".2; in fact using very natural extensions (to be
described below) of the algorithms in 6 we have been able to obtain very good
numerical solutions for (7.7), even with rather strong streams.

7.4.1. A generalization of algorithm (6.9)-(6.11). We use the notation of 6.2.
Returning to algorithm (6.9)-(6.11), (6.10) implies that

(7.11) {p",q"}sS and

(7.12) {x", y"} W and

.,(x", y", p", q", A ", Ix") <- r(X", y", p, q, A ", Iz

l{p, q} $,

,r(X n, y n, p n, q n, , n, [d,n) ,r(X, y, pn, q n, 1 n,
V{x, y}s w,
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and (7.12) is equivalent to the system

d4x d2x d
(7.13) E! ds- r d.2 -ss (h + rpn) on (0, L) + boundary conditions,

day d2y d
(7.14) EI d -r

ds =-ss (be +rq")-pg on (O,L)+boundary conditions.

Thus to solve (7.7) we can use the straightforward generalization of algorithm
(6.9)-(6.11). If

o(7.15) A o, be are given,

then ]or n >= O, assuming that A , be are known, we obtain p", q x y by solving the
(nonlinear) system

,)(7 16) ,.(x n, y" p", q", A", be ..,(x", y p, q, X",be V{p,q}S, {p" q S,

dax d2x d
dS.,-r

(7.17) + boundary conditions,

Eid4y" d2y" d
,,)ds" -r y

+ boundary conditions,(7.18)

and then A "+1 +1
be by

n+l =be"+5 q"----s
In (7.16) r is still defined by (6.7); in (7.17), (7.18) Fsx, F,x, F,y, Fsy are given by

(7.3)-(7.6) (with V V(y)). To solve the coupled system (7.16)-(7.18) we suggest (and
have used) a block relaxation method. Let us describe such a method for the compu-
tation of {x", y", p", q"} from {A ", be"} (below, m denotes an inner iteration indice).

(7 20) x.,O= x.- ,,.o .-1
Y =y

Ythen for m >= 1, assuming that x
{p"’’, q n’’}, {x"’’, y"’’} by solving"

are known, we compute successively

find {p"’", q"’"} S such that V{p, q} S,

(7.21) ,(x...,-1 y.,.,-1, pn’m n,m n,m--1, n, m--1,q ,A ,be )<--r(X y ,p,q,A ,be ),

Eid4x n’m-1/2 dZx n’m-1/2 ___d (A" + rp"’") +F,(x "’’-,
ds4

r
ds 2 ds Y

(7.22)

(7.23)

Eid4Yn’m-/2 d2y n’m-I/2 d
ds4 r

ds2 -d--

..bVnx(xn,m-l, y n,m-1)
+ boundary conditions,

(ben + rqn,m)__pg +Fsy(xn,m-1, yn,m--1)

+ Fny(xn,m-1, yn,m-1)
+ boundary conditions
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xn, xn,m-l _b (.o(xn,m-1/2_ xn,m-1),
(7.24) yn, yn,m-l + oo( yn,m-a/__ y n,m-a),
w being a relaxation factor.

Since problem (7.21) is a variant of problem (6.13), we refer to 6.2 where the
solution of this latter problem has been discussed in detail. Concerning (7.22), (7.23) we
observe that these two problems can be solved independently if the boundary condi-
tions in ’ are given by (3.1), (3.2) (for more details, see in 6.2 the discussion about the
solution of (6.17), (6.18)).

Remark 7.3. If one uses the inner iterative process (7.20)-(7.24) to solve system
(7.16)-(7.18) in algorithm (7 .15)-(7 .19), it is necessary to give not only {A o,/z o} but also
{x-a, y-a} for the initialization of algorithm (7.20)-(7.24) (case n rn 0).

Remark 7.4. The numerical solutions of (7.7), presented in 9, have been obtained
using o 1.

7.4.2. A generalization of algorithm (6.12)-(6.16). A variant of algorithm (7.15)-
(7.19) can be obtained if the number of inner iterations in (7.20)-(7.24) is limited to only
one. The resulting algorithm which generalizes algorithm (6.12)-(6.16), can be easily
written from (7.15)-(7.19) and (7.20)-(7.24).

Remark 7.5. All the remarks and comments in 6.2 concerning the choice of iS, r, o
also apply for the algorithms discussed in 7.3.

8. Dynamic calculations.
8.1. Synopsis. In order to simulate numerically the dynamical behavior of the

pipelines considered in 1, we extend in this section the methods described and
discussed in 4, 5, 6. For simplicity we suppose that the boundary conditions are given
by either (3.1) or (3.2) (with XA, YA, X,, yn, a0, /30, a, / possibly dependent on time t)
and we neglect hydrodynamical forces and internal dissipation (the dynamical problem
with hydrodynamical forces will be considered in a subsequent paper). After giving in
8.2 the formulation to be used for the dynamical problem, we shall describe in 8.3,

an implicit time discretization scheme of Houbolt type which reduces the time integration
to a sequence ofstatic problems very close to problem (2.2). Since the Houbolt scheme is
multistep a startingprocedure is needed; such a procedure will be discussed in 8.3 also.
The corresponding numerical results are presented in 9.4, where some additional
details about the space discretization of the acceleration terms are also given. The
possibility of using a Crank-Nicolson time discretization scheme will be also discussed in
8.3.

8.2. Formulation of the time dependent problem. Using Hamilton’s principle (see
e.g. Clough-Penzien [26]) we have from the above physical hypotheses that the time
dependent behavior of the pipe is given by the vector-function

{s, t} --> {x (s, t), y (s, t)}

solution of the following initial value wave problem.
Find {x(t), y(t)} ’(t) such that /{, q}D(x(t), y(t)) we have a.e. in t,

(8.)

io iop (+ rl ds + E1 (x""+ y"rl") ds + pg rl ds O,

(8.2) {x(0), y(0)}= {Xo, yo}, {(0), )) (0)} {Xl, YI}.
In (8.1), (8.2) we have used the following notation"

(i) x(t) (resp. y(t)) denotes the function s -> x(s, t) (resp. s y(s,/));
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(ii) g’(t) is the subset of H2(0, L) x H2(0, L) defined by the boundary conditions at
time t, and the inextensibility condition (2.1);

(iii) D(x(t), y(t)) is the subset of HE(0, L) x HE(0, L) associated to {x (t), y(t)} by
(7.8) (Remark 7.1 still holds for Dg’(x(t), y(t)));

(iv)
(V) X’ OX/OS, y’ Oy/Os, X"= 02X/OS2, y" OEy/Os2.
Remark 8.1. To our knowledge, the wave problem (8.1), (8.2) is mathematically

open. From the fact that {x(t), y(t)} obeys the inextensibility condition (2.1) a.e. in t we
can reasonably suppose that the initial values (8.2) have to satisfy some compatibility
conditions; it seems reasonable to require that {x(0), y(0)} obeys (2.1). Moreover by
derivation with respect to of

we obtain that

OX
(s, t) + -s (S’ t) =1,

m.+__ 0;
0s 0s Os Os

therefore, at t- 0, we have (using the notation of (8.2))

(8.3) x’(0)’(0)+y’(0))’(0)=0 that is X’oX’l+y)y =0,

a compatibility condition between the initial data.

8.3. Numerical solution of (8.1), (8.2).
8.3.1. Generalities. The numerical integration of dynamical linear and nonlinear

structural problems has motivated a very large number of papers, books and con-
ferences. Among recent engineering contributions in this field let us mention [26],
Argyris-Dunne [27], Oden [28], Bathe-Wilson [29], Zienkiewicz [30], Geradin
[31], Clough-Wilson [32], Hughes-Pister-Taylor [33], Belitschko-Yen-Mullen [34],
Felippa-Park [35], Sander-Geradin-Nyssen-Hogge [36], Argyris-Doltsinis-Knud-
son-Vaz-Willam [37], Warburton [38]; see also the references therein. For the
numerical integration of the standard wave equation (O2u/Ot2)-Au 0 by alternate
direction techniques we refer to McKee [39], Ciment-Leventhal [40], Lees [41],
Jain-Ahuja-Bhattacharya [42], Iyengar-Mittal [43], Konovalov [44].

Let us also mention [45] where time dependent pipeline calculations have been
performed by methods different from those which follow.

With regards to the wave problem (8.1), (8.2), the situation is considerably
complicated by the presence of the inextensibility condition (2.1). As mentioned before,
we have not included in our model the hydrodynamical forces resulting from the friction
of the water; in fact, we have the feeling that these friction forces, in spite of their
complicated analytical expression, will make the numerical integration easier, since
they will damp the mechanical phenomenon under consideration. With regards pre-
cisely to dissipation, we have chosen to solve (8.1), (8.2), a Houbolt time integration
scheme (described in 8.3.2), in spite of the numerical dissipation associated to it (see,
e.g., [29] for more details), because underwater calculations (i.e. in a dissipative
medium) are precisely our final goal in this class of pipeline problems. Another reason
to choose a Houbolt scheme is that it is well-suited to match the difficulty associated to
the inextensibility condition (2.1); actually the major inconvenience of the Houbolt
scheme is that it requires a starting procedure (described in 8.3.3), complicated by the
inextensibility condition (2.1) (and the associated compatibility condition (8.3)).
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8.3.2. Time discretization of (8.1), (8.2) via Houbolt’s scheme. Again we only
consider the continuous problem; there is no practical difficulty to extend the consi-
derations which follow to the variants of (8.1), (8.2) obtained via the space approxima-
tions discussed in 5. We reduce problem (8.1), (8.2) to a sequence of static problems
(variants of problem (2.2)) using the following multistep time discretization scheme:

(8.4) {x i, yi} get is given for /" 0, 1, 2;

then, for n >-2, assuming that {x i, yi} ’i are known for ] n -2, n 1, n we obtain
{x,,+l, y,,+1}6 cg,+ as the solution of:

find {x "+1, y,+l} ,,+1 such that V{:, rt}D’"+1 we have

(8.5) p IoL{(2x+-5x+4x"--x-2,)]Atl2 , + (2Y"+-5Y +4Y-1- Y"-2)}IAtl2,1 ds

+ EI {(x"+)""+ (y ds + og r ds O.

We have used in (8.4), (8.5) the following notation:
(i) At is a time step and {x, y} is an approximation (at least we hope so) of

{x(]At), y(]At)}, where {x(t), y(t)} is the solution of (8.1), (8.2).
(ii) g’ is the subset of H(0, L) x H(0, L) defined by the boundary conditions at

time t ]At and the inextensibility condition (2.1).
(iii) Dg’ is the subset of H(O,L)xH(O,L) associated to {x, y} by (7.8)

(Remark 7.1 still holds for Dg’).
The above time discretization scheme is obviously a Houbolt scheme from the

choice which has been made to discretize Ox/Ot and Oy/Ot in (8.2) (further properties
of the Houbolt scheme are analyzed in, e.g. [29]).

It is clear that the above scheme cannot be used to compute {x, y}, ] 1, 2, from
the initial data (8.2); thus a startingprocedure is needed to obtain these two vectors. This
procedure is described in 8.3.3.

8.3.3. A Crank-Nicolson starting procedure for the Houbolt scheme (8.4) (8.5).
In a "more standard" situation (i.e. without the inextensibility condition (2.1)) we could
have used (following, e.g. [29]) the initial data and the wave equation itself to obtain
{(0), ](0)}. Using then {x (0), y (0)}, { (0), (0)}, {/c’(0), )’(0)} we can construct a
quadratic approximationmsay {x*(t), y*(t)}mof {x(t), y(t)} in the neighborhood of
t=0. We define then, for /" 1, 2, {x i, yi} by {x j, yJ}={x*(]At), y*(]At)}; the cor-
responding approximation errors are O([At[Z).

Problem (8.1), (8.2) is more delicate to handle and will require a more sophisti-
cated procedure.

The initial vector {x,y} being known from (8.2)--we take {x,y}
{Xo, yo}--suppose that {x 1, yl} is also known; we then approximate {(ht), /(At)} by
{(x 2 + x-2x)/[ At [2, (y2 + yO_ 2ya)/[ At [} and we discretize (8.2) at t= At, using the
following Crank-Nicholson scheme

(8.6)
pI{(x+x-2x 2Y) EiIo {()1).. )l)n.0,t}

L+Ogo nds=O V{e, n}D(1, ill), {1, fil}E 1,
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where

(8.7) {;1 371}= {x+2xl+xZ Y+2yl+Y2}4 4

In fact {x 1, yl} is not known; we may however overcome this difficulty as follows:
We have (by Taylor’s expansion)

(8.8) x(t) x*(t) x(O) + (o)t + c’(o)t,
(8.9) y(t)----- y*(t)= y(0)+ 3 (0)t + 1/2(O)t2.

We then define {x 1, yl}, {x 2, y2} by
(8.10) xa= x*(At)= x(0)+ i (0)at + Y (0)((a/)2/2),
(8.11) y= y*(at)= y(0)+ (0)at + (0)((at)2/2),
(8.12) x= x*(2at)= x(0)+ 2i (0)at + 2;(0)(at),
(8.13) yZ y*(2at) y(0) +2(0)at + 2(0)(a/)

or, using the notation in (8.2), we have from (8.10)-(8.13),

(8.14) x xo + xat + ;(0)((at)2/2),
(8.15) Y Yo + yaat + ’(0)((at)z/2),
(8.16) x 2

Xo + 2xlt + 2k’(0)(t)2,
(8.17) y2 Yo + 2ylat + 2p’(0)(at)2.

By elimination between (8.14), (8.15) and (8.16), (8.17), respectively, we obtain

(8.18) x (3Xo + 2tXl + x),
(8.19) y= J(3yo + 2atyl+ y)
which by substitution in (8.6) imply in turn, with the notation of (8.2),

p 2lat ]+ 2latlz n ds+EI {( )""+( )""}ds
(8.20) L

+Pgfo nds=O V{,n}eDg(ia,), {i,)eg

with this time

(8.21) {i 1, }={5x+atx+3x 5r+atr+3r}8 8

Using the above method we don’t need to know {x , y} and the unknown in (8.20)
is {x, y}; in tact a more practical unknown is {, }; eliminating {x, y} between
(8.20) and (8.21) we finally obtain that {, fi} is the solution of the following variant ot
the static problem (2.2),

_3 O 1( Xo-txlt[.)+ (y yo-tyl.} ds+EI {(1),,,, +( l)ttu} ds

(8.22) L

+ og [ n ds 0 V{, n} D(, ), {’, g} ’.
2o
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Once {1, )71} is known, we can easily obtain {x 2, y2}, and then {X 1, yl} from (8.18),
(8.19) and (8.21). In fact it is very unlikely that {x 1, yl}, {x z, yz} obtained by the above
process may satisfy the inextensibility condition (2.1); we observe however that {a,
which follows from (8.22), is also an approximation of {x(At), y(At)}, and finally the
vector {x 1, yl}( E ,1) in (8.4), (8.5) is taken equal to the solution of (8.22).

Using a variant of the above process, and also the initial data (8.2) and the solution
of (8.22), we can similarly define a vector {x 2, y2}E $,2 to be used in (8.1), (8.2).

Remark 8.2. We think that it is important to have an accurate starting procedure
since, as we are dealing with a wave probem without damping, an inaccurate starting
procedure will produce large errors which will propagate and spoil the approximate
solution.

Remark 8.3. The set 1 occurring in (8.6), (8.20), (8.22) corresponds to the
boundary conditions satisfied by

x(0) + 2x(At) + x(2At) y(0) + 2y(At) + y(2At).
4 4 J"

these boundary conditions are in general different from those satisfied by {x,(At), y (At)}
(they coincide if the boundary conditions are time dependent).

Remark 8.4. We can imagine starting procedures rather different from the one
above, using for example, a pro]ection operation on the manifold defined by the
inextensibility condition (various norms can be used for this projection). At any rate
these methods will require the solution of problems very close to the static problem
(2.2).

8.3.4. Time discretization of (8.1), (8.2) via a Crank-Nicolson scheme. An
alternative to the Houbolt scheme (8.4), (8.5) is the following scheme of Crank-
Nicolson type (which has not been tested numerically yet):

(8.23) {x i, yi}e W is given for] =0, 1, 2 with {,1, ffl}e 1;

then for n->2, assuming that {x i, yi}6 W are known for j n- 1, n, we obtain
{x "+x, y"+X} as the solution of:

(8.24)

where

n-1 n+l n-1 n+l

(8.25) {,, 7,,}=(x +2x +x y +2y +y )4 4

Most of the notations in (8.23), (8.24) are in common with (8.4), (8.5); the new
notations are

(i) W is the subspace of H(O,L)xH2(O,L), associated with the boundary
conditions satisfied by {x(]At), y(]At)}.
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(ii) J is the subset of HZ(0, L) HZ(0, L) defined by the inextensibility condition
(2.1) and the boundary condition satisfied by

x((j- 1)At) + 2x(jAt)+ x((j + 1)At) y((/’- 1)At) + 2y(jAt) + y((j + 1)A/)
4 4 J

(iii) D is the subset of H(0, L)H(0, L) associated to {, )7i} by (7.8).
The above scheme also needs a starting procedure; in fact using the method

described in 8.3.3., we may obtain {1, )71) (by (8.22)) and then {x 1, yl}, {x, y}. Since

(8.26) xn+l =4n _2x _x,-1, Y"+I =437" -2y -Y"-I,
we obtain by substitution in (8.24) that {:, 37 } is the solution of the following variant of
the static problem (2.2):

Find {,} such that /{, q}D we have

L+Pgo ds=O.

Once {, "} is known, {x "+a, y"+} follows from (8.26).
Remark 8.5. We have to observe that {x ", y"} obtained by the above Crank-

Nicolson method does not satisfy (2.1); an alternative is to take {", "} (which obeys
(2.1)) as approximate solutions at t= nt; but with that latter choice, and if the
boundary conditions are time dependent, then {", "} does not obey, in general, the
same boundary conditions as {x (n t), y (n t)}.

Remark 8.6. The above method is less storage demanding that the Houbolt scheme
of 8.3.2., but it has the difficulties mentioned in Remark 8.5. For linear problems it is
well-known that the Crank-Nicolson schemes are less dissipative than Houbolt’s, and
like this latter scheme they are second-order accurate.

Remark 8.7. In fact (8.23), (8.24) is the particular case, corresponding to 0 0.25,
of a general class of Crank-Nicholson methods for which

{", "} {Ox"+ + ( 20)x" + Ox"-, oy"+ + ( 20)y" + oy"-},
(8.28)

We took 0 since in "good" linear cases, this choice leads to unconditionally
stable schemes, with regards to t, which possess a very small numerical dissipation
compared to Houbolt’s method. Another reason to use 0 is that Dahlquist [46] has
recently proved (at least for linear, scalar, second-order differential equations) that
Crank-Nicolson’s scheme, with 0=, minimizes the truncation error among the
unconditionally stable, multistep schemes for second-order differential equations.

8.3.5. Numerical solution of (8.5) and (8.27). A most important step toward the
numerical integration of the wave problem (8.1), (8.2) is the solution of (8.5) (resp.
(8.27)), if scheme (8.4), (8.5) (resp. (8.23)-(8.25)) is used. Both problems are variants of
the static problem (2.2) and can be reformulated as problems of the calculus of
variations; if {x "+1, y,+l} (resp..{:n,)7"}) is a solution of (8.5) (resp. (8.27)) it is also a
stationary point on ,,+1 (resp. ’") of the functional

L LIo  /Io fo{tj, 1 } - (z+ rl2) ds + -- + rl ds + pg rl ds

(8.29)
L

119 fO n--2)+lAtl2 {(-5x +4x-1-x"-Z)+(-5y +4y"-l-y }ds,
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respectively

(8.30)
(sc2 + rl 2) ds +- + rl ds + pg q ds

L

Both functionals, in (8.29), (8.30), are particular cases of the following family of
functionals, parametrized by a( > 0) and f= {/1,/2}:

a ) E1 L

(sc’’2 ,2)(8.31) J(a,.f; so, r/)=p (+ ds+ + ds- (f+fan) ds.

Concerning the possible multiplicity of the solutions of (8.5) (resp. (8.27)), we
concentrate on those solutions, local minimizers of the functional (8.29) (resp. (8.30))
on g’+ (resp. g), which are obtained via an iterative process with initialization by
{x", y"} (resp. {;,-1, 7,-1} or {x", y"}). We are in fact looking for the local minimizer
which is the closest to the solution of the previous time-step; we are fully conscious that
the above selection of solutions may be somewhat controversial, but the numerical
results obtained using this approach (see 9.4) are in full agreement with what could
have been predicted by mechanical intuition (at least for the example that we have
considered).

From the above considerations, we can solve (8.5) and (8.27) (in fact their variants
obtained by space discretization) by iterative methods identical (only the Lagrangian
functionals are slightly different) to those described in 6; it is therefore not necessary
to describe them again.

9. Numerical experiments.
9.1. Synopsis. We describe and discuss in this section the numerical results

obtained for the solution of some test problems, using the methods described in the
previous sections.

Section 9.2 is concerned with the static problem (2.2), discussed in 2, 3, 4, 5, 6;
9.3, with the static problem with stream (7.7). In 9.4 we present the results obtained

for a specific time dependent problem (8.1), (8.2) (see 8.2), using the Houbolt scheme
of 8.3. Finally some additional comments are given in 9.5.

9.2. Numerical solution of some static problems (2.2).
9.2.1. Description of the problems.
Mechanical parameters:

E1 7000 Nm2, p 7.67 Kg/m, L 32.6 m.

Boundary conditions:

x(0) y(0) 0, x’(0) 1, y’(0) 0,

x(L) 1, 2, 3, 4, 5, 6, 7, 8, y(L) 0, x’(L) 1, y’(L) 0.

9.2.2. Additional information about the numerical process. We have used a
uniform mesh, with h L/50, and approximated the inextensibility condition by (5.3).
The approximation problems (5.4) have been solved by a discrete variant of algorithm
(6.12)-(6.16), with fi r= 50,000 and o 1. As termination criterion we have used

(with obvious notation)

n--1 n--1 tn n--1
(9.1) i{[xi-x’-lt+lyi-yi I-+-[Xi--Xi [/IYi-Yi [}__<10-5.

Ei {IX7 [+IY [+[ xln + [y,in l}
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9.2.3. Presentation of the numerical results. (i) We show in Fig. 9.1, the numerical
results obtained as follows, for x(L)= 2, 3, 4, 5, 6:

We first computed the solution corresponding to x(L)= 6, using the initialization
(6 12), h o

=/x 0 and {x yo} given by

(9.2) x(s) 3 1-cos zr y(s) =-3 sin r
which corresponds to a half-circle of diameter AB; since the length of this half-circle is
3r 9.424 ., we can see that our initial solution is fairly far from the actual solution;
in fact convergence was achieved in 187 iterations of algorithm (6.12)-(6.16). For
x (L) 5, 4, 3, 2 (we proceeded in that order) we used a kind of incremental technique,
since the initialization of (6.12)-(6.16) was done using the results obtained for the
previous value of x(L).

4.

-4.

-8.

-12.

FIG. 9.1. (x(L)= 2, 3, 4, 5, 6).

For clarity we have indicated in Figs. 9.2, 9.3, 9.4 the solutions corresponding to
x(L) 6, 4, 2 respectively.

We have indicated in Table 9.1 the number of iterations necessary to obtain
convergence according to the termination criterion (9.1).

TABLE 9.1

x(L)
Number of
iterations

166
105
105
107
109
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-4. O. 4. 8.

FIG. 9.2. (x(L)= 6)

12.

4.

-16. t.,

-8. -4. 0. 4. 8. 12.

FZG. 9.3. (x(L)= 4)
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4o

-4. O. 4. 8. 12.

FIG. 9.4. (x(L)= 2)

4.

-4. O. 4. 8. 12.

FIG. 9.5. (x(L)= 1, 2, 3, 4, 5, 6, 7, 8)
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FIG. 9.6. (x(L)=4, 5).

The five calculations in Table 9.1. were done in one computer run, corresponding to 3
minutes of CII/IRIS 80.

(ii) We show in Fig. 9.5, the numerical results obtained as follows for x(L) 1, 2, 3,
4, 5, 6, 7, 8:

Each calculation is done using A 0}=/z 0 and {x, Y corresponding to the lower
half-circle of diameter AB to initialize (6.12)-(6.16); we start, therefore, very far from
the actual solution and we proceed without incremental strategy. We observe in Fig. 9.5
two types of shapes for the calculated solutions (corresponding to different branches of
solutions); we observe also that if x(L) is sufficiently small, then the present solutions
differ from the solutions obtained in (i). Since the critical value of x(L) with regard to the
above phenomenon seems to be between 4 and 5 we have shown in Fig. 9.6 the solutions

TABLE 9.2

x(L)
Number of
iterations

220
220
220
220
133
166
179
187
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calculated for x(L)= 4 and 5. Table 9.2 gives the number of iterations necessary to
obtain convergence.

The eight calculations in Table 9.2 were done in one computer run, the cor-
responding computation time being 7 minutes on a CII/IRIS 80.

9.2.4. Further remarks. We have indicated in Table 9.3 the values taken by the
functional J (of (3.7)) at those solutions of (2.2) discussed in 9.2.3.

Table 9.3 shows the (not very surprising) following fact: using an incremental
strategy we have been able to describe a branch of solutions, despite the fact that for the
same values of x(L), more stable solutions exist. In 9.5, we try to explain this behavior
using the initial value interpretation of algorithm (6.12)-(6.16) given in 6.3.

TABLE 9.3

x(L) 4

Incremental
strategy
(case (i))

-8,561 -8,142 -7,688 -7,199 -6,674 -6,112 -5,510 -4,868

Non incremental
strategy
(case (ii))

-8,561 -8,142 -7,688 -7,199 -9,434 -9,702 -9,932 -10,124

9.3. Numerical solution o| static problems with stream.
9.3.1. Generalities. The static problem with a horizontal stream has been formu-

lated in 7.3; in 7.4 we described several iterative methods to solve the continuous
problem (7.7), (7.8). Compared to the static problem (2.2), the discretization of (7.7),
(7.8) requires an appropriate treatment of the hydrodynamical forces, since these forces
are formulated via complicated formulas (see (7.4), (7.5)). We have used numerical
integration to discretize the corresponding virtual work terms in formulation (7.7).

9.3.2. A first example.
9.3.2.1. Description of the problems.

E1 4,500 Nm2, p 82 Kg/m,

.V {1 m/s, 0}, {0, 0}, {-1 m/s, 0}.

L 32 m, D 0.277 m.

Boundary conditions"

x(0) 0, y(0) 10, x’(0) 0, y’(0) -1,

x(L) 0, 3.6, 10, y(L) 25, x’(Z) O, y’(L) 1.

9.3.2.2. Additional information about the numerical process. We have used a

uniform mesh, with h L/50, and approximated the inextensibility condition by (5.3).
The approximation problems have been solved by a discrete variant of (7.15)-(7.24)
with only one inner iteration in (7.20)-(7.24); we used t5 r 5,000 and o 1. The
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termination criterion is (9.1).

9.3.2.3. Numerical results. We have shown in Fig. 9.7 (resp. Figs. 9.8, 9.9) the
numerical results corresponding to .V {0, 0} (resp. {1, 0}, {- 1, 0}), the values of x(L)
being 0, 3.6 and 10 meters.

The convergence is obtained, according to (9.1), in about 100 iterations (resp. 150
iterations) if the hydrodynamical forces due to the stream hold (resp. don’t hold); hence
the presence of a stream accelerates the convergence of the iterative methods. An
explanation of this phenomenon will be given in 9.3.4.

one.
9.3.3. A second example. This second example is more complicated than the first

9.3.3.1. Description of the problems.
Mechanical parameters"

E1 9,000 Nm2, 1.4 Kg/m, D 0.112 m, L 207.5 m.

14.

10.

FIG. 9.7. .V {0, 0}).

8. 12.
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The stream is still horizontal but its velocity depends upon the depth as follows:
.V(180) +{1.8, 0}, .V(160)= +/-{1.8, 0}, y(90)= +{1.2, 0}, .v(0)= +{.75, 0}; y 180
corresponds to the surface of the sea and we assume a linear variation of V(y) between
the values indicated above. We suppose also that the stream is only acting if 0 =< y =< 180,
i.e., .V(y) {0, 0} if.v > 180.

Boundary conditions:

x(O) o, y(O) o, x’(O) o, y’(O) 1,

x(L) 0, 24, y(L) 196,200, x’(L) 0, y’(L) 1.

9.3.3.2. Additional information about the numerical process. We used a uniform
mesh, with h L/100; the inextensibility condition is still approximated by (5.3). The
approximation problems have been solved, as in 9.3.2.2, by a discrete variant of
(7.15)-(7.24), using one (resp. at most three) inner iteration in (7.20)-(7.24) if a stream is
acting (resp. not acting) on the pipe; we have used r 105, to 1. The termination
criterion is still (9.1).

14.

FIG. 9.8. .V 1, 0})
12.
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14.

FIG. 9.9. .V {- 1, 0})

9.3.3.3. Numerical results. We have shown in Fig. 9.10 (resp. Fig. 9.11) the
numerical results corresponding to x(L)-0, y(L)-200 (resp. x(L)=-24, y(L)-
196); for each of these two cases, we have calculated the solutions corresponding to no
stream, the horizontal component of y is positive, the horizontal component of y is
negative, respectively.

We observe in Fig. 9.10 the symmetry of the two solutions corresponding to a
positively and negatively oriented stream.

As in 9.3.2., the presence ofa stream reduces the number ofinterations necessary to
obtain the convergence, since about 300 iterations are needed for the calculations
without stream, compared to 100 iterations for the calculations with stream; with
regards to computation time, "stream" calculations are also three times faster than "no
stream" calculations.

9.3.4. Further remarks on the convergence of algorithm (7.15)-(7.24). We have
seen in 6.3 that using algorithm (6.12)-(6.16), with/5 r and co 1, to solve the static
problem (without stream) (2.2), can be interpreted, in fact, as an approximate time
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200.

160.

120.

80.

40.

0o

negatively oriented
stream

positively
oriented
stream

200.

160.

oriented
stream

120.

no stream

40.

negatively

stream

I,

40. 20. 10. 20. 40.

FIG. 9.10. (x(L) 0, y(L)= 200)

integration of the initial value problem (with .z {x, y})

d
(9.3) d .z +A(.z)=.f, .z (0) .Zo

O.

40. 20. 10. 20. 40.

FIG. 9.11. (x(L)=-24, y(L)= 196)

by an implicit scheme of alternating direction type; in (9.3), A is a (nonlinear) multi-
valued operator which takes into account the elastic bending and the inextensibility of
the pipeline; f is a density of external forces acting on the pipeline. As mentioned in
6.3, r appears as the reciprocal of a time step.

If we now consider the static problem with stream (7.7), (7.8), algorithm (7.15)-
(7.24) can also be seen as an approximate time integration process for the following
initial value problem

d
(9.4) d- .z +A(.z)+B(.z)=._f, .z(O) .Zo,

where A and [ are as in (9.3), and where B is a nonlinear operator associated to the
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tydrodynamical forces; since, for the same value of .z (0), steady states are reached in a
shorter time with B than without, B seems to act as a dissipative operator (at least for the
examples we have treated). This property, likely related to the fact that B derives from
the friction of the water on the pipeline, would justify a mathematical analysis by itself.

To conclude this section we would like to emphasize the outstanding robustness of
the algorithms described in 7.4; to give an idea of this robustness we mention the
following anecdote: in the early computations with stream we used (by mistake) a V. ten
times larger then the actual one; algorithm (7.15)-(7.24) had no problem handling that
unrealistic situation.

9.4. Numerical solution ot a particular dynamical problem (8.1), (8.2).
9.4.1. Generalities. We discuss in this section the numerical results obtained when

applying the Houbolt scheme of 8.3.2. to discrete variants of the wave problem (8.1),
(8.2) obtained via the finite element approximation of 5; we have used in particular
(5.3) to approximate the inextensibility condition. To approximate the discrete variants
of the acceleration term (, + *1)ds we have used on each sub-interval [Si, Si+l],

O, 1,..., N-1, a numerical integration procedure, exact for the product of poly-
nomials of degree -< 3.

9.4.2. Description o the problem.
Mechanical parameters:

E1 700 Nm2, p 7.67 Kg/m, L 32.6 m.

Boundary conditions:

x(0) y(0) 0, x’(0) 1, y’(0) 0,

x(L) 20, y(L) 0, x’(L) 1, y’(L) 0.

9.4.3. Initial data. Using the notation of (8.2), we took

{x(O), y(O)}--(Xo, yo}, { (o), (o)} {x, y} {o, o}

with {Xo, yo} defined as follows: {Xo, yo} is the solution of a static problem of type (2.2), in
which in addition to gravity, the pipeline is subjected to a concentrated vertical force of
50,000 Newtons, positively oriented, applied at the point {x(8), y(8)} of the pipe;
{Xo, yo} can be seen in Figs. 9.12, 9.14. It is clear that these initial data satisfy the
compatibility condition (8.3).

9.4.4. Additional information about the numerical process. The space discretiza-
tion is similar to 9.2.2 (i.e., h L/50); the time discretization is based on the Houbolt
scheme of 8.3.2., coupled to the Crank-Nicolson starting procedure of 8.3.3.; we
have used At 0.2 second. The displacement {x n, yn} at t n At has been computed by
an approximate variant of algorithm (6.9)-(6.11), taking t5 r 20,000 and using as
initializer the solution of the previous time step.

9.4.5. Numerical results. We have shown in Figs. 9.12, 9.13, 9.14, the positions
occupied by the pipe at the different time steps. We observe that the pipeline is first
falling and then oscillating from right to left and conversely.

For the above problem the computational cost of a single time step is at the
moment 20 s. on CII/IRIS 80; since the number of iterations is between 30 and 100 for
each time step, we have the feeling that if the value of r can be optimally adjusted it will
imply a substantial computer time saving; we are presently working at that optimal
choice of r as a function of At.
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FIG. 9.14. (0= t=<4)

9.4.6. Remarks on the Crank-Nicolson scheme. Some very recent results
obtained on the test problem of 9.4.2, with the Crank-Nicolson scheme of 8.3.4.,
seem to indicate a greater stability for the Houbolt scheme; this fact is not surprising
since the Crank-Nicolson scheme that we are using corresponds to 0 .25 in (8.28),
which is very close to the limit between conditionally and unconditionally stable
Crank-Nicolson schemes.

9.5. Additional comments on the behavior of algorithms (6.9)-(6.11) and (6.12)-
(6.16). We use the notation of 6.3.4. We have seen, in 9.2, that for a given value of r,
different initial solutions may produce different results, via algorithms (6.9)-(6.11) or
(6.12)-(6.16). In fact if . {, )7} is an isolated local minimizer of J on , it is reasonable
to suppose that . is an attractor in that for .z (0) sufficiently close to . we have for the
solution .z(t) of (9.3),

(9.5) lim .z(t) ..
This asymptotic property is preserved if one uses a convenient approximate time

integration method with a sufficiently small time step At; from the interpretation of
algorithm (6.12)-(6.16) given in 6.3, it is clear that for r l/At sufficiently large, a
similar behavior can be expected if one uses this latter algorithm with initial data
sufficiently close to the actual solution. This interpretation can also be used to explain
the following fact.
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If r= I/At is sufficiently small we may converge, using (6.9)-(6.11) or (6.12)-
(6.16), to a solution .z* {x*, y*} of (2.2), .z* g, even if (9.5) holds for the continuous
problem with the initial data used to obtain .z* via (6.9)-(6.11) or (6.12)-(6.16) (we
usually have J(x*, y*) < J(, )7)).

10. Further comments. Conclusion. Pipeline, rod and cable problems (static
and/or dynamic) have motivated the following recent engineering works (this list is far
from complete): [5], [6], [36], [45] previously mentioned, and also Argyris-Dunne-
Angelopoulos [47], Lehner-Batterman [48], Roussel [49], Hitchings-Ward [50],
Klosowiak-Machura [51], Sangster-Batchelor [52], Felippa [53], Ali-Shore [54],
Merichal-Clement [55]; see also the references in these publications.

For theoretical aspects of nonlinear elasticity we refer, among many others, to
Prager [56], Dickey [57], Knops [58], Gurtin [59], Truesdell [60], and the references
therein; for rods and beams see [2], and also Antman [61], [62].

Concerning the numerical integration of time dependent problems, we complete
references [26]-[44] by [7], [8], Fujii [63], Nickell [64], Wellford-Hamdan [65] and
also, for a global view on numerical methods for time dependent problems, by
Richtmyer-Morton [66], Lascaux [67], Kreiss [68].

Augmented Lagrangian methods have been introduced by Hestenes [69] and
Powell [70]; the corresponding literature is enormous (see Fortin-Glowinski [71 for a
substantial bibliography on the subject); applications to non convex programming are
considered in Rockafellar [72]. Applications to the numerical solution of nonlinear
boundary value problems, via the introduction of artificial linear equality constraints,
go back--to our knowledge--to [17]; related results may be found in [18], [22] and also
Marrocco [73], Gabay [74]; the relation between this class of methods and ADI is to our
knowledge due to Chan-Glowinski [75], [76]. We finally refer to the monograph in
preparation of Fortin-Glowinski [71 for more theoretical results, and also applications
to the numerical solution of linear and nonlinear boundary value problems.

10.1. Conclusion. We have shown in this paper that methods inspired by nonlinear
programming and more specifically by augmented Lagrangians (in which one combines
duality and penalty techniques), give a most effective way for solving large displacement
problems in elasticity, where the main difficulty is a differential nonlinear equality
constraint. In this paper these methods have also been applied to problems which are
not extremization problems (see 7, 8), producing very good numerical results and
proving that this class of methods is not limited to extremization problems. We add that
the first author has also devised an adaptive method for adjusting automatically the
parameters occurring in the algorithms of 6, 7; in that direction it would be interesting
to adapt the continuation techniques, considered in H. B. Keller [78], Rheinboldt [79],
Kikuchi 10], [77], Bergan-Holland-S6reide [80], to the problems treated in this paper.

We believe that the methods and ideas in this paper can also be very useful for
solving numerically more complicated problems in the nonlinear mechanics of
continuous media (as given in the Introduction).
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NUMERICAL COMPUTATION OF THE SCHWARZ-CHRISTOFFEL
TRANSFORMATION*

LLOYD N. TREFETHENf

Abstract. A program is described which computes Schwarz-Christoffel transformations that map the unit
disk conformally onto the interior of a bounded or unbounded polygon in the complex plane. The inverse map
is also computed. The computational problem is approached by setting up a nonlinear system of equations
whose unknowns are essentially the "accessory parameters" zk. This system is then solved with a packaged
subroutine.

New features of this work include the evaluation of integrals within the disk rather than along the
boundary, making possible the treatment of unbounded polygons; the use of a compound form of
Gauss-Jacobi quadrature to evaluate the Schwarz-Christoffel integral, making possible high accuracy at
reasonable cost; and the elimination of constraints in the nonlinear system by a simple change of variables.

Schwarz-Christoffel transformations may be applied to solve the Laplace and Poisson equations and
related problems in two-dimensional domains with irregular or unbounded (but not curved or multiply
connected) geometries. Computational examples are presented. The time required to solve the mapping
problem is roughly proportional to N3, where N is the number of vertices of the polygon. A typical set of
computations to 8-place accuracy with N =< 10 takes to 10 seconds on an IBM 370/168.

Key words, conformal mapping, Schwarz-Christottel transformation, Laplace equation, Gauss-Jacobi
quadrature

1. Introduction. One of the classical applications of complex analysis is conformal
mapping: the mapping of one open region in the complex plane C onto another by a
function which is analytic and one-to-one and has a nonzero derivative everywhere.
Such a map preserves angles between intersecting arcs in the domain and image regions;
hence the name conformal. The Riemann mapping theorem asserts that any simply
connected region in the plane which is not all of C can be mapped in this way onto any
other such region. The problem of constructing such a mapping, however, is in general
difficult. We consider here the special case in which the range is the interior of a
polygon, where the problem can be considerably simplified.

Suppose that we seek a conformal map from the unit disk in the z-plane to the
interior of a polygon P in the w-plane whose vertices are wl," , w, numbered in
counterclockwise order. For each k, denote by Bkcr the exterior angle of P at Wk,

as indicated in Fig. 1. For any polygon we have a simple relationship among the
numbers

N

(1.1) Y. 8 2.
k=l

P

Wk-
Wk

FIG. 1
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If Wk is a finite vertex, we have -1 <_-k < 1. We shall not require, however, that P be
bounded. It may have a number of vertices at complex infinity, and the exterior angles
corresponding to these may fall anywhere in the range 1 <_-/k----< 3. Such angles are
defined to be equal to 27r minus the external angle formed in the plane by the
intersection of the two sides involved, if they are extended back away from infinity. The
example in Fig. 2 should illustrate what is meant by various values of/k" it is a polygon
with five vertices Wk (in this case WI W4), with corresponding values (1," 5) (1/2,
34-, , , 1). As always, (1.1) holds for this example.

W5

W4: WI

FIG. 2

Let us now pick at random N points Zk ("prevertices") in counterclockwise order
around the unit circle and two complex constants C and we, and consider the
Schwarz-Christoffel formula"

(1.2) w =/(z) wc + C 1- dz’.
k=l

The quantities (1 z’/zk) always lie in the disk w 1[< 1 for[z I< 1. Therefore, if
we choose a branch of log (z) with a branch cut on the negative real axis by means of
which to define the powers in (1.2), w(z) defines an analytic function of z in the disk
[z[ < 1, continuous on [z[ _-< 1 except possibly at the vertices zk.

The Schwarz-Christoffel formula is chosen so as to force the image of the unit disk
to have corners in it with the desired exterior angles/r. It is not hard to see from (1.2)
that at each point z, the image w(z) must turn a corner of precisely this angle. This is in
keeping with out purpose of mapping the disk onto the interior of P. What the map will
in general fail to do is to reproduce the lengths of sides of P correctly, and to be a
one-to-one correspondence. Only the angles are guaranteed to come out right.

The variables Zl, zn, C, and wc are the accessory parameters of the Schwarz-
Christoffe mapping problem. Our first problemmthe parameter problemmis to deter-
mine values of the accessory parameters so that the lengths of sides of the image
polygon do come out right. The central theorem of Schwarz-Christoffel trans-
formations asserts that there always exists such a set of accessory parameters.

THEOREM 1 (Schwarz-Christoffel transformation). Let D be a simply connected
region in the complex plane bounded by a polygon P with vertices z 1, , Zl and exterior
angles 7rB, where -1 <- < 1 ifzk is finite and 1 <- <- 3 ifz c. Then there exists an
analytic function mapping the unit disk in the complex plane conformally onto D, and
every such function may be written in the form (1.2).

Proof. The proof is given in [-8, Thm. 5.12e].
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In fact, for any given polygon there are not just one but infinitely many such
conformal mappings. To determine the map uniquely, we may fix exactly three points zk
at will, or fix one point zk and also fix the complex value Wc, or (as in a standard proof of
the Riemann mapping theorem) fix wc and the argument of the derivative/’(0).

The simplicity of the explicit formula (1.2) is attractive. But because the problem of
determining the accessory parameters is intractable analytically, applications of it have
almost always been restricted to problems simplified by having very few vertices or one
or more axes of symmetry. General Schwarz-Christoffel maps do not appear to have
been used as a computational tool, although experiments have been made in computing
them.

Problems of numerical conformal mapping have attracted a modest amount of
attention for at least thirty years. Gaier [4] produced a comprehensive work describing
methods for various problems in this field. For the Schwarz-Christoffel problem, he
proposed determining the accessory parameters z by setting up a constrained
nonlinear system of N- 3 equations relating (1.2) to the known distances Iw wjl, and
solving it iteratively by Newton’s method [4, p. 171]. Such a procedure has been tried by
at least three sets of people; see [7], [10], and [13]. The present work also takes this
approach. We believe that this is the first fully practical program for computing
Schwarz-Christoffel transformations, however, and the first which is capable of high
accuracy without exorbitant cost.

2. Determination of the accessory parameters.
2.1. Formulation as a constrained nonlinear system. The first matter to be settled

in formulating the parameter problem numerically is" what parameters in the map (1.2)
shall we fix at the outset to determine the Schwarz-Christoffel transformation
uniquely? One choice would be to fix three of the boundary points Zk" say, z 1, z2 i,
zN =--i. This normalization has the advantage that the resulting nonlinear system has
size only (N 3) (N 3), which for a typical problem withN 8 may lead to a solution
in less than half the time that a method involving an (N- 1) (N- 1) system requires.
Nevertheless, we have chosen here to normalize by the conditions

(2.1) zN 1, wc arbitrary point within P

which lead to an (N- 1) x (N- 1) system. This choice is motivated in part by considera-
tions of numerical scaling" it allows the vertices to distribute themselves more evenly
around the unit circle than "they might otherwise.(An earlier version of the program
mapped from the upper half-plane instead of the unit disk, but was rejected" once points
z began appearing far from the origin at x 104, scaling became a problem.) After a
map has been computed according to any normalization, it is of course an easy matter to
transform it analytically to a different domain or a different normalization by a M6bius
transformation.

Now the nonlinear system must be formulated. The final map must satisfy N
complex conditions,

Z -B
(2.2) -=C 1- dz’, l<-k<-N.

These amount to 2N real conditions to be satisfied, but they are heavily overdeter-
mined, for the form of the Schwarz-Christoffel formula (1.2) guarantees that the angles
will be correct no matter what accessory parameters are chosen. We must reduce the
number of operative equations to N-1. This is a tricky matter when unbounded
polygons are allowed, for one must be careful that enough information about the
polygon P is retained that no degrees of freedom remain in the computed solution.
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We proceed as follows. First, we require that every connected component of P
contain at least one vertex Wk. Thus even an infinite straight boundary must be
considered to contain a (degenerate) vertex. This restriction eliminates any trans-
lational degrees of freedom. Second, at least one component of P must in fact contain
two finite vertices, and wv and W will be taken to be two such. This restriction
eliminates rotational degrees of freedom.

Now define

Z -t3i
(2.3) C (wN- we) 11 1- dz’,

i=1

where zv 1 is fixed permanently by (2.1). Next, impose the complex condition (real
equations 1, 2)

I0z ( Z(2.4a) w,- w C 1-

This amounts to two a] equations to bc satiscd.
Denote by F,,..., F the distinct connected components of P, numbered in

countcc]ockwis od. Fo each 2, impos
last vertex of F, in th counterclockwise direction, then (ca] equations , 4,. , 2)
(2.4b) w,- w C 1 z’.

0 i=1

Finally, N-2 i conditions of side
beginning at k 1 and movin counterclockwise,
qui (a] equations 2 + l, , N- l)

(2.4c) Iw+,- wl c 1- z’
z i=1

until a total of N- 1 conditions have been imposed. If P contains at least one vertex at
infinity, then every bounded side will have been represented in a condition of the form
(2.4c) except for the side (w, Wl), which is already taken care of by (2.1) and (2.4a). If P
is bounded, then the last two sides in counterclockwise order--(w_, w_1) and (w_1,

ws)will not be so represented.
We have not stated over what contours the integrals of (2.4) are defined. This does

not matter mathematically, as the integrand is analytic, but it may matter numerically.
In this work we have evaluated them always over the straight line segment between the
two endpoints, a procedure which poses no domain problems since the unit disk is
strictly convex. Figure 3 illustrates what contours are involved in computing the
integrals in (2.3) and (2.4) for a sample case with N 10, m 3.

The nonlinear system is now determined, and its unique solution will give the
unknown parameters C and z,,. , z_, for the Schwarz-Christoffel mapping. We
must, however, take note of two special cases in which the solution is not completely
determined by (2.4). It was remarked that if P is bounded, then nowhere in (2.4) does
the point w_, appear. If B-i -1 or 0, then this omission is of no consequence for the
geometry of the problem forces w_, to be correct. If B-, 0 or -1, however, then
w_, is not determined a priori. The former case is of little consequence, for since
B-i 0, the value taken for z_, has no effect on the computed mapping, as may be
seen in (1.2), nor is there any purpose in including w_, among the vertices of P in the
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Z3

Z2

Z1

Z4
ZIO

2,6 2,8

FIG. 3. Contours of integration within the disk. A sample Schwarz-Christoffel problem is shown with
N 10 vertices of which m 3 vertices are at infinity, illustrating what integrals are computed to evaluate the
system (2.4): (i) radial integral along (0- Zxo) defines C (2.3); (ii) radial integral along (0- zl) determines
two real equations to fix wl (2.4a); (iii) 2 radial integrals along (0-Zs) and (0-z7) determine four real
equations to fix w5 and w7 (2.4b); (iv) 3 chordal integrals along (z3-z4), (z4-zs), and (z9-zlo) determine
three real equations to fix [W4- W31 [W W41 and IW10-- W91 (2.4c). TOTAL: N- 9 real equations.

first place. (Still, there may be problems in solving the system (2.4) numerically, for it is
now undetermined.) The latter case,/N-1 1, is more serious, and must be avoided in
the numbering of the vertices Wk.

2.2. Transformation to an unconstrained system. The nonlinear system (2.4)
ostensibly involves N- 1 complex unknown points zl,. , zN-z on the unit circle. In
dealing with such a system, we naturally begin by considering not the points z
themselves, but their arguments 0 given by

(2.5) Zk e i, 0 < Ok 2zr.

Now the system depends on N- 1 real unknowns, and the solution in terms of the Ok is
fully determined.

However, the system (2.4) as it stands must be subject to a set of strict inequality
constraints,

(2.6) O<Ok < 0k+l, 1--<k<--N-i,

which embody the fact that the vertices Zk must lie in ascending order counterclockwise
around the unit circle. To solve the system numerically, it is desirable to eliminate these
constraints somehow. We do this by transforming (2.4) to a system in N- 1 variables
yl," , yN-1, defined by the formula

Ok Ok-1(2.7) Yk =log Ok+l--Ok’ l<--k<--N-l’

where 00 and 0N, two different names for the argument of zN 1, are taken for
convenience as 0 and 2zr, respectively.
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We make no attempt to tailor the numerical solution procedure to the particular
Schwarz-Christoffel problem under consideration. In particular, all iterations begin
with the trivial initial estimate Yk 0 (1 =< k =< N 1). This corresponds to trial vertices
spaced evenly around the unit circle. The following input parameters to NS01A have
generally remained fixed: DSTEP 10-8 (step size used to estimate derivatives by finite
differences), DMAX= 10 (maximum step size), MAXFUN= 15(N-l) (maximum
number of iterations).

A fourth parameter, EPS, defines the convergence criterion--how large a function
vector (square root of sum of squares of functions values) will be considered to be
satisfactorily close to zero. We have most often taken 10-8 or 10-14 here. The choice of
EPS is not very critical, however, as convergence in NS01A is generally quite fast in the
later stages.

In the course of this work about two hundred Schwarz-Christoffel transforma-
tions have been computed, ranging in complexity from N 3 to N 20. NS01A has
converged successfully to an accurate solution in nearly all of these trials. Section 5.1
gives a series of plots showing this convergence graphically for a simple example.

3. Computation of the S-C map and its inverse. Determining the accessory
parameters is the most formidable task in computing numerical Schwarz-Christoffel
transformations. Once this is done, evaluation of the map and of its inverse follow
relatively easily. The foundation of these computations continues to be compound
Gauss-Jacobi quadrature.

3.1. From disk to polygon: w = w(z). To evaluate the forward map w(z) for a
given point z in the disk or on the circle, we must compute the integral

iz(3.1) W=wo+C 1- dz’
oY=l

with o (Zo), where the endpoint Zo may be any point in the closed disk at which the
image (Zo) is known and not infinite. Three possible choices for Zo suggest themselves:

(1) Zo 0; hence o ;
(2) Zo z for some k; hence o , a vertex of P;
(3) Zo some other point in the disk at which has previously been computed.
In cases (1) and (3), neither endpoint has a singularity, and an evaluation of (3.1) by

compound Gauss-Jacobi quadrature reduces to the use of compound Gauss quadra-
ture. In case (2) a singularity of the form (1 z/z.)-" is present at one of the endpoints
and the other endpoint has no singularity.

The best rule for computing w(z) is: if z is close to a singular point z (but not one
with w =oo), use choice (2); otherwise, use choice (1). In either case we employ
compound Gauss-Jacobi quadrature, taking normally the same number of nodes as was
used in solving the parameter problem. By this procedure we evaluate w(z) readily to
"full" accuracy--that is, the accuracy to which the accessory parameters have been
computed, which is directly related to the number of points chosen for Gauss-Jacobi
quadrature (see 4.1). Quadrature nodes and weights need only be computed once, of
course.

We should emphasize that even in the vicinity of a singularity zk, the evaluation of
the map w w(z) is inherently very accurate. This very satisfactory treatment of
singular vertices is a considerable attraction of the Schwarz-Christoffel approach for
solving problems of Laplace type. In particular, in a potential problem the Schwarz-
Christoffe transformation "automatically" handles the singularities correctly at any
number of reentrant corners.
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3.2. From polygon to disk: z = z(w). For computing the inverse mapping z
z(w), at least two possibilities exist, both of them quite powerful. The most straight-
forward approach is to view the formula w(z) w as a nonlinear equation to be solved
for z, given some fixed value w. The solution may then be found iteratively by Newton’s
method or a related device, w(z) should be evaluated at each step of such a process by
compound Gauss-Jacobi quadrature along a straight line segment whose initial point
remains fixed throughout the iteration.

An alternative approach is to invert the Schwarz-Christoffel formula

N ( .k)
-/kdW=CkI-I 1-

dz =1

to yield the formula

(3.2) dw-k=l
This inversion is possible because w w(z) is a conformal mapping, which means
Idw/dz]>O everywhere. Equation (3.2) may now be thought of as an ordinary
differential equation (o.d.e.),

dz
(3.3) d---- g(w, z),

in one complex variable w. If a pair of values (Zo, Wo) is known and the new value
z z(w) is sought, then z may be computed by applying a numerical o.d.e, solver to the
problem (3.3), taking as a path of integration any curve from Wo to w which lies within
the polygon P.

In our program we have chosen to combine these two methods, using the second
method to generate an initial estimate for use in the first. We begin with the o.d.e.
formulation, using the code ODE by Shampine and Gordon, and for convenience we
integrate whenever possible along the straight line segment from wc to w. (ODE, like
most o.d.e, codes, is written for problems in real arithmetic, so that we must first express
(3.2) as a system of first-order o.d.e.’s in two real variables.) Since P may not be convex,
more than one line segment step may be required to get from Wo to w in this way. It will
not do to take w0 wk for some vertex w without special care, because (3.2) is singular
at w.

From ODE we get a rough estimate z7 of z(w), accurate to roughly 10-2. This
estimate is now used as an initial guess in a Newton iteration to solve the equation
w(z) w. This method is faster than the o.d.e, formulation for getting a high-accuracy
answer. More important, it is based on the central Gauss-Jacobi quadrature routine
unlike the o.d.e, computation.

In summary, we compute the inverse map z z (w) rapidly to full accuracy by the
following steps:

(1) Solve (3.2) to low accuracy with a packaged o.d.e, solver, integrating whenever
possible along the line segment from wc to w; call the result zT;

(2) Solve the equation w(z)= w for z by Newton’s method, using as an initial
guess.

4. Accuracy and speed.
4.1. Accuracy. The central computational step is the evaluation of the Schwarz-

Christoffe integral, and the accuracy of this evaluation normally determines the
accuracy of the overall computation. As a consequence of the quadrature principle
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At each iterative step in the solution of the nonlinear system (2.4), we begin by
computing a set of angles {Ok} and then vertices {Zk} from the current trial set {Yk}. This is
easy to do, though not immediate since (2.7) are coupled. In this way the problem is
reduced to one of solving an unconstrained nonlinear system of equations in N- 1 real
variables.

2.3. Integration by compound Gauss-Jacobi quadrature. The central computation
in solving the parameter problem, and indeed in all Sehwarz-Christoffel computations,
is the numerical evaluation of the Schwarz-Christoffel integral (1.2) along some path of
integration. Typically one or both endpoints of this path are prevertices Zk on the unit
circle, and in this case a singularity of the form (1 zZk)- is present in the integrand at
one or both endpoints.

A natural way to compute such integrals quickly is by means of Gauss-Jacobi
quadrature (see [2, p. 75]). A Gauss-Jacobi quadrature formula is a sum /=,ad Wif(Xi),
where the weights wi and nodes xi have been chosen in such a way that the formula
computes the integral +_ f(x)(1 x) (1 + x) dx exactly for [(x) a polynomial of as
high a degree as possible. Thus Gauss-Jacobi quadrature is a generalization of pure
Gaussian quadrature to the case where singularities of the general form (1- x) (1 +
x) (a,/ > 1) are present. The required nodes and weights can be computed numeric-
ally; we have used the program GAUSSQ by Golub and Welsch [5] for this purpose.

Gauss-Jacobi quadrature appears made-to-order for the Schwarz-Christoffel
problem, and at least three previous experimenters have used it or a closely related
technique [7], [10], [13]. We began by doing the same, and got good results for many
polygons with a small number of vertices. In general, however, we found this method of
integration very inaccurate. For a typical sample problem with N 12 and Nquad 8,
it produced integrals accurate to only about 10-2, and it does much worse if one chooses
polygons designed to be troublesome.

What goes wrong is a matter of resolution. Consider a problem like the one shown
in Fig. 4. We wish to compute the integral (1.2) along the segment from Zk to some point
p. (In the parameter problem p might be 0 or Zk-1; in later computations it might be any
point in the disk.) Now direct application of a Gauss-Jacobi formula will involve
sampling the integrand at only Nquad nodes between Zk and p. If the singularity Zk/l is SO
close to the path of integration that the distance e [Zk/--Zkl is comparable to the
distance between nodes, then obviously the Gauss-Jacobi formula will yield a very poor
result. It turns out that in Schwarz-Christoffel problems the correct spacing of prever-
tices Zk around the unit circle is typically very irregular, so the appearance of this
problem of resolution is the rule, not the exception. (See examples in 5.)

To maintain high accuracy without giving up much speed, we have switched to a
kind of compound Gauss-Jacobi quadrature (see [2, p. 56]). We adopt, somewhat
arbitrarily, the following quadrature principle"

No singularity Zk shall lie closer to an interval of
integration than half the length of that interval.

To achieve this goal, our quadrature subroutine must be able to divide an interval of
integration into shorter subintervals as necessary, working from the endpoints in. On
the short subinterval adjacent to the endpoint, Gauss-Jacobi quadrature will be
applied; on the longer interval (or intervals) away from the endpoint, pure Gaussian
quadrature will be applied. The effect of this procedure is that number of integrand
evaluations required to achieve a given accuracy is reduced from O(1/e) to
0(log2 1 / e).
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Zk+l

FIG. 4. Compound Gauss-Jacobi quadrature. Division o]" an interval of integration into subintervals to
maintain desired resolution.

Figure 4 shows the intervals of integration that come into play in compound
Gauss-Jacobi quadrature. For a plot comparing the accuracy of simple and compound
Gauss-Jacobi quadrature in another typical problem see 4.1.

With the use of compound Gauss-Jacobi quadrature, we now achieve high
accuracy in little more than the time that direct Gauss-Jacobi quadrature takes. This is
possible because only a minority of integrals have a singularity close enough that
subdivision of the interval of integration is required. In the 12-vertex example
mentioned above, the switch to compound Gauss-Jacobi integration decreased the
error from 10-2 to 2 10-7.

There remains one circumstance in which integration by compound Gauss-Jacobi
quadrature as described here is unsuccessful. This is the case of an integration interval
with one endpoint quite near to some prevertex zk corresponding to a vertex wk .
We cannot evaluate such an integral by considering an interval which begins at zk, for
the integral would then be infinite. The proper approach to this problem is probably the
use of integration by parts, which can reduce the singular integrand to one that is not
infinite. Depending on the angle/3, one to three applications of integration by parts will
be needed to achieve this. We have not implemented this procedure.

The subtlety of the integration problem in Schwarz-Christoffel computations is
worth emphasizing. It is customary to dispatch the integration problem as quickly as
possible, in order to concentrate on the "difficult" questions: computation of accessory
parameters and inversion of the Schwarz-Christoffel map. We believe, however, that
the more primary problem of computing Schwarz-Christoffel integrals--the "forward"
problem--should always remain a central concern. Any numerical approach to the
parameter problem or the inversion problem is likely, to employ an iterative scheme
which depends at each step on an evaluation of the integral (1.2), and so the results can
only be as accurate as that evaluation.

2.4. Solution of system by packaged solver. The unconstrained nonlinear system is
now in place and ready to be solved. For this purpose we employ a library subroutine"
NS01A, by M. J. D. Powell [11], which uses a steepest descent search in early iterations
if necessary, followed by a variant of Newton’s method later on. (The routine does not
use analytic derivatives.) It is assumed that a variety of other routines would have served
comparably well.
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adopted in 2.3wthat no quadrature interval shall be longer than twice the distance to
the nearest singularity zk--the compound Gauss-Jacobi formulation achieves essen-
tially the full accuracy typical of Gaussian quadrature rules operating upon smooth
integrands. That is, the number of digits of accuracy is closely proportional to Nquad, the
number of quadrature nodes per half-interval, with a very satisfactory porportionality
constant in practice of approximately 1.

It is important not only to be capable of high accuracy, but to be able to measure
how much accuracy one has in fact achieved in a given computation. To do this we
employ an accuracy testing subroutine, which is regularly called immediately after the
parameter problem is solved. Given a computed set of accessory parameters C and {Zk},

-1 -i

FIG. 5(a)

10

10-8

5 10 15 20

]rquad

FIG. 5(b). Quadrature accuracy as a function of number of nodes. The error estimate Eest is plotted as a

function ofNquad[Or the polygon ofFig. 5(a). The upperand lower curves correspond to simple Gauss-Jacobi and
compound Gauss-Jacobi quadrature, respectively.
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this subroutine computes the distances Wk- Wc[ for each Wk (20 and the distances
IWk-l--Wk+ll for each Wk =o0, making use of the standard routine for compound
Gauss-Jacobi quadrature. The numbers obtained are compared with the exact dis-
tances specified by the geometry of the polygon, and the maximum error, Eest, is printed
as an indication of the magnitude of errors in the converged solution. It is now probable
that subsequent computations of w(z) or z(w) will have errors no greater than roughly
Eest.

Most often we have chosen to use an 8-point quadrature formula. Since each
interval of integration is initially divided in half by the quadrature subroutine, this
means in reality at least 16 nodes per integration. With this choice Eest consistently has
magnitude ---10-s for polygons on the scale of unity.

Figure 5b gives an indication of the relationship between the number of quadrature
nodes and the error Eest; it shows Eest as a function of Nquaa for a 6ogon which is shown in
Fig. 5a. Two curves are shown: one for simple Gauss-Jacobi quadrature, and one for
compound Gauss-Jacobi quadrature. The exact quantities here should not be taken too
seriously; examples could easily have been devised to make the difference in per-
formance of the two quadrature methods much smaller or much greater.

4.2. Speed. Any application of Schwarz-Christoffel transformations consists of a
sequence of steps; for convenience we use the names of the corresponding subroutines
in our program"

INITmset up problem
QINITmcompute quadrature nodes and weights
SCSOLV--solve parameter problem
TEST--estimate accuracy of solution
ZSC, WSC, etc.--compute forward and inverse transformations in various appli-

cations
Among these tasks INIT, QINIT and TEST all take negligible amounts of time

relative to the other computations" typically less than 0.1 secs. on the IBM 370/168 for
INIT and QINIT, and for TEST a variable time that is usually less than 5% of the time
required by SCSOLV. What remains are three main time consumers: SCSOLV, ZSC,
and WSC.

We begin with WSC, which performs the central evaluation of (1.2) by compound
Gauss-Jacobi quadrature. This evaluation takes time proportional to Nquad (the
number of quadrature nodes) and to N (the number of vertices). The first propor-
tionality is obvious, and the second results from the fact that the integrand of (1.2) is an
N-fold product. Very roughly, we may estimate

(4.1a) time to solve w w(z): 0.25 Nquad N msec.

for double precision computations on the IBM 370/168. Taking a typical value of
Nquad- 8, which normally leads to 8-digit accuracy, (4. l a) may be rewritten

(4.1b) time to solve w w(z)" 2N msec.

For the minority of cases in which the interval must be subdivided to maintain the
required resolution, these figures will be larger.

To estimate the time required to solve the parameter problem, we combine (4.1)
with an estimate of how many integrals must be computed in the course of solving this
problem. To begin with, at each iteration aboutN integrals are required by NS01A (the
exact number depends on the number of vertices at infinity). On too of this, it is a fair
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estimate to say that 4N iterations will be required by NS01A to achieve a high-accuracy
solution. We are therefore led to the estimate

(4.2a) time to solve parameter problem: Nquad N3 msec.

or, taking again Nquad 8,

(4.2b) time to solve parameter problem: 8N3 msec.

These estimates correspond fairly well with observed computation times for the
parameter problem: two problems with N 5 and N 18 may be expected to take
about 1 and 50 seconds, respectively. It is clear that computing a Schwarz-Christottel
transformation becomes quite a sizeable problem for polygons with more than ten
vertices. In particular, such computations are too time-consuming for it to be very
practical to approximate a curved domain by a polygon with a large number of vertices.

Finally, we must consider the time taken by subroutine ZSC to invert the
Schwarz-Christoffel map. This too is proportional to Nqd, and quite problem depen-
dent. We estimate very roughly"

(4.3a) time to solve z z(w): Nquad N msec.

or, with Nquad 8,

(4.3b) time to solve z z (w)" 8N msec.

Note that inverting the Schwarz-Christoffel map is only about four times as
time-consuming as computing it in the forward direction.

In practice, computational applications will vary considerably in the use they make
of a Schwarz-Christoffel transformation once the parameter problem is solved. If only a
few dozen applications of ZSC or WSC are required, then the computational time for
solving the parameter problem will dominate. If thousands of such computations are
needed, on the other hand, then the parameter problem may become relatively
insignificant. The latter situation is most likely to hold when plotting is being done, or
when a high-accuracy solution in the model domain is to be computed by means of finite
differences.

In summary, high accuracy is cheap in Schwarz-Christoffel transformations; what
consumes time is solving problems involving a large number of vertices.

5. Computed examples and applications.
5.1. Iterative process for a single example. Figure 6 shows graphically the process of

convergence from the initial estimate in an example involving a 4-gon. Routine NS01A
begins by evaluating the function vector (2.4) at the initial guess, then at each of N- 1
input vectors determined by perturbing the initial guess by the small quantity DSTEP in
each component. As a result, the first N pictures always look almost alike, which is why
the series shown begins at IT 4 rather than IT 1. Each plot shows the current image
polygon together with the images of concentric circles in the unit disk (which appear
as "contours") and the images of radii leading from the center of the disk to the
current prevertices Zk.

These pictures have an elegant bonus feature about them: they may be interpreted
as showing not only the image polygon but simultaneously the domain disk, including
the prevertices Zk along the unit circle. To see this, look at one of the inner "contour"
curves, one which is apparently circular, and the radii within it. Since w w(z) is a
conformal map within the interior of the disk, the radii visible in this circle must
intersect at the same angles as their preimages in the domain disk. Thus the inner part of
any one of these image plots is a faithful representation on a small scale of the circular
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FIG. 6. Convergence to a solution of the parameter problem. Plots show the current image polygon at each
step as the accessory parameters {zt,} and C are determined iteratively for a problem with N 4.

domain. We see in Fig. 6 that the prevertices are equally spaced around the unit circle
initially (IT 4), but move rapidly to a very uneven distribution. This behavior, which is
typical, indicates why the use of a compound form of Gauss-Jacobi quadrature is so
important (see 2.3).

The sum-of-squares error in solving the nonlinear system is plotted as a function of
iteration number in Fig. 7 for the same 4-vertex example. Convergence is more or less
quadratic, as one would expect for Newton’s method. The irregularity at iteration 19 is
caused by the finite difference step size of 10-8 used to estimate derivatives, and would
have been repeated at each alternate step thereafter if the iteration had not terminated.

5.2. Sample Schwarz-Christoffei maps. Figures 8 and 9 show plots of computed
Schwarz-Christoffel maps for representative problems. The polygons of Fig. 8 are
bounded and those of Fig. 9 are unbounded. Observe that contour lines bend tightly
around reentrant corners, revealing the large gradients there, while avoiding the
backwater regions near outward-directed corners and vertices at infinity. Like the plots
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FIG. 9. Sample Schwarz-Christoffel transformations (unbounded polygons). Contours are as in Fig. 8.

of Fig. 6, these may be viewed as showing simultaneously the image polygon and the
domain disk.

Figure 10 shows similar plots in which streamlines rather than contour lines have
been plotted, so that the configuration may be thought of as portraying ideal irrotational
fluid flow through a two-dimensional channel. To plot these streamlines an analytic
transformation of the disk to an infinite channel with straight parallel sides was used in
conjunction with the Schwarz-Christoffel transformation from the disk to the problem
domain.

5.3. Discussion of applications. The usefulness of conformal mapping for applied
problems stems from the fact that the Laplacian operator transforms in a simple way
under a conformal map. Let f: C --> C map a region flz in the z-plane conformally onto a
region fl in the w-plane, and let Az and Aw denote the Laplacian operators O/Ox+
O/Oy and 0/0u + O/Ov, respectively, where z x + iy and w u + iv. Then we may
easily show

for :12z --> suitably differentiable. A conformal map has If(z)[ > 0 everywhere; thus
from (5.1) it follows that if &(z) is the solution to the Laplace equation Az 0 in ,
subject to Dirichlet boundary conditions (z)= g(z) on the boundary Fz, then (w)=
(f-l(w)) is a solution to the Laplace equationA 0 in the image region 12w f(12z),
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(a)

(b)

(c)

(d)

FIG. 10. Sample $chwarz-Christoffel transformations. Contours show streamlines for ideal irrotafional,
incompressible fluid flow within each channel.

subject to the image boundary conditions O(w)= g(.f-l(w)) on the boundary Fw
f(Fz). (We have assumed that f maps Fz bijectively onto the boundary of f,. This is not
always true, but it is true if both regions are bounded by Jordan curves. See [8, Thm.
5.10el.)

More generally, from (5.1) we can see that Poisson’s equation, AzCh(z)=p(z),
transforms under a conformal transformation into a Poisson equation in the w-plane
with altered right-hand side:

(5.2) AwO(W) f(f-l(w))l-2p(f-l(w)).
Furthermore, more general boundary conditions than Dirichlet also transform in a
simple way. For example, the Neumann condition (a/Onz)Ch(z) h(z), where (9/(gnz is a
normal derivative in the z-plane, transforms to (a/Onw)O(w)= If(f-l(w))l-lh(f-l(w)).
We do not pursue such possibilities further here; for a systematic treatment see Chapter
VI of [9].

Traditionally, conformal mapping has been applied most often in two areas. One is
plane electrostatics, where the electrostatic potential q satisfies Laplace’s equation.
The other is irrotational, incompressible fluid flow in the plane, which may be described
in terms of a velocity potential that also satisfies Laplace’s equation. We will outline
some ways in which a known conformal map might be used in such application.
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Conformal maps do not solve problems, but they may reduce hard problems to easier
ones. How much work must be done to solve the easier problem will vary considerably
with the application.

(1) In the best of circumstances, the original problem may be reduced to a model
problem whose solution is known exactly. This is the case in the fluid flow
problems of Fig. 10, in which a crooked channel may be mapped to an infinite
straight channel of constant width.

(2) If a problem of Laplace’s equation with pure Dirichlet or Neumann boundary
conditions can be mapped conformally to a disk, then Poisson’s formula or
Dini’s formula (see [9]) provide integral representations of the solution at each
interior point. Such integrals may be evaluated readily on the computer to yield
high accuracy solutions. The primary disadvantage of this approach is that a
new integral must be evaluated for each point at which the solution is desired.

(3) If the solution will be required at many points in the domain, then it is probably
more efficient to solve Laplace’s equation by a trigonometric expansion of the
form bo + Y, kin= r k (ak sin kO + bk cos kO)’, coefficients ak and bk are selected so
as to fit the boundary conditions closely. A disadvantage of this method is that
convergence of the expansion may be slow if the boundary conditions are not
smooth.

Imw=2
-4 2

-3+ 1.5i

Im w =0, d =0

2.0

1.5

0.0

(a)

-5 0 5
X

(b)

IEI arg El

3.1 + 1.4i 1.7564 1.3082 --.3823
3.01 + 1.49i 1.9486 2.4403 --.2833
3.001 + 1.499i 1.9889 5.2137 --.2572
3.000 + 1.500i 2.0000 oO --.2500

(c)

FIG. 11. Laplace equation example: electric potential and field between two infinite sheets.

(a) Problem domain: region between two conducting sheets.

(b) Field strength along the top boundary (solid line) and bottom boundary (broken line).

(c) Computed potential and field strength at three points near 3 + 1.5 i.
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(4) Finally, if simpler methods fail, a solution in the model domain may be found
by a finite-difference or finite-element technique. For problems of Poisson’s
equation or more complicated equations this will probably normally be
necessary.

5.4. Laplace’s equation. Figure 11 presents an example of type (1) as described in
the last section. We are given an infinite region bounded by one straight boundary fixed
at potential 0 and one jagged boundary fixed at q 2. We may think of this as an
electrostatics problem. The central question to be answered computationally will be"
what are the voltage and the electric field E -Vq at a given point, either within the
field or on the boundary?

We proceed by mapping the given region onto the disk by a Schwarz-Christoffel
transformation, then analytically onto an infinite straight channel (as in the examples of
Fig. 10). In the straight channel q and E are known trivially, and this information may
be transferred to the problem domain through a knowledge of the conformal map that
connects them and of its (complex) derivative. We omit the details, which are straight-
forward.

Figure 11 (b) shows IEI as a function of x on the upper and lower boundaries of the
region. To see more of the behavior of the solution field near a reentrant corner, we also
compute the field at three points near 3 + 1.5i. These results are given in Fig. 11 (c).

5.5. Poisson’s equation. Consider the 7-sided region shown in Fig. 12(a). We wish
to solve Poisson’s equation

AS(x, y) 1/2 sin 2x(1- 2(y + 1)2)

(a)

Transformation
Grid and setup Fast Poisson
(r O) time solver time Max. RMS

4 x 8 1.3 secs. <.01 secs. 0.132 0.0309
8 16 2 secs. .01 secs. 0.055 0.0085
16 32 5 secs. .03 secs. 0.031 0.0037
32 x 64 16 secs. .15 secs. 0.026 0.0012

(b)
FIG. 12. Poisson equation example. Problem is transplanted conformally to the unit disk and solved by

finite differences.
(a) 7-sided problem domain, including image of 16 x 32 finite-difference grid in the unit disk.
(b) Computed results for four different grids. Time estimates are [or an IBM 370/168.
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on this region, subject to Dirichlet conditions

qb(x, y)=p(x, y)= sin 2x(y + 1)2

on the boundary. We proceed by mapping the domain to the disk and solving a
transformed problem in the disk in polar coordinates by means of a second-order fast
finite difference solver (PWSPLR, by P. Swarztrauber and R. Sweet). p(x, y) is the
correct solution in the interior as well as on the boundary, so we can determine the
accuracy of the numerical solution.

This is not as satisfactory a procedure as was available for Laplace equation
problems. According to (5.2), the model problem here is Poisson’s equation in the disk
with an altered right-hand side containing the factor If’(z)l 2, where f is the composite
map from the disk to the 7-gon. Two difficulties arise. The first is that to set up the
transformed equation in the disk, p(wij) must be computed for every wij w(zi) which
is an image of a grid point in the disk. This is time consuming, one hundred times more
so in this experiment than the fast solution of Poisson’s equation once it is set up.
Second, I"(z)l2 is singular (unbounded, in this example) at each prevertex zk, and this
appears to interfere with the second-order accuracy which we would like to observe.
The table in Fig. 12(b) attests to both of these problems.

5.6. Eigenfrequencies of the Laplace operator. Petter Bj0rstad (Computer
Science Dept., Stanford University) has recently combined the present Schwarz-
Christottel computation with a fast finite-difference scheme to successfully compute
eigenvalues and eigenvectors of the Laplacian operator on polygonal regions. These
results may be interpreted as giving the normal modes and frequencies of a thin
membrane in two dimensions, or of a three-dimensional waveguide with constant
cross-section. This work will be reported elsewhere.

6. Conclusions. A program has been described which computes accurate Schwarz-
Christoffe transformations from the unit disk to the interior of a simply connected
polygon in the complex plane, which may be unbounded. Key features of the compu-
tation have been:

(1) choice of the unit disk rather than the upper half-plane as the model domain,
for better numerical scaling ( 2.1);

(2) use of complex contour integrals interior to the model domain rather than
along the boundary, making possible the treatment of unbounded polygons
(2.1);

(3) use of compound Gauss-Jacobi quadrature in complex arithmetic to evaluate
the Schwarz-Christoffel integral accurately ( 2.3, 3.1);

(4) formulation of the parameter problem as a constrained nonlinear system in
N-1 variables ( 2.1);

(5) elimination of constraints in the nonlinear system by a simple change of
variables ( 2.2);

(6) solution of the system by a packaged nonlinear systems solver; no initial
estimate required in practice ( 2.4);

(7) computation of a reliable estimate of the accuracy of further computations,
once the parameter problem has been solved ( 4.1);

(8) accurate evaluation of the inverse mapping in two steps by means of a
packaged o.d.e, solver and Newton’s method ( 3.2).

Previous efforts at computing Schwarz-Christoffel transformations numerically
include [1], [6], [7], [10], and [13]. The present work differs from these in that it deals
directly with complex arithmetic throughout, taking the unit disk rather than the upper
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half-plane as the model domain and evaluating complex contour integrals. This makes
possible the computation of transformations involving general unbounded polygons.
(Cherednichenko and Zhelankina [1] also treat unbounded polygons, by a different
method.) Two other important differences are the use of compound Gauss-Jacobi
quadrature, and the application of a change of variables to eliminate constraints in the
nonlinear system ((5), above). We believe that our program computes Schwarz-
Christoffe transformations faster, more accurately, and for a wider range of problems
tha previous attempts.

A variety of directions for further work suggest themselves. Here are some of
them.

(1) More attention should be paid to the problems of evaluating the forward and
inverse S-C maps once the parameter problem has been solved. The two-step
method for the inverse map described in 3.2 is reliable, but it uses too much
machinery. Recently Petter Bj0rstad and Eric Grosse of Stanford University
have replaced (3.1) with a power series expansion for problems in which all the
nodes of a finite-difference grid must be mapped from one domain to the other,
thereby speeding up the evaluations of w(z) and z(w) by an order of magni-
tude. This kind of addition is very important for applications.

(2) The program could easily be extended to construct maps onto the exterior of a
polygonmthat is, the interior of a polygon whose interior includes the point at
infinity. This extension would be necessary, say, for applications to airfoil
problems.

(3) It should not be too great a step to raise the present program to the level of
"software" by packaging it flexibly, portably, and robustly enough that naive
users could apply it easily to physical problems. Conformal mapping is
currently far behind many other areas of numerical mathematics in the
development and distribution of software.

(4) The program might be extended to handle the rounding of corners in Schwarz-
Christoffe transformations (see [8]). What about mapping doubly or multiply
connected polygonal regions, perhaps by means of an iterative technique
which computes an S-C transformation at each step?

(5) More generally, the Schwarz-Christoffel formula should be viewed in context
as a particularly simple method in conformal mapping which is applicable only
to a limited set of geometries. Direct comparisons with programs that can treat
curved boundaries, especially those based on integral equations, would be
informative. In some applications the S-C transformation might profitably be
used as part of a larger program. In fact, the S-C formula (1.2) itself has a
natural generalization to the case of curved boundaries, which may be obtained
formally by allowing an infinite number of vertices with infinitesimal external
angles. R. T. Davis [3] has implemented this formula numerically with very
promising results.

Most important, further work is needed in the direction of applications to Laplace’s
equation, Poisson’s equation, and related problems. Irregular or unbounded domains
are generally troublesome to deal with by standard techniques, particularly when
singularities in the form of reentrant corners are present. Schwarz-Christoffel trans-
formations offer a means of getting around such difficulties in a natural way. More
experience is needed here.

Note. This work is described in more detail in [12], and a program listing is given
there. An experimental copy of the package with documentation and sample driver
programs may be obtained from the author.
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IMPLEMENTATION OF IMPLICIT FORMULAS FOR
THE SOLUTION OF ODEs*
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Abstract. Implicit formulas are quite popular for the solution of ODEs. They seem to be necessary for the
solution of stiff problems. Every code based on an implicit formula must deal with certain tasks studied in this
paper: (i) A choice of basic variable has to be made. The literature is confusing as to what the possibilities are
and the consequences of the choice. These matters are clarified. (ii) A test for convergence of the method for
solving the implicit equations must be made. Ways of improving the reliability of this test are studied. (iii)
Deciding when to form a new approximate Jacobian and/or iteration matrix is a crucial issue for the efficiency
of a code. New insight which suggests rather specific actions will be developed. The paper closes with an
interesting numerical example.

Key words, implicit formulas, stiff, convergence of iteration, ordinary differential equations

1. Introduction. Implicit formulas for the solution of the initial value problem for a
system of ordinary differential equations (ODEs) are quite popular. They seem to be
necessary for the solution of stiff problems. To be efficient enough to be practical, a
formula for this purpose "must" have an infinite stability region R. Lambert puts it well
in 1, p. 484] where he says, "Although no precise result concerning all possible classes
of methods exists (naturally!) it is certainly true that for all commonly used methods,
explicitness is incompatible with infinite R."

In this paper we examine various practical aspects of the implementation of
implicit formulas. We have examined many codes based on such formulas. The
documentation available to us has often given scant attention to the details of the
algorithms we examine. When possible we have studied the codes because they are not
always what is described. It is extremely difficult to assimilate the many ad hoc devices
put in complex codes to achieve a given purpose, especially when documentation
and/or codes are in foreign languages (natural and computer). We hope that we are not
mistaken in our statements about specific codes, and express our regrets in advance for
any slips. Because statements about codes are made only to illustrate points and to show
that we are taking up real issues, mistakes of this kind do not invalidate our work.

In 2 we attempt to clarify the confusing situation with respect to the choice of
basic variable in a code. We also discuss the consequences of the possible choices. In the
next section we examine the solution of the algebraic equations of an implicit method.
Practically every code we have examined implements at least one good idea, but each
seems to us to offer room for considerable improvement of its reliability. In the
following section we gain new insight as to the effects of changing step size and
approximate Jacobian. The ad hoc devices being used to decide when to form a new
Jacobian or iteration matrix can be made more specific and put on a sounder basis with
this insight. We close by presenting an example in 5. It shows, in very reasonable
circumstances, the difficulty of the task we address and, in particular, the dangers of a
popular approach to solution of this task.

2. Formulation o| the problem. There is quite a bit of variation possible in the way
the implicit algebraic equations for advancing a step are formulated and solved. As a
consequence the literature is extremely confusing. Our purpose in this section is to
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clarify the decisions involved. Some references to the literature will be made to show
that we are discussing possibilities represented in production codes, but we shall make
no attempt to be complete.

For notational convenience we shall suppress the independent variable in all our
expressions and we shall not explicitly indicate vectors. It is convenient to introduce as a
variable the derivative scaled by the step size h, z hy’(x). With these conventions the
(vector) differential equation itself is

(1) z=hf(y).

The implicit equations for advancing a step have the generic form

(2) y yz +, 3/>0.

The backward differentiation formulas (BDF) are our prototype, but this form, or
modest extensions, applies to a great many possibilities.

Ostensibly we seek a solution y* of (2) at each step. However, for purposes of
predicting an approximation yO to y*, error estimation, interpolation, and the like, most
codes also use the scaled derivative z* hf(y*). It is possible to take either y or z as the
basic variable. Both choices are common. If y is the basic variable, we solve

(3) y hyf(y) +q

and define z by (1). If z is the basic variable, we solve

(4) z hf(yz +)

and define y by (2).
We find no important reason for preferring one choice of basic variable to the

other. In particular, the solution of (3) and (4) is virtually identical. All the common
schemes for solving (3) can be described as linearizing f with an approximate Jacobian J
and approximating hy by h’y’ to yield

(5) ym+l W+ hyf(ym) + h’y’J(y+ y’).

It looks a bit odd to approximate hy when no approximation is necessary, but there are
practical reasons for doing so, that we take up in 4. The scheme (5) requires the
solution of a system of linear equations with matrix I-h’y’J for each iteration. The
choice J 0 corresponds to the simple, or functional, iteration typical of codes for
nonstiff problems. For stiff problems one needs a nontrivial approximation to the
Jacobian matrix,

o ,).J "-(-yi (y*))
(Here we write the ith component off as fi(yl, , yn)). We shall have a lot more to say
about (5). For now we just need to observe that the same linearization of f in (4) and
approximation of h’y’ leads to

(6) z re+l= hf(yz + air)+ h’Yy’(z m+l zm),

The iteration matrix is again I- h’y’J, although it arises in a slightly different way.
Comparison of (5) and (6) shows that they are essentially the same computation. In fact,
if the predicted values satisfy y0 yz o +, then all iterates satisfy ym+l yz,,+l + so
that the computations are equivalent.

The difficulty with getting both y* and z* does not reveal itself until we realize that
we do not compute these quantities exactly. If y is the basic variable, we shall accept
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some approximation y’. What do we take for the corresponding approximation z" to
z*? Two possibilities spring to mind. One is to define z" by (1), which is equivalent
to saying that the pair (y", z m) satisfies the differential equation exactly. The other is to
define z" by (2), which is equivalent to saying that the pair (y’, z’) satisfies the formula
exactly. If z is the basic variable, it appears that the only reasonable way to define a
corresponding approximation to y* is by satisfying the formula (2) exactly. This is true,
but for a number of formulas it is natural subsequently to define a new approximation
for z* by satisfying the equation (1). Thus essentially the same two possibilities arise
with either choice of basic variable. Whether y or z is the basic variable does not matter.
How the corresponding variable is obtained can be crucial. Before taking up this issue
we shall connect up these questions with some codes and point out an alternative which
is not well known.

The issue can be avoided if one chooses y as the basic variable and makes no use at
all of z in his code. Krogh 12] does this with the BDF, and Klopfenstein [3] follows him in
this with the generalized formulas he presents. Apparently unaware of these somewhat
obscure references, Robertson and Williams [4] also suggest doing this. This way of
proceeding has the appeal of simplicity.

It has been customary when solving nonstiff problems to take y as the basic variable
and to solve (3) with simple iteration ((5) with J 0). In this context such processes are
described With a kind of shorthand. P is used to indicate the prediction yO, E the
evaluation off(ym), and C the correction of y’ to get y’+l from (5). The processes used
have the form P(EC)kE or P(EC)kEC. Ending with an evaluation defines z" by (1) so
as to satisfy the differential equation exactly. Ending with a correction y"/l takes z ’/x

as the last evaluation made, z "/ hf(ym), and so corresponds to satisfying the formula
exactly. Both possibilities are seen in a number of codes.

Robertson and Williams [4, p. 31] and Robertson [5] take y as the basic variable
for solving stiff problems and define z by satisfying the formula exactly. As best we can
tell from [6], Brayton et al. do this with the BDF. The other choice is also made when
solving stiff problems. Williams and de Hoog [7], Alt [8] and Klopfenstein and Davis [9]
take y as the basic variable and define z by satisfying the equation exactly. All these
codes are based on different methods.

Choosing z as the basic variable is quite natural when working with implicit
Runge-Kutta formulas. They have not often been applied to nonstiff problems, but
there are some examples [10], [11]. In this context it is often natural to define y" from
the formula and then define a new z so as to satisfy the differential equation. Norsett
[12] does this with his code which is intended for stiff problems. More specifically, a
derivative value hf(y ’) is formed for the prediction of a solution at the next step and
this, of course, corresponds to satisfying the equation exactly for at least this one value.
The value is not used for error estimation. We provide these details because they show
that his code is weakly affected by the inaccuracy of hf(y’).

The seminal code DIFSUB [13] of C. W. Gear uses z for both the Adams and BDF.
The former are intended for nonstiff problems and the latter for stiff. There have been
many codes built upon the structure of DIFSUB by Bickart, Byrne, Hindmarsh,
Skeel which retain the choice of z as basic variable. All define the corresponding y
by satisfying the formula.

All the possibilities are represented, but no widely accepted code for stiff problems
defines the corresponding variable by the differential equation. Let us now see why. We
continue to take y as the basic variable. Given y", suppose we define z hf(y"). Then

(7) Z Z* hf(y")- hf(y*) hJ,,(y" y*)
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on using a mean value theorem. Here ,n is the Jacobian of f with entries evaluated at
different points along the line between ym and y*. If on the other hand we define z" so
as to satisfy the formula, we have

hence

z =(y -)/,

(8) z m-z*= l(ym y.)

A stiff problem has IIh,l[ >> 1. From (7) and (8) we see that forming a scaled derivative
by evaluation of the equation can be disastrously inaccurate for a stiff problem. Besides
this crucial difference, it is more expensive because it requires an additional evaluation
of f. Robertson and Williams [4, p. 32] report the increased efficiency observed in two
codes when they were changed to use the accurate alternative.

For us the choices are clear when solving stiff differential equations. One should do
one of the following"

(i) Compute y from (3) and make no use of z;
(ii) Compute y from (3) and then z from (2);
(iii) Compute z from (4) and then y from (2).
The choices are not so clear when solving nonstiff equations. Then h is typically of a

size such that neither (7) nor (8) shows a clear advantage with respect to accuracy.
Satisfying the differential equation exactly costs an extra function evaluation. This cost
may be more than compensated by improved absolute stability.

In the remainder of this paper we take y as the basic variable and presume that z, if
needed, is obtained in an appropriate way.

3. Convergence of the iteration. We are concerned with, the solution of

(9)

by the iterative scheme

y hyf(y) + xI

(10) ym+l=xIt+hyf(ym)+h"y’J(ym+l-ym).

In the next section we shall examine the roles of h and J in some detail. For our
purposes here it will be convenient to rewrite (10) as

(11) ym+l G(ym) (I- h’y’J)-[ + hyf(ym) h"y’jym].

A standard convergence result like [14, p. 300] says roughly that if yO is close enough to
satisfying y G(y) and hy and h’y’ are small enough, G is a contraction operator and
the iteration converges to a solution y* unique in a ball about yO. If J is close enough to
G’(y*), less stringent demands are placed on by, h’y’. In any case, the convergence is
linear.

It seems obvious that one wants a good approximation to y*, but the documen-
tation for many, if not most, codes refer only to making the difference

dm ]]y"+- y"]]

small. The theory of convergence of the numerical solution of differential equations is
based on accepting a ym/ which is either close to y* or which has a small residual,
y"*/ G(ym/). Later we shall sort out the situation.

There are excellent reasons for insisting that G contract on a ball containing the
predicted solution y0. In general (9) has multiple solutions. The predicted solution yO is
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made from past behavior of the solution of the differential equation, so it must be our
guide as to which is the appropriate choice. This may not be correct as we shall show by
example in 5, but in the absence of other information we must seek the solution
nearest yO. Many methods compare yO to y’rathe predicted to the accepted solutionm
to estimate the error incurred in the step. If they are not close, the step will be rejected.
As a practical matter the iteration must converge very quickly--a maximum of 3
iterations is most popularmso a good predicted solution is needed.

Despite the preceding arguments, it is not ordinarily required that G contract from
oy If a rate of convergence is estimated at all, the rates exhibited in the latest iterations

are given much more weight. Indeed, the line of codes following the structure of
DIFSUB do not quit iterating even when [ly- yll >> Ily a- y[l! We think that reliability
demands that G be contracting from yO, and we assume, henceforth, that it is doing so
with constant r. The computable quantities

d Ily+-yll
ri

dm- Ily m-ym-l[I

are lower bounds for r. If some rm > 1, we are certain G is not contracting from yO and
the iteration should be terminated. Lindberg 15] insists that convergence be rapid and
terminates if any r,, > 0.2.

A reason many authors place most weight on the latest estimate rm is that they
focus their attention on the asymptotic behavior of the iteration. They say that the
convergence is linear and that

Convergence is linear. As [14, p. 301] proves, the root convergence rate is

(12) RI=p(G’(y*)),

where p( is the familiar notation for the spectral radius. The postulated limit (12) is not
in general true, a result well known in another context: A perfectly reasonable
possibility is that

With this G we find

m+l
Y

G(y) My +b.

m-l)-y =M(y -y Mm(yl_yo),

which we recognize as the power method for computing the dominant eigenvalue of M.
If this eigenvalue is real, (12) does hold with A the magnitude of the eigenvalue. If the
largest eigenvalue is a pair of complex conjugates, the ratio rm will oscillate and assume
values possibly much larger or smaller than the root convergence factor to(M) [16]. In
general we must anticipate the possibility that rm is a misleading estimate for r and in
par!;icular, could be too small. Of course production codes discount this estimate to
provide some robustness. However, we think that there is no point in trying to use the
asymptotic behavior at all. It is far safer to presume a contraction with rate r from the
initial point yO and to use the largest observed r,, as the best estimate for r available. We
know this estimate is on the low side, so we must use it cautiously.

A well known result is

(13) [lY * Y
+ 111 rilym+_ y roll"
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A similar result for the residual of ym/ is

(14) fly m+ G(Y+1)11 IIG(y m) G(y m+)ll rlly+ ymll,
m+lThe simplest examples show that no useful conclusion about the acceptability of y

can be drawn from the size of dm Ily m+- ymll without an estimate of the rate of
convergence. Nevertheless, all codes known to this author will accept y,/l (at least yl),
if d, is small enough. A small difference says nothing about how close yO is to y*, nor
even that the process is converging. If the process is converging, r < 1, a small difference
does imply an acceptable result in terms of the residual. If it is converging at even a
moderate rate, r -< 1/2, a small difference implies an acceptable approximation to y*. The
codes try to obtain rapid convergence and it is to be presumed that they ordinarily
succeed well enough that (13) and (14) justify the test on d,. We insist that an estimate
of the rate be made to establish some reliability. We much prefer the more stringent
demand that ym+l be close to y*. Because of rapid convergence we see from (13) and
(14) that this is only a little harder to get than a small residual. Thus if we want to test

m+lIly*-y
we shall test

(15)
1-r

using an approximation to r, and justify this by (13).
There is a subtle inconsistency in the algorithm of Hindmarsh 17, p. 3]. Because it

has been followed in many codes, we shall clarify the matter. To do this we resort to the
very clear and honest description of Hulme as to what he does in COLODE 18]. In our
notation Hulme says that he seeks to make dm= ]]y m+l yml] small. Here both ym+l and

m+l
Y are computed. The test is described as a measure of the accuracy of y because y
is (hoped to be) closer to y* and so dm approximates ]]y*- yml]. An estimate rm is made
of the asymptotic convergence rate and the approximation

(16) dm+l -IlY+2- ym+l[[ rm[lym+l__ yml[

is made. In this way one tests the acceptability of y"+l without actually forming y,+2. If
the estimated difference is small enough, ym+l is accepted. The inconsistency occurs
when dm is small enough that y is to be accepted. Hulme clearly states that as a
heuristic measure, he will instead accept y,/l on the grounds that if the process is
converging, it will be more accurate. Hindmarsh does the same thing without comment.
We have already noted that the approximation (16) is dangerous. It should be realized
that neither author assumes that the approximation is at all good. For reasons already
explained, the tests used by these authors ordinarily result in acceptable solutions.

We have not said anything about the relationship between the tolerance r in (15)
and the accuracy e desired of the solution of the differential equation. This is a research
question which needs attention. It is clear that z must be smaller than e. A small r is one
way to compensate for an inaccurate estimate of r used in the convergence test.
However, the smaller r is made, the more it costs to compute y*. Experiment says that r
a great deal smaller than e does not improve the solution of the differential equation. In
current codes the relationship appears to be ad hoc. The choice varies wildly, but
r 0.1 e is representative.

There can be difficulties with the precision. Most codes do not solve (10) as written.
It is recast as

(17) (I- h’,’J)(y m+’- ym)= + hf(y m) ym.
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The right hand side is the residual of y’ in (9), so this is an attractive form. The iteration
matrix is often rather ill-conditioned with the consequence that solving a linear system
involving it may not be very accurate. If we work with (10), this means y,+l itself is
obtained inaccurately. However, because yO is close to y*, the difference y,/l_ y, is
rather small. Computing it from (17), we can usually get an accurate y"+l even when
m+l m+ly y has only a few digits correct. After a y is accepted, one must update the

solution history. This is typically done as a correction to the predicted solution yO. To
control round-off, it is important that the correction y,/l_y0 be accumulated as
(y_ yO)+... +(y,+_ y,) rather than formed directly from y"/ and yO. For these
reasons we recommend using (17) instead of (10), but for the exposition of this paper
either form will do. The form (17) leads to more accurate values of d,, but as Watt notes
in [19, p. 74] the difference could still be the result of round-off alone. When d, is
smaller relative to y" than some multiple of the machine precision, we cannot reliably
distinguish it from 0 nor can we use it to estimate the rate of convergence. In such a case
it is reasonable to accept the last iterate on the grounds that it is as accurate as possible
for the machine being used. This situation can come about because the prediction is
extremely good or because the tolerance is very small. The algorithm for estimating the
rate must be protected against this real possibility. Most current codes have con-
vergence tests which cope with this automatically.

How many iterations should we allow? We have noted that current codes will
terminate if Ily- yll is sufficiently small, usually rather smaller than is permitted in
subsequent iterations. We have argued that an estimate of the rate of convergence is
needed if one is to have a reliable convergence test. A number of codes in some
circumstances use a rate of convergence estimated in the previous step to judge if y is
acceptable. It is easily seen that the rate is applicable to the new problem if the solution,
h3,, and h’3,’ remain much the same. This is typical when solving stiff problems, but we
could have no confidence in the rate estimate without verifying that these quantities do
remain nearly constant. We know of no code which checks this. Even with this
precaution, we do not think termination with y a good idea. The defects of the
estimation of the rate at the current step are serious enough without adding in more
unreliability by allowing convergence at y l, and the work saved is not very great.

With two iterations we get a current estimate of the rate of convergence. We think
2it best on the grounds of reliability to do at least two even though we might accept a y

unnecessarily close to y*. Should one keep on iterating if necessary? Extra iterations
are relatively cheap. Most codes stop at 3 or 4 iterations, although others such as
Lindberg’s [15] continue as long as the rate is satisfactory. We insist that y0 be close to
y* so if many iterations are necessary, we must worry about the acceptability of y*.

It is noteworthy that as soon as we have an estimate of the rate of convergence, we
can begin predicting how many more iterations will be needed to finish up. Thus if we
have computed y", an estimate for r, and a bound for [ly*-Ymll, we have the bound

]]y._ Y’+MII--< rMIIY*- y "1[.
This can be useful in deciding whether it is profitable to continue the iteration.

A paper of Klopfenstein [3] sheds some light on the issue. He considers a
generalization of the BDF when using a fixed number of iterations. In his analysis he
considers the difference between the approximate Jacobian J and the (constant) true
Jacobian J of his model problem. The integration is stable if the algebraic equations are
solved exactly. If J does not differ much from J, the solution arising from a fixed
number of iterations is also stable. Klopfenstein considers as a function of the number of
iterations, how much the two matrices can differ and still get a stable numerical solution.
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As might be expected, the effect of more iterations is to permit J to differ more from .
The interesting observation is that going from one to two iterations has a very beneficial
effect, but that additional iterations are of rapidly decreasing value. This paper provides
some support for using at least two iterations and not using many more than two.

There is evidence in the literature of unreliability of convergence tests. The GEAR
and EPISODE codes permit the user to select three approximations to the Jacobian,
viz., simple iteration, a diagonal approximation, and a full approximation. Regardless
of the Jacobian approximation, if the convergence test is reliable, the codes should
deliver a good solution to the problem. Of course the efficiency is affected, but the
accuracy of the results should not be. In the tests of Byrne et al. [20], it is shown in
Example 4 that both GEAR and EPISODE produce very large global errors when
using the diagonal approximation to the Jacobian whereas the error is controlled
satisfactorily with the other two approximations. Because the rest of the code is
apparently unaltered by the choice of approximate Jacobian, it appears that the
convergence test is unreliable, and that the potential unreliability can sometimes be
exhibited as the result of a very poor approximate Jacobian.

4. Changing step size and Jacobian. In the previous section we were concerned
with the solution of

(18) y hyf(y)+ qt

as an isolated computation. It must be done at every step. Viewing the integration as a
whole reveals extremely important economies. We shall consider various aspects of
this, particularly the effects of changing the step size or the approximate Jacobian.

Quite a lot of useful information can be gleaned from a simple expression for the
error in an iteration. We are solving (18) for a root y* by

m+ly + hyf(y + h’y’J(y’+- y").(19)

This implies

and

y, ym+l (I-- h’y’J)-l[hy(f(y*)-f(ym))- h’y’J(y* y")]

(20) y, y,,+l (I h’y’J)-[hy(,,,,, -J) + (hy h’y’)Y](y* y").

Here, is the Jacobian matrix with its entries evaluated on a line between y* and y".
The most important situations we investigate in this section have hy h’y’. In such a
case (19) and (20) simplify to

(19a) ym+l xi + hyf(y’) + hyJ(y re+l- ym),

(20a) y, ym+ (I-- hyJ)-lhT(,, J)(y* y").

The error expression (20a) is essentially that given by Robertson and Williams [4], but
they did not attempt to exploit it as we do.

In the first solutions of stiff problems, a new approximate Jacobian J was formed at
every step, and corresponding iteration matrices formed and factored. As experience
accumulated, it became clear that these computations are a large, and often dominant,
part of the cost of solving a typical problem. The sole purpose of these computations is
to secure adequate convergence to y*. It was quickly realized that great savings are
possible by using the same iteration matrix as long as hT is an acceptable step size and
formula, and convergence is adequate. This has become standard. Further savings of
this nature are attempted in the most recent codes. We shall discuss them below.
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Another source of improved efficiency has been to take account of the structure of
the Jacobian. This can reduce significantly the cost of forming J by differences. It can
also reduce significantly the cost of factoring the iteration matrix and of solving the
linear systems. The use of structure is important for problems of medium size and vital
for large problems.

The fragments of theory available for stiff problems give a great deal of attention to
model problems. For the typical models to have any validity, it is necessary that the
solution of the differential equation be slowly varying and that the Jacobian be
approximately constant in a neighborhood of the solution. We did not make it clear
enough in [21 that there are important practical reasons for supposing this situation. If
the problem is stiff, we hope to be able to use "large" step sizes h. According to (20a),
this is not likely to be possible unless J is close tom for each rn. This requires that the
Jacobian be nearly constant near y*. Using a factorization of I- h3,J for several steps is
not likely to be possible unless the solution changes slowly and the Jacobian changes
slowly along the solution.

If the convergence test is reliable, the only role J plays is to affect the rate of
convergence. Usually one thinks of J as an approximation to (y*), except when we
take J 0 to have simple iteration, but there are reasons for not proceeding so simply.
The critical task is to make I1,, rll of acceptable size; "small" elements of need not be
approximated at all well. Advantage can be gained by setting elements of J to zero if
they approximate small elements of . The idea is to work with a J whose structure
permits one to form it and to factor the iteration matrix more cheaply than with the
actual structure of ,, [22].

Formation of a J by numerical differencing is extremely common despite serious
scaling difficulties. The typical way of generating a column of J is by

gf(y _/(y + ei) f(y
c3e

where ei is the ]th column of the identity matrix. The scalar 5 is selected to get a
reasonable approximation. The trouble is that to be small enough to give a reasonable
approximation to large q, 5 is frequently so small that the difference consists only of
roundott error for those components corresponding to small ,,q. We see now why this
standard procedure may give acceptable J even when the approximation of small
elements is dreadful.

On general grounds we can argue that most codes form a new J far too frequently.
For the common case of Jacobians which are fairly expensive, we would like to avoid
this wasted effort. Sometimes Jacobians are inexpensive, e.g., they are "free" for linear
problems. Avoiding the evaluation of a Jacobian in such a case is unnecessary, but
should do no harm. In the absence of information about the relative cost of evaluating a
Jacobian, we shall presume that it is substantial and seek to minimize it. If the problem is
nonstiff locally, the code must use a small step size, so small that J is essentially ignored
and, in effect, simple iteration is done. If the problem is stiff locally, the solution is slowly
varying and the Jacobian is roughly constant. If J is a Jacobian approximation based on
a solution of about the current size, the need for a new iteration matrix is likely to be due
almost solely to changing h3,, in part because we have seen that J does not need to be
very accurate. In either case the arguments suggest that a good tactic is to keep a copy of
J, and when forming a new iteration matrix, to try first the old J. The substantial increase
of the storage required by the code is probably why few codes do this. Experiments done
some years ago by the author and M. K. Gordon showed that the cost could be reduced
significantly in DIFSUB [13]. Recently A. R. Curtis [24, p. 271] and T. Chambers
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[25, p. 243] make the same point based on their considerable experience. Below we
make more specific recommendations, and so comment here only that provided
sufficient storage is available, reuse of approximate. Jacobians can save a lot of work.

There are two reasons for adjusting the step size. One is to match the accuracy of
the solution at each step to the user’s requirements. It is insisted that the accuracy he
demands be achieved. For efficiency we try to use the largest step size which will satisfy
these demands. This task has been well studied. The other reason for adjusting the step
size is to secure an adequate rate of convergence in the use of an implicit formula. We
have noticed no prior investigations of this task and all the codes appear to use ad hoc
devices. Here we shall develop some insight as to the effects of changes of step size and
formula which suggest specific ways to proceed.

The part of the error expression (20a) which depends on the step size and formula is
the error matrix (I h’r,J)-lhI. Suppose A is an eigenvalue of J. There is a correspond-
ing eigenvalue of the error matrix which is

hA(21) e(h)=.
1- h3,X

Speaking loosely, the "nonstiff" eigenvalues are those with IhA << 1. In this case

(22) e(A)---hA if Ih;l<< ,
so that errors corresponding to "nonstiff" eigenvalues are strongly damped. "Stiff"
eigenvalues are those with Re (A) =< 0 and IhA >> 1. In this case

1
(23) e(A)--- if Re (A) -< 0, Ihxl >> 1.

Perhaps surprisingly, the errors corresponding to "stiff" eigenvalues are very heavily
damped. More generally we have the bound

(24) ]e(a)l =< he if Re (A) =< 0.

We have just explored the behavior of the iteration error when we advance from a
point x with step size h and formula yielding 3’ in (18). Now we ask what would happen if
instead we advanced with step size h" and formula yielding ,". Supposing that the same
approximate Jacobian J is used in either case, the error matrix corresponding to the
second computation has an eigenvalue

h","
e"(A)

1 h"

Comparing this to (21) gives us a lot of insight as to the effect of a change of h3, to h"3/’
on the iteration error. It is not precise because the ,, in (20a) is altered somewhat for
the new problem. Perhaps more significant is that in a suitable norm the eigenvalues of
the error matrix tell us what happens in an iteration, but a code must use a specific,
computable norm. With these qualifications in mind we see that, at least roughly, the
effect of a change from h3, to h"3/’ is to change the bound (24) on the rate propor-
tionately. For special problems such as constant Jacobians and either a suitable norm or
a special structure such as a diagonal Jacobian, the qualifications to the analysis do not
apply and the conclusions are quantitative. In general, the approximation of (22) says
that we are finding the correct behavior for "nonstiff" eigenvalues. In particular, our
qualitative guide agrees with the true behavior when simple iteration is used. Now let us
take up some applications of this argument that the rate of convergence is roughly
proportional to h3,.
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There are a variety of situations we must discuss. As we take them up in turn we
shall apply our insight to arrive at a recommendation and state what current practice is.
When we try a step with hy we are first faced with the possibility that we are unable to
solve the implicit equation (18) with acceptable efficiency. If a solution is obtained, the
local error is estimated and it is decided whether to accept the step. If the step is
rejected, a new step size, and possibly a new formula, is chosen which is expected to
yield the desired accuracy when the code tries again to take a step. If the step is
accepted, a new step size, and possibly a new formula, is chosen which is expected to
yield the desired accuracy on the next step.

We have argued that the typical code forms a new approximate Jacobian too often.
We advocate keeping a copy of J and judiciously reusing it. This does require extra
storage, but we think it worthwhile. As we take up the possibilities we shall see how this
can reduce the number of Jacobian evaluations significantly.

Suppose we fail to get convergence quickly enough when solving (18), and that the
J used was not computed at the current data. Certainly we can secure convergence with
this J if we reduce the step size enough. However, the whole point of using approximate
Jacobians in the iteration is to be able to use a step size appropriate to the truncation
error of the formula. We have just tried such a step size and failed to get adequate
convergence. It is plausible that we need a new J. We suggest that a new J be formed at
every convergence failure with J out of date. There is no reason to think the step size
unsatisfactory, so we suggest trying it again. These recommendations agree with current
practice, in part because only a couple ot codes keep a copy of J so that they can even
consider its reuse.

Suppose we fail to get adequate convergence and that the J used was computed at
the current data. We shall reduce the step size and form an iteration matrix using a copy
of J. Current practice forms a new J. This serves no purpose at all except to avoid the
storage for a copy. It is quite possible that we fail to secure convergence repeatedly,
especially if we reduce the step size by a factor independent of the observed behavior of
the iteration. Repeatedly forming the same approximate Jacobian J is obviously
wasteful. Having monitored the behavior of the iteration, we find three situations in
which we must select a step size. First it may happen that the iteration is diverging. Our
arguments about the effect of reducing the step size do not then apply. In the absence of
insight, we make a traditional reduction of the step size by an arbitrary fixed factor such
as 1/4. We remark that the action we suggest after a successful step is designed to prevent
the occurrence of this situation. The second possibility is that the iteration is converging
at rate r which we regard as too slow. We predict that on changing hy to h"3," the rate
will be changed to roughly r(h"y"/hy). This tells us how to reduce h to get an acceptable
rate. Naturally we should insist on a substantial reduction because of the crudity ot the
approximations. With our new insight, we take into account the observed behavior and,
in particular, we respond more quickly than with the traditional fixed factor. The third
possibility is more exotic. It could happen that the rate of convergence is acceptably fast,
but the predicted value is so much in error that convergence is not obtained in the
permitted number of iterations. This shows a breakdown in the assumptions about
the predictor, e.g., the derivative of the solution might be discontinuous in the course of
the step. How one wants to handle such a software issue is a matter of taste. One might
prefer to quit immediately. Our preference is to reduce the step size and try again. We
prefer to terminate always with the statement that the code apparently needs an
unreasonably small step size to continue. If our preference is followed, we have no
information on which to base the reduction of the step size, so an arbitrary fixed factor is
as reasonable as any way of making the reduction. We emphasize that of the three
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possibilities raised, the second should be the most common by far and with our new
insight, we are able to respond rationally.

Having dealt with the various manifestations of a failure to get adequate con-
vergence, let us now take up the cases resulting from the successful solution of (18) with
h3,. First suppose we got convergence, but we reject the step. There is no reason for
forming a new J" Convergence was at a satisfactory rate, and we anticipate that with the
reduction of h3, to h"3,", it will be accelerated. (This is what everyone has always
expected but, in fact, it is not necessarily true that reducing the step size results in an
iteration that converges even as fast. Our insight explains why it should usually result in
a faster iteration.) The predicted value yO will be more accurate for the new try with a
smaller step size h". For these reasons the formation of a new approximate Jacobian, as
is typical, seems to have no point except to avoid storing a copy of J. As with repeated
failures to secure convergence, it is possible to fail repeatedly to accept a step due to a
sudden change in the solution.

Finally suppose we got convergence and we accept the step. Unless the step size can
be increased "substantially" for the next step, changing it will not be worth the cost of
factoring the iteration matrix. If the increased step size appears worthwhile, we have to
consider whether to form a new J. The older codes do; Curtis [24] does not. We suggest
an intermediate tactic. Our argument says that if we use the old J, the observed rate of
convergence r should slow down by a factor of roughly h"3,"/h3,. If this is still an
acceptable rate, we suggest using the J stored. If it is not, it appears prudent to form a
new J.

So far we have considered only "substantial" changes of step size because of the
cost of factoring a new iteration matrix and the cost of forming a new approximate
Jacobian. There are a number of reasons why "small" changes would be desirable. For
one, "small" changes produce a smoother behavior of the true error with respect to the
tolerance e. The algorithm for choosing a step is conservative so as to prevent expensive
rejections. After a successful step the algorithm may well say that the next step ought to
be a little shorter for this reason. (It is only a little shorter because of the effect of the
order of the formula.) This warning is usually ignored because of the expense of a
change. In the extremely important case of the BDF, it is known that the integration can
become unstable in the presence of step size and order changes. Gear, Tu, and
Watanabe [26] prove stability if "small" step size changes are made.

It is very tempting to make small changes in the step size without changing the
iteration matrix. This puts us in the general case of (20), where we have an iteration
matrix I- h’3,’J and take the step with h3, which may differ from h’3,’. It is cheap to
change the step size in these circumstances. Comparing the iteration matrix we have to
the one we would like to have, I- h3,J, we are a little discouraged. The perturbation is
one of full rank and in the solution of stiff problems, the term h’3,’J often dominates I.
Nevertheless, Hindmarsh has implemented this idea in the GEAR package, where he
uses the old iteration matrix if the change in h’3,’ is not more than 30%. It is still
required that an increase of the step size of at least 10% be possible to even consider a
change. We think the idea particularly useful when a small decrease is called for. It
seems to us that the observed rate of convergence ought to be extremely important in
deciding whether to try to use an old iteration matrix. Our ideas for analyzing (20a)
provide some insight.

There are two terms in the error matrix of (20), and it is not clear how to deal with
their coupling because of the matrix, J. We shall treat them separately and presume
the worst by supposing that they add. The situation is that we have an iteration matrix
I h’3,’J and have just made a successful step with h3, which might, or might not, be the
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same as h ’y’. We consider taking a step with h"y" which is different from h ’y’. The effect
on the first term is easily analyzed as we did in the more special case. We predict that the
rate of convergence will be altered by the factor (h"y"/hy). Proceeding similarly with
the second term we see that if A is an eigenvalue of J, the matrix (I-h’y’J)-l(h"
h’y’)J has an eigenvalue of magnitude

< if Re (A)_-< O.(25)
h 3" 1 h’y’A h’y

As with the first term in (20) we find that "nonstiff" eigenvalues are strongly damped.
Unfortunately the qualitative behavior with respect to "stiff" eigenvalues is altered.
Instead of being damped strongly, the damping depends on how close h"3’" is to h’3,’ in a
relative sense. This is quite consistent with our earlier remarks about the nature of the
perturbation. These arguments suggest that if r is the observed rate of convergence, we
inspect

/ h"y"\ "3’"-h’3"

to see if it is less than the rate of convergence we are willing to tolerate. If it is, we might
change the step size and retain the iteration matrix. Otherwise, this action seems
imprudent. Qualitatively this appears to be the right kind of criterion because small
perturbations to a rapidly convergent process appear the ones most likely to succeed.
This criterion would not often be as bold as the one used by Hindmarsh but, in contrast,
would likely be used to reduce the step size to forestall a failure.

We are quite conscious of the limitations of the analysis of this section, but the
arguments do provide some insight. There is quite a range of possible action. For
example, after a successful step we might retain the step size and iteration matrix,
change the step size and retain the iteration matrix, change the step size and iteration
matrix while retaining the approximate Jacobian, or change the step size and the
approximate Jacobian and the iteration matrix. The decisions must be made, and they
are of great practical importance. Any new insight is of obvious value. Our observations
provide some guidance as to appropriate action.

5. An example. We have constructed a simple example to make a number of
points. In very reasonable circumstances we show that

(i) an implicit method (3) can have more than one solution y*;
(ii) the predicted solution yO can be closer to the "wrong" y*;
(iii) a convergence test based on the difference of successive iterates can accept an

approximate solution arising in a divergent iteration.
The example was originally constructed to explain in simple terms a numerical difficulty
observed in the solution of some problems of chemical kinetics [27], [28]; accepting the
"wrong" solution of (3) leads to disaster.

We shall solve

(26) y’ loolyl f(y), y (o) 1.

On the grounds that the solution is physically uninteresting when it is sufficiently small,
the problem is to be solved in the sense of absolute error. Notice that if we should
somehow generate a negative approximation yn, the differential equation is unstable
and we shall get absurd results from then on. This is essentially what happens in the
computations described in [27], [28]. The difficulty arises in our failure to recognize that
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we might get into an unstable region and our consequent failure to take action to
prevent negative values.

The numerical methods we use are quite reasonable, Steps are taken with the
backward Euler method

(27) y,+l y, + h/(y,+l) or y* y, + h/(y*).

The prediction is done with the forward Euler method
0y y, + hf(y,).

As we use it, we solve (27) exactly so there is no error in f(yn) here. This is a common
predictor for the backward Euler formula. It will be obvious that the other common
predictor, which does linear extrapolation of yn and y,_, behaves qualitatively the
same in our example. To solve (27), we use

(28) m+l m) m+ly y,, + hf(y + hf’(y,,)(y y ).

Here we are using the current h and as good an approximation to the Jacobian as we
ever expect to have.

First suppose that h -< 10-2. The predicted
0y (1-100h)y > 0.

The scheme (28) is exact in one iteration and gives

(29) Y,,+ =y, =yl= Yn
1 + lOOh"

The estimated error of the step is a multiple of

(30) ly*-yl
1 +100-(1 100h) y,.

We need be no more precise about the error estimate. Obviously if h and/or y is small
enough, the error estimate satisfies any absolute error test. As (29) shows, the numerical
solution monotonely decreases. Because of the form of (30), we see that the error test is
going to be passed with an increasingly large margin. Thus automatic adjustment of the
step size will begin to increase the step size. Eventually we are led to try an h > 10-2.

Supposing now that yn >0 but h > 10-2, we find that (27) has two solutions,
namely,

1 1
y * 1 +100------ y,, > 0, y 2" 1_100------ y, < O.

Furthermore

jyO= (1 100h)yn < 0.

Depending on h, yO can be closer to y’ than y l*. In fact, the reasonable value
h 2 x 10-2 has yO= y2* =-y! The iteration (28) has

y =y,,-lOOh]y -lOOh(y -y

hence

y,, 200hlyl
1 + 100h
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The iterate y is certainly negative for h => 2 10-2. If y, > 0 is small enough, any
convergence test based on [yl_ yO[ will be passed and y accepted as the approximation
of y*.

To investigate the iteration (28), we write it in the form y,/l G(y,). We must
take into account that y >0 in obtaining the proper f’(y,,), that h > 10-2, and that
yO < 0. We find

Because

G(y) (1 + 100h)-l(yn + 200hy) for y < 0.

200h
G’(y) >1,

1 + 100h

G does not contract for negative y; in particular, y 2* is a point of repulsion. The iteration
begun with yO < 0 is diverging.
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ITERATIVE METHODS FOR THE NUMERICAL SOLUTION OF
SECOND ORDER ELLIPTIC EQUATIONS WITH LARGE

FIRST ORDER TERMS*

JOHN STRIKWERDA"

Abstract. This paper presents iterative methods for the numerical solution of second order elliptic
equations whose first order terms have coefficients that are orders of magnitude larger than those of the
second order terms. Such equations arise in singular perturbation problems and also in the numerical grid
generation technique of Mastin and Thompson. These equations exhibit boundary layer phenomena which
usually require an unevenly spaced grid for their numerical solution. The methods are similar to successive
overrelaxation, but have the advantage of not requiring the user to supply a parameter. The methods are
shown to be stable even for variable coefficients by using the theory of pseudo-translation operators; however
no proof of convergence is given. Numerical results are presented and discussed.

Key words, iterative method, elliptic equations, Reynold’s number, boundary layer

1. Introduction. Consider the elliptic equation

(1.1) Au,x + 2Buxy + Cuyy +Du +Euy +Fu G(x, y)

defined in a domain lq in N2. The coefficients are assumed to be smooth, slowly varying
functions of the independent variables (x, y), and also

AC-BZ>=6>O, A>-O,

on f. If L is a reference length for D,, such as the diameter, then we define the Reynolds
number for equation (1.1) as

L4D+E
(1.2) R (x, y) 1/2(A + C)

This definition of the Reynolds number is somewhat arbitrary and any similar expres-
sion that relates the magnitudes of the coefficients of the first order terms to those of the
second order terms would suffice for our purposes.

In this paper we will consider elliptic equations for which the Reynolds number is
large, on the order of a thousand at least. We will also assume that the coefficient F(x, y)
is of the same, or less, order of magnitude as the coefficients D(x, y) and E(x, y), and
that the coefficients A (x, y) and C(x, y) are of the same order of magnitude with respect
to the Reynolds number. Such equations as these arise frequently in applications,
usually as singular perturbation problems.

The methods presented in this paper are designed for the numerical solution of
elliptic equations with large Reynolds number. They formally resemble successive-
over-relaxation (SOR) and they will be referred to as SRRmsuccessive relaxation for
large Reynolds number.

Unlike SOR which requires a priori knowledge of the iteration parameter, in SRR
the iteration parameter is chosen at each grid point according to a formula derived from
a stability criterion. This formula for the case of the frequently encountered five-point
difference operator is derived in 5. Computational results are described in the last
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t Institute for Computer Applications in Science and Engineering, NASA Langley Research Center,

Hampton, Virginia 23665. This work was supported by the National Aeronautics and Space Administration
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section and the notable features of SRR are presented. The author is currently working
on a proof for the convergence of the SRR method.

Iterative numerical methods for elliptic equations with sizeable lower order terms
have been studied by several other authors; we mention only Concus and Golub [-2] and
Widlund [11]. They, however, do not consider problems with boundary layers and
nonuniform grids which are essential features of SRR.

2. Boundary layers. The solutions of Dirichlet problems for elliptic equations with
a large Reynolds number frequently have boundary layers. Boundary layers are regions
near the boundary where the solution has very large gradients, and they are located at
those boundary points where

(2.1) D(x, y)nx + E(x, y)ny > O,

and (nx, ny) are the direction cosines for the interior normal at (x, y). The condition
(2.1) can be established by the method of perturbation expansions (see Nayfeh [4],
Van Dyke 10]).

Inthe numerical solution of such problems a nonuniform grid is frequently
employed to place more grid points in the boundary layer region to resolve the solution
more accurately. In order to study some effects of the grid on the solution, consider the
one-dimensional equation

(2.2) Uxx+Rux=O on0-<x=<l

with the boundary data

u(0) 0, u(1)= 1.

To resolve the boundary layer at x -0 we introduce the coordinate transformation

q=q(x), q(0)=0, q(1)=l

where

(2.3)

q’(x) > 0 and q’(0) >> 1.

Equation (2.2) then becomes

(q’Uq)qq-Ruq=O,

which can be approximated by the difference equations

_Rh-1h 2(qi+l/2(Ui+l Ui)--qi-1/2(Ui--Ui-1))’t"2 (Ui+l--Ui-1)--O,

i=1,2,...,N-l,

with

u0 0, ur 1.

The solution to (2.2) is a monotone increasing function and we will now examine
(2.3) to see when its solution is also monotone. We rewrite (2.3) as

Ui qi+
qi+l/2 d- qi-1/2

1/2 "t-h) Ui+l + (q[--1/2 _,h) ui-l]
From this it is easy to see that the solution will be monotone if and only if both
coefficients on the right-hand side of the above equation are positive. This shows that a
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necessary and sufficient condition for the solution to be monotone is that

(2.4) -Rh_<2 fori=l,2,...,N.
qi-1/2

The quantity on the left side of inequality (2.4) is called the cell Reynolds number.
Note that the condition is essentially

(2.4’) R(xi-xi_l)<=2,

and it imposes a restriction on the grid spacing.
In computation, it is seen that if inequality (2.4) is violated at grid points away from

the boundary layer then the resulting oscillations in the solution of equation (2.3) are
not large and do not severely affect the accuracy of the solution. However, if the
inequality is violated in the boundary layer region then the oscillations can be very large
and will severely affect the accuracy of the solution.

It is important to note that the cell Reynolds number condition is a statement about
the solution of the difference equations (2.3) and is independent of the solution
procedure. For two-dimensional problems using a scheme analogous to the above
one-dimensional problem, the cell Reynolds number condition remains approximately
valid in the neighborhood of the boundary layer. One might also use a scheme based on
one-sided or "up-wind" differencing for the first derivatives and such a scheme might
not have a cell Reynolds number restriction for obtaining monotone solutions. For such
a scheme the cell Reynolds number serves principally as a measure of the accuracy of
the solution. For more discussion of the cell Reynolds number condition see Roache [6],
and for a finite element approach to this subject see Christie et al. [1].

3. The SRR method: an example. Before introducing the method in general, we
will consider as an illustration the equation

(3.1) Uxx + u,, + R 1Ux -" R2Uy 0

on the square

0=<x=<l, 0-<y=<l,

with u specified on the boundary. To resolve the boundary layers we introduce a change
of coordinates given by

q q(x), p =p(y)

where q(x) and p(y) are smooth, strictly increasing functions and

q(0) p(0) 0, q(1) =p(1) 1.

Equation (3.1) then becomes, in the new coordinates,

(3.2) q’(q’ uq), + p’(p’up)p +Rlq’uq + R2p’up 0,

where

q’=xx and P’=d-"
This equation can then be replaced by a difference approximation using a uniform grid
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in the (q, p) unit square. We write this difference approximation only as
0 -1,0u 0 0,-1

m:,/ Ui+lj+mii i-li+m uij+l +mii uij-1

1,o -1,o o,1-(mij +mii +mii +m’-l)ui=O,
a,bwhere the coefficients m i,i depend on the precise form of differencing that is used.

By use of the natural ordering of points and immediate replacement, this system of
difference equations can be solved by the following algorithm

n+l 1,0 i 1,0
U 7 +llj 0,1 ,--1 n+l

Uii =u6+toii{mq Hi+lj.-bm 4c-rail uii+l.-l-m., uij-1
(3.3)

_(m/O + mill- ,o + mi/ + mif -1 )uij}."

As will be shown later, the optimal choice of the iteration parameter too. for large values
of R and R2 is given by

2
(3.4) toil

rh + 44(m’- m-l")2/(m 1" + m -1’) + (m’1- m’-l)2/(m 0"1 + m 0’-1)

where rfi m 1’ + m -1’ + m’1 + m’-1 and the subscripts (i,/3 have been omitted for
convenience.

This example will be discussed at more length in 6 and the derivation of the
expression for toil will be given in 5. For now we point out only that for the particular
case whose results are given in the first part of Table 1, the number of iterations required
for convergence is nearly constant, independent of R for values of R between 6,000 and
80,000.

4. The SRR method. We now present the SRR method in detail. We begin with
equation (1.1) and transform coordinates to the independent variables (q, p) in order to
improve the resolution of the boundary layers. This transformed equation again has the
form of equation (1.1). We will assume for simplicity of exposition that 1), the image of
12 in the (q, p) coordinates, is the unit square. On I) we take a uniform grid with points

Qo,=(alhl, a2h2)

indexed by the multi-index a -(eel, ce2). The ai are integers with

-1

-1where the quantities hi are also integers.
The difference approximation to the equation can then be written as

(4.1) , Mo,u,+ G, -G(qo,, po)
It3l_-<k

for all multi-indices a with Qa f and some positive integer k. The norm of the
multi-index fl is given by

I l- 1(i1, 2)1--" [11 "[" [21.
The class of iterative methods we discuss here are given in general by

(4.2) U+1
U -’l"(.Oa( E 0 n+l’M,t3u,+t+ Y’. M

where

Mo +Mt M,t.
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To determine the iteration parameter w for this scheme, we will study the symbol of
the scheme. The symbol for the scheme (4.2) is defined as

s(O, )
--1 0 i5"/3o +11=</M e
-1 2 i./3

t e

where (= (:1, 2) with ]sc;[-<_ 7r. The iteration parameter o is chosen so that

(4.3) Is(O, )1 --< 1 for .
The definition of the symbol of the iteration scheme is in accordance with the

theory of pseudo-translation operators developed by Vaillancourt [8]. The condition
(4.3) is motivated by the Lax-Nirenberg theorem (Lax-Nirenberg [3], Vaillancourt
[9]), which guarantees stability for the iteration scheme when applied for R2 and
considered as an initial value problem. We refer the reader to Richtmyer and Morton
[5, p. 45] for the definition of stability for initial value problems. We point out that while
such stability is necessary for the convergence of the scheme, it is not sufficient, in
general, to guarantee the convergence. As shown by the computational examples of 6,
the set of values of w determined by (4.3) can give very good convergence rates for
large Reynolds numbers.

For the remainder of the paper we make the following ellipticity assumption.
Assumption 4.1. The difference approximation (4.1) satisfies

-Re M,oe i/j-/3 e C ([1[2 -[-1212)

for [soil-< zr and some positive constant c.
We now obtain an expression for o9. Define the symbols

and

From Is[ _-< 1 we have

or equivalently

i./3m =m (O, sc) Me
o o( o i5-/3m =m O,)= E Mo,t3e

Itl_-<k

m m(O, )= m(O, )+ ma(o, ).

-1 tool2 m

2 Re too)
-a Im112- Iml2.

From the ellipticity assumption we have

-2Rem

(4.4) ((.o)-1-- sup
I,m,-_,ml,2.

iil__< -2 Re m

For o9 in the interval [0, o*] the iterative method (4.2) will be stable. Moreover, as
shown in 6 the convergence rate of this scheme is optimal for w equal to o)*, at least
for the examples considered there.

Define o* by



124 JOHN STRIKWERDA

Note that if [mll is larger than Iml for all values of :, then the scheme is
unconditionally stable in the sense that any positive value of o will satisfy inequality
(4.3). We will not consider such schemes here.

5. Computation o| o* for special eases. We first compute o* for the case in which
the iteration operator has a five-point stencil given by

n+l(5.1) Uij uii + coii{aiiui+li + biiuT.+lli- + ciiuij+l + dqu n+lij-I -(aii + bii + i + dq)uq}

Equation (5.1) is of the same form as (3.3). As in the previous section we have

0 iorn =ae +ce -(a+b+c+d),
-io -icbrn =be +de

where we have dropped the subscripts (i, ]) and : (0, b). Note that Assumption 4.1 is
satisfied when a + b and c + d are positive,

-Re rn -Re (m+m) (a + b)(1-cos 0)+ (c + d)(1-cos b)

2(a + b) sin2102 + 2(c + d) sin2 1/2.
We will use formula (4.4) to compute to*.

Iml2-1mll2= (a+b+c+d)(-Rem)+2(a+b)(a-b-c+d)sin2.102
+2(c + d)(c d a + b) sin2 1/2b
+ 4((a + b)(c d) + (c + d)(a b)) sin x-02 sin 1/2b cos (0 4).

Let

and

Then

A=2(a+b)(a-b-c+d),

B 2((a + b)(c d) + (c + d)(a b)),

C 2(c + d)(c d a + b).

Iml- [ml2-< (a + b + c + d)(-Re m)

+(A + Inlr) sin2 1/20 + (C + IBIr-) sin2 1/25,
where r is an arbitrary positive number. If r is chosen so that

a + [nlr_ C + Inlr-1
a+b c+d

then

Imla- Italia_<-(a + b + c + d)(-Re m)

+ /(a + b + c + d)((a b)a/(a + b) + (c d)a/(c + d))(-Re m).

This implies that

(o,)_ <_a + b +c + d+/(a2
+b+c+d)((a-b)2/(a+b)+(c-d)2/(c+d))"
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Moreover the above inequalities are sharp as can be seen by taking

O=/rO.

Therefore

(5.2) to*
a + b + c + d + x/(a + b + c + d)((a b)2/(a + b) + (c d)2/(c + d))

The reader is reminded that the coefficients a, b, c, and d are all variable functions
of the grid points and therefore to* is also a function of the grid point.

We now consider the iterative method obtained from the checkerboard ordering.
We will show that in this case to* is also given by formula (5.2). Analogous to (5.1) we
have

n+l ii{aiiu.+ .+ .+ "+ -(ai + bii + cii + dii)u}(5.3) u ij u (i -[’- to i+lj + bqu i-li q" C,qU ij+l q" dqu ij--1

where e 0 for +j even and e 1 for +j odd. To obtain the expression for to*i/ one
sets

U I Z
2n+e e ikO e ihb,

obtaining the equation

(5.4)

z l(_(a+b+c+d))=(a+b)cosO+(c+d)cos+i(a_b)sinOto Z

+ i(c- d) sin O.

The value of to* is determined by the requirement that for to less than or equal to to* the
modulus of z is less than unity. Rather than to proceed with this calculation, we use an
alternative approach which is to notice that if for the natural ordering one sets

2n+k+l ikO il
UkI:Z e e

then the resulting formula for z is the same as (5.4). This shows that the expression for
to* is the same for both orderings.

For elliptic equations containing mixed derivatives, i.e., B # 0 in (1.1), an estimate
of to* can be given. Consider the iterative method whose formula is

n+l , +111 n+l _..+lli=uii+toii{aii(u’;+li-2uii+u._ .)+Bii(Ui+li+l-Ui+xi_l-Ui_li+l +u _)
n+l 7__.+(i) n+l+Cii(uii+l -2uq+uii-1)+Dii(u+li-u +Eq(u’+I uii-1)},

where Aii, Bii, etc., are essentially the same as the coefficients in (1.1) except for factors
of Ax and Ay. For this iterative scheme an estimate for to* is given by

(.0")-1 =<1/2{A +C+D +E +
2(1 + 4-)(AIEI + CIDI)+ 41B 1(2,/ID + ID + El)}A + C /(A C)2 + 16B2

The estimate of to* given by the right-hand side of the above inequality has been
used to numerically solve the elliptic equations that result .from the grid generation
technique of Thompson et al. [7]. In the case that the grid has a high degree of
stretching, the equations have a large Reynolds number. Although no results on this are
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presented in this paper, the algorithm using this estimate has performed very well in
many computations.

6. Computational results. The SRR method presented in this paper has been
tested on the differential equation

uxx + uyy + Rux O, 0 <- x, y <= 1,

with several boundary conditions. The coordinates were transformed by the mappings

x xoq + (1- Xto )q 4,
(6.1)

y 1/2 + (1 7c)(p 1/2) + 40c(p 1/2)3_ 48c(p 1/2)5,
where x and c are parameters. Note that

dxx; =q(0>

and

and also

dy dyy; =p(0) =p(1) 1 +8c,

d2x d3x d2y d2y
q(O) dq--g(O) dp--(O) p2(1) O.

Employing a uniform (N + 1) (N + 1) grid in the (q, p) plane, we find the
difference approximation is given by

q’ (ui+ uo)-i(qi+l/2 1 qi-/z(uq ui-i))h-+p’(p’+l/2 (Uq+l uq)- P’-l/2 (uq uq-1))h -2 + 1/2Rql (ui+ai Ui-li)h -1 0

for 1 < i, ] <N + 1, where h N-a.
Problem 1. The first problem has the boundary condition

u(x,y)-lx-yl

for (x, y) on the boundary. An exact solution is not known for this problem; however,
the solution does satisfy

u(x, 1- y)= 1- u(x, y)

and for R large and 8 < y < 1- 6

u(x, y)-" y e -*R + (1 e-*R)(1 y)

In addition to the boundary layer at x 0, the solution to this problem has appreciable
gradients along the boundaries y 0 and y 1.

Problem 2. The second problem has as its solution

u(x,y) (y(1 y)2)-Rxe

and the boundary conditions specify that u agrees with this solution on the boundary.
The concern in this paper is with the convergence properties of the method, and not

so much with the accuracy of the results. For any particular problem the accuracy of the
results depend primarily on having enough grid points to resolve the boundary layer and
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having a coordinate transformation which places the grid points properly. The cell
Reynolds numbers are a measure of the suitability of the placement of the grid points. A
second consideration is the criteria to terminate the iterative method. In the following
examples the iterative procedure was stopped when

(6.2) Ilu" un--lll2 10--4.

The 2 norm in the above is given by

) /2Ilfll=- h2 E If l=

Th convergence criterion of 10- in inequality (6.2) was chosen bcaus it was small
nough to achieve satisfactory answers and yet large nough so that it was conomically
feasible to make the large number of runs required for testing th algorithm.

In Tables 1 and 2 are shown the results of solving Problems 1 and 2, respectively, by
both the checkerboard and natural orderings for different values of the grid size N, the
Rynolds number R, and the coordinate transformations. In thse tables the value of co
was always taken to be co as given by (5.2).

Notice from Tables 1 and 2 that for a given grid size, coordinate transformation,
and ordering, the number of iterations required for convergence is essentially
independent of R. However, when the cell Reynolds number at x 0 is near or above 2,
the convergence rate becomes poorer and the solution itself becomes highly oscillatory.

Included at the end of Table 1 are calculations for the equation

Uxx + uyy + Rux + 6Ru 0

for 8 0.5 and 8 1.0. The value of co,, was the same as derived in 5 for the case 8 0.
The computations indicate that stability is maintained for lower order terms of the same
order as the first order terms.

Table 3 shows the effect of taking cos as a multiple of co * for the case when N 40
and R 40,000. The number of iterations required for convergence was least for
cos co and for cos larger than co * the method does not converge at all. Similar results
were observed for other values of N and R but are not displayed.

In Table 4 is shown the relationship between the number of grid points along one
side of the grid, N, and the number of iterations required for convergence. For both the
checkerboard ordering and natural ordering, the number of iterations is proportional to
N for larger values of N. This shows that p, the radius of convergence of the iterative
scheme, satisfies

p 1 C/N + o(N-)
and, from the earlier comments, C is independent of R. A similar formula holds for
SOR when the iteration parameter is chosen properly (Young [12]), and this is an
indication of the efficiency of the method.

More specifically, we have from the results of Table 4 that for the checkerboard
ordering the radius of convergence satisfies

and for natural ordering

5.8
p-----1-

N
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By comparison, using SOR to solve Laplace’s equation on the unit square with a
uniform grid the radius of convergence satisfies

27r
N

This shows that using SRR for elliptic equations with large Reynolds numbers is about
as efficient as using SOR for elliptic equations with very low Reynolds numbers.

TABLE
Results for Problem 1.

Grid parameters
Reynolds No.
(thousands)

Iterations Iterations Cell
checkerboard natural Reynolds No.

ordering ordering at 0

N =40
xg 10-3

y =0

6 70 86 .15
10 70 87 .25
30 71 89 .75
6O 72 90 1.5
80 72 90 2.0
90 74 122 2.25
100 108 130 2.5

N =40 80 107 120 .20
x 10-4 100 109 125 .25
y =0 300 102 119 .75

600 115 130 1.5

N 40 10 94 109 .25
x 10-3 30 101 118 .75
y .5 60 103 120 1.5

80 104 121 2.0

Reversed
natural

ordering

10
30
6O
8O

81 .25
85 .75
87 1.5
92 2.0

N =80 100 130 165 1.3
x 10-3 130 130 165 1.6
y =0 160 130 165 2.0

180 131 165 2.3

N =40

X=10-3

Yo .5

10

30
60
8O

10
30
6O

101

112
115
116

.25

.75
1.5
2.0

112
128
132

.25

.75
1.5
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TABLE 2
Results for Problem 2.

Grid

parameters

Iterations Iterations Cell
Reynolds No. checkerboard natural Reynolds No.
(thousands) ordering ordering at 0

N=40
x 10-3

y =0

6 47 46 .15
10 76 73 .25
30 75 73 .75
40 67 58 1.0
60 80 76 1.5
80 93 92 2.0
90 98 97 2.3
100 103 99 2.5

N =40 80 89 85 .20
x 10-4 100 95 94 .25
y =0 300 92 91 .75

600 153 149 1.5

TABLE 3
Iterations ]:or to as a multiple of to* in Problem 1.

R =40,000, N =40, x 10-3, Y3 =0, to, r/to,*

Checkerboard Natural

ordering ordering

.80 89 105

.9O 79 97

.95 75 93
1.00 72 89
1.01 >200 >200
1.05 diverged diverged

TABLE 4
Iterations as a function ofN in Problem 1.

R=40,000, x=10-3, y=0, to,=to,,*

Checkerboard ordering
Iterations Iterations/N

Natural ordering
Iterations Iterations/N

20 64 3.2 72 3.6
40 72 1.8 89 2.2
60 101 1.7 127 2.1
80 130 1.6 163 2.0
100 155 1.6 202 2.0
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7. Conclusion. The SRR method introduced in this paper is a stable, efficient
algorithm for the numerical solution of elliptic equations with large Reynolds number.
The formula for the iteration parameter given in 5 for the five-point schemes gives
convergence rates that are essentially independent of the Reynolds number over a wide
range of values.
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Abstract. Alternating direction implicit (ADI) schemes for two-dimensional parabolic equations with a
mixed derivative are constructed by using the class of all A0-stable linear two-step methods in conjunction
with the method of approximate factorization. The mixed.derivative is treated with an explicit two-step
method which is compatible with an implicit Ao-stable method. The parameter space for which the resulting
ADI schemes are second-order accurate and unconditionally stable is determined. Some numerical examples
are given.
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1. Introduction. When an alternating direction implicit (ADI) method is applied to
a parabolic equation, for example,

(1.1a)
Ou(x, y, t)

at

where

Lu(x, y, t),

02 02
(1.1b) L a(x, y, t)x2 + b(x, y, t)

Ox Oy
02

+ c(x, y, t)
Oy2’

a,c>O, b2<4ac,(1.1c, d)

it reduces the computational problem to a sequence of one-dimensional (matrix)
inversion problems. If the mixed derivative 02/0x 0y of the operator L were absent
(b 0), an ADI method would reduce the operator (l-L) to the product of two
one-dimensional spatial operators. In the method of Douglas and Gunn [9], the mixed
derivative is kept implicit and their scheme requires four inversions; that is, the

* Received by the editors April 24, 1979.

" Computational Fluid Dynamics Branch, Ames Research Center, National Aeronautics and Space
Administration, Moffett Field, California 94035.
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operator (1-L) is reduced to four one-dimensional operators. The two additional
inversions are the direct result of keeping the mixed derivative implicit. Simpler and
more efficient schemes can be obtained if the mixed derivative is evaluated explicitly.
Perhaps not so obvious is the stability of these simpler schemes. In fact, it is rather
surprising that one can develop unconditionally stable algorithms for (1.1) by comput-
ing the mixed derivative explicitly and the derivatives 02/Ox 2 and 02/0y 2 implicitly.
McKee and Mitchell [15] surveyed two-level, first-order accurate (in time) schemes and
devised a new first-order accurate, unconditionally stable scheme for (1.1). Iyengar and
Jain [12] generalized the method of McKee and Mitchell and presented a three-level,
second-order accurate scheme for (1.1); however, the implementation of the scheme is
complicated by the explicit computation of fourth differences although the original
partial differential equation (1.1) contains only second derivatives.

The present authors constructed a second-order accurate ADI algorithm for the
compressible Navier-Stokes equations 1 ]. When the algorithm is applied to the model
equation (1.1), it leads to a simple three-level unconditionally stable scheme which is
easy to implement. In a recent paper [20] we combined A-stable linear multistep
methods (LMMs) and approximate factorization to construct a large class of multilevel
unconditionally stable ADI schemes for a model partial differential equation with both
convective (hyperbolic) and diffusive (parabolic) terms; that is,

L =a+b +c-cl
OyOX 2 OX Oy Oy 2 X-- C2’

where a, b, c satisfy (1.1c, d) and Cl, 172 are real constants. The general formulation of
[20] is second-order accurate if b 0 but first-order accurate in time if the mixed
derivative is included. In both [1] and [20], the mixed derivative is treated explicitly.
The purpose of the present paper is to modify and combine the algorithms of [1] and
[20] to obtain a general, second-order accurate, unconditionally stable algorithm for
the model parabolic equation (1.1). In a companion paper [21 we apply the method to

derive a noniterative ADI algorithm for a hyperbolic-parabolic system of nonlinear
equations with mixed derivatives.

The development and analysis of numerical methods for ordinary differential
equations (ODEs) are more advanced than that for partial differential equations (PDEs).
Therefore, it seems plausible to capitalize on this fact by making use of known results
from the theory of difference methods for ODEs to construct methods for PDEs. For
example, the time differencing schemes used to construct implicit methods for PDEs are
invariably LMMs although this fact is seldom noted. Since a great deal is known about
the properties of LMMs (see, e.g., [6], 10]), one can use this information to advantage
when attempting to construct schemes for PDEs. With these observations in mind we
use 2 as a review of the theory and notation for linear multistep methods including
A-stability, Ao-stability, and one-leg methods. In addition, we introduce the notion of
an LMM combining two different LMMs---one implicit and the other explicit. In 3 we
investigate the stability of an implicit method for (1.1) obtained by using an A0-stable
LMM as the time differencing method. We then modify the scheme by treating the
mixed derivative explicitly and reinvestigate the stability properties. The method of
approximate factorization is applied in 4 to obtain an unconditionally stable, second-
order accurate, multistep ADI scheme in the p(E) formulation. In 5 we construct a
general approximate factorization method for all second-order, two-step schemes and
discuss the parameter space for unconditional stability. Details of the stability analyses
are given in the Appendices A and B. In 6 a simple modification is given for the case of
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time-dependent coefficients a, b, c. Numerical examples are given in 7 and some
concluding remarks in 8.

2. Preliminaries. In this section we briefly review the theory of linear multistep
methods (LMMs) and the related one-leg (multistep) methods. In addition, we intro-
duce combined LMMs.

2.1. Linear multistep methods. A linear k-step method for the first-order ordinary
differential equation

du
(2.1)

t
f(u’ t), u(O) Uo,

is defined by the difference equation

(2.2) p(E)u" At o’(E)f",

where p and tr are the generating polynomials,
k k

(2.3a, b) p(’) Y ci"i, or(st) Y /3i"i,
j=O j=O

and E is the shift operator, that is,

(2.4) Eu un+ l.

In (2.2), u is the numerical solution at the point nat, At is the time step, and

fn =f(u, t). The method is explicit if/3k 0 and implicit otherwise. Consistency and
normalization are expressed by the relations:

k k k

(2.5a, b, c) Z a, 0, ] jai ] /3i 1.
i=o /=o j=o

As an example of an LMM, the most general consistent two-step method (i.e.,
k 2 in (2.3)) can be written as

(2.6) (l+)u"+-(l+Z)u"+l+u"=At[Of"++(1-O+)f"+l-4)["]

where (0, :, b) are arbitrary real numbers. The operators p(E) and or(E) are

(2.7a) p(E) (1 + )E2- (1 + 2:)E + :,
(2.7b) r(E) OE- + (1 0 + c)E c.
For the class of all two-step methods that are at least second-order accurate, the
parameters (0, :, b) are related by

(2.8) b =-0+1/2,

and consequently, r(E) can be rewritten in terms of the two parameters (0, :) as

(2.9) or(E) OE2 + (j 20 +)E (tj 0 + 1/2).
Some well-known implicit second-order methods and their corresponding values
(0, , b) are listed in Table 1. Linear one-step methods are a subclass of (2.6) obtained
by setting : b 0:

n+l +1.(2.10) u u At[Of" + (1 O)f"],
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where we have shifted the time index down by one. The trapezoidal formula (0 1/2 in
(2.10))

At n+(2.11) u "+a- u" -(f +f,)

is the only second-order accurate one-step method. When the trapezoidal formula is
applied to a parabolic equation, the resulting algorithm is usually called Crank-
Nicolson.

TABLE
Partial list of second-order two-step methods.

& Method

0 0 One-step trapezoidal formula
0 Backward differentiation

5 g 5 Lees type 14
0 Adams type 17]

Two-step trapezoidal formula

Symbol in
Fig.

The linear stability of an LMM is analyzed by applying it to the linear test equation

du
(2.12) d-- 1u,

where is a complex constant. The stability is determined by the location of the roots of
the characteristic equation,

(2.13) p (r) A At r(() O,

relative to the unit circle in the complex plane. The stability region of an LMM consists
of the set of all values of A At for which the characteristic equation (2.13) satisfies the
root condition; that is, its roots rl all satisfy ]srll <-1 and the roots of unit modulus are
simple. An LMM is said to be A-stable if its stability region contains all of the left half of
the complex A At plane including the imaginary axis [4]. A simple test for A-stability
can be formulated in terms of positive real functions [7]. By applying the test to the
linear two-step method (2.6), one finds that the method is A-stable if and only if

(2.14a) O=>&+1/2,
(2.14b) >_- -,
(2.14c) so<_-0+0-1/2.

An LMM is said to be Ao-stable if the region of stability contains the negative real axis
of the complex A At plane, that is, the interval (-c, 0]. Again, by applying the theory of
positive real functions, one finds that LMM (2.6) is Ao-stable if and only if

(2.15a) 0=>O+1/2,
(2.15b) :_-> -,
(2.15c) 0_-<0+&.
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For first-order accurate schemes, the inequality (2.15c) is less stringent than (2.14c).
This is not surprising since Ao-stability is a weaker requirement than A-stability.
However, for the class of all second-order methods, the parameters (0, sc, b) are related
by (2.8) and both sets of inequalities (2.14) and (2.15) reduce to

(2.16a, b) so=<20-1,

The parameter space (0, sc) for which the class of two-step, second-order methods is
A-stable, happens to coincide with the parameter space for which the class is Ao-stable
and is shown by the shaded region of Fig. 1. The methods listed in Table 1 and indicated
by the symbols in Fig. 1 are both Ao- and A-stable.

=20 -1

-1/2

FIG. 1. Ao- and A-stable domain of the parameters (0, :) for the class of all second-order two-step
methods. Symbols denote methods listed in Table 1.

Dahlquist has proved that the order of accuracy of an A-stable LMM cannot
exceed two [4]. On the other hand, Cryer [3] has proved there exist Ao-stable LMMs of
arbitrarily high order. Since the eigenvalue associated with the parabolic equation (1.1)
is real and negative, the application of an Ao-stable LMM will yield an unconditionally
stable scheme, that is, no stability restriction on the size of At.

In this paper we restrict our attention to second-order accurate LMMs. This
limitation is motivated by two practical considerations. First, conventional techniques
for constructing alternating direction implicit (all A-stable and A0-stable LMMs are
implicit [4], [3]) schemes generally impose a second-order-temporal accuracy limita-
tion independent of the accuracy of the LMM chosen as the time differencing approxi-
mation. The reason for this will become apparent in 4. In principle, by altering
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conventional procedures, ADI schemes of temporal order greater than 2 can be
constructed for PDEs where A0-stable LMMs are appropriate; however, the uncondi-
tional stability of the higher order ADI schemes is an open question. The second
practical consideration is computer storage. Even if the question of unconditional
stability is answered in the affirmative, the scheme must be at least a three-step method
since the two-step method (2.6) contains no Ao-stable third-order subclass.

2.2 One-leg (multistep) methods. A class of methods closely related to LMMs is
the one-leg (multistep) methods. The one-leg (k-step) method [5] corresponding to
(2.2) is

(2.17) o(E)a" Atf(tr(E)a", er(E)t")

where R" denotes the one-leg method solution. Formally, the one-leg method (2.17)
can be obtained by shifting the operator tr(E) inside the argument parenthesis of
f" =f(u", t") in the linear multistep formula (2.2). As an example, the trapezoidal
formula (2.11) is an LMM and the implicit midpoint rule,

(2.18) /n+l /n+l+ t" t" +--U =At
2

is the corresponding one-leg method. Dahlquist [5] has proved the following theorem
relating solutions of a one-leg method and an LMM" Let {t"} be a vector sequence that
satisfies the one-leg difference equation (2.17) and set

U "-iT

Then {u"} satisfies the LMM difference formula (2.2).
It should be noted that LMMs and one-leg methods are identical when applied to

the linear test equation (2.12) and, consequently, the results of linear stability analysis
are the same for both. However, one-leg methods simplify nonlinear stability analysis
[5] and, in addition, they are more reliable than LMMs when used with rapidly varying
integration step sizes [17]. As applied in this paper, the one-leg formulation makes it
easy to construct an ADI scheme for the parabolic equation (1.1) with time-dependent
coefficients.

2.3. Combined linear multistep methods. If the function f(u, t) of the differential
equation (2.1) is split into a sum, that is,

du
(2.19) d--/= f(u, t)= f(u, t)+f(u, t),

we can construct an integration formula by combining two different LMMs. For
example,

(2.20) p(E)u" At cr(E)f + At o’2(E)f,

where the subscripts on r and or2 indicate that the coefficients 3, of the generating
polynomial (2.3b) differ for the two functions f and f2. The analogous combined
one-leg method (2.17) is

(2.21) p(E)t" Atfl(Crl(E)/", tr(E)t")+ Atf2(cr2(E)", cr2(E)t").

3. Unconditionally stable schemes. In this section we examine the stability of an
implicit method for the parabolic equation (1.1) where the time differencing approxi-
mation is an A0-stable LMM. Next we modify the scheme by treating the mixed
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derivative explicitly and determine the criteria for unconditional stability. Although not
essential to the final goal of constructing unconditionally stable ADI schemes with the
mixed derivative computed explicitly, this intermediate analysis does isolate the
stability constraints due to the application of combined LMMs and those due to
approximate factorization. Furthermore, the nonfactored scheme is formulated so that
the ADI variant follows directly ( 4).

Numerical methods for solving the parabolic equation (1.1) can be obtained by a
direct application of the LMM (2.2). Since our interest is in constructing uncondition-
ally stable schemes, we assume that the LMM is A0-stable. By comparing (1.1) and
(2.1), we identify

(3.1) [(u) Lu aox2+ bOx Oy
+ c u

where L is a linear differential operator. For simplicity we assume that the coefficients
a, b, c are independent of time. The case of time-dependent coefficients is considered in
6. Insertion of (3.1) into (2.2) yields

(3.2) O(E)u t +b + c (N)u.aox Ox Oy

To analyze the stability of (3.2) we assume a solution for the PDE (1.1) (with
constant coefficients) of the form

(3.3) u(x, y, t)= v(t) e’x+y)

where v(t) is the Fourier coefficient and xa,2 are the Fourier variables (wave
numbers). Substitution of (3.3) into (1.1) yields an ODE for v(t):

dv
(3.4a) =Av,

dt

where

(3.4b) A -(a +bx2+ck).

The quadratic form in the parenthesis of (3.4b) is positive definite if and only if the
inequalities (1. l c, d) are satisfied. These constraints constitute the parabolicity condi-
tion of the PDE and ensure that the solution of (3.4) is damped with time. To complete
the stability analysis of the PDE scheme (3.2), we need only consider the stability of the
LMM (2.2) applied to (3.4) with A < 0. Since we assumed that (2.2) is Ao-stable, the
PDE scheme (3.2) is unconditionally stable. In practice, the spatial derivatives in (3.2)
are replaced by appropriate difference quotients; however, as shown at theend of
Appendix B, central spatial discretization does not alter the unconditional stability
criteria obtained by assuming spatially continuous solutions.

For the one-step methods (2.10), the scheme (3.2) reduces to

(3.5) u .1 u t +b -+c [Ou*+(l-O)u].= aox Ox Oy

With central spatial difference approximations, (3.5) is identical to a scheme suggested
by Lax and Richtmyer [13]. Their paper appeared about the same time the original ADI
methods were proposed by Peaceman and Rachford [18] and Douglas [8]. The first
ADI methods [8], [18] did not include a mixed derivative term and its presence
precludes the construction of an ecient ADI method. A simple way of circumventing
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this difficulty is to treat the mixed derivative explicitly. One might expect, however, that
this would have an adverse effect on the unconditional stability of the algorithm. This
stability question is considered in the remainder of this section.

Consider the combined LMM (2.20) where rl and r2 are defined as follows. Let
(2.2) represent a second-order A0-stable LMM and define

(3.6a, b) O’l(E) or(E), o’_(E) O’e (E),

where O’e (E) is a second-order explicit LMM (i.e., 3k 0 in the generating polynomial
(2.3b)) with the same generating polynomial p(r) as for the Ao-stable LMM. With these
definitions, (2.20) becomes

(3.7) p(E)u At r(E)f’ + At O’e(E)f.

Henceforth, in reference to a combined implicit-explicit method such as (3.7), we refer
to the LMM that defines p(E) and r(E) as the generating LMM. The linear stability
properties of (3.7) for second-order two-step methods are examined in Appendix A.

For didactic purposes in this section and practical reasons in the following section,
we rewrite the LMM (3.7) as

(3.8) p(E)u to At p(E)f’ Atilt(E)- top(E)ff’; + At O’e(E)f,

where

(3.9) to 3k/Cek.

The parameter to is defined so that the operator tr(E) too (E) on the right-hand side of
(3.8) is at least one degree lower than the operator o(E) on the left-hand side. This can
readily be seen by using the definitions (2.3) and writing out the highest degree term of
the operator

[3k )Ek_(3.10) cr(E)-top(E)= 3k_l--Olk_l -[-’’’.

Consequently, the right-hand side of (3.8) can be computed explicitly, that is, from
known data when advancing the numerical solution from n + k- 1 to n + k.

Finally, to apply the combined scheme (3.8) to the PDE (1.1), we split the linear
differential operator of (3.1), i.e.,

+C U(3.11) fl(u) aox2
By substituting (3.11) into (3.8), we obtain

(3.12)

02u
and [2(u) b

0x 0y

1-to At aox2+cy O(E)un

At aox+c [cr(E)-too(E)]u +AtbOxOy tre(E)u""

This formula is implicit for uxx and uyy and explicit for
Remark. The scheme (3.12) with the simplest evaluation of the right-hand side has

re(E) given by

(3.13) e (E) [(E)
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in which case the right-hand side of (3.12) is equal to

(3.14) At a+bx2 Ox Oy
+c [o’(E)-wp(E)]u".

Unfortunately, the method with O’e(E) defined by (3.13) is only first-order accurate.
For the stability analysis of (3.12), we consider the second-order, two-step

methods where p(E) and o,(E) are defined by (2.7a) and (2.9) and the explicit operator
O’e(E) is obtained from (2.9)-by setting 0 0,

(3.15) o(E) (: +)E (: + 1/2).
The details of the stability analysis are given in Appendix A. Scheme (3.12) is found to
be unconditionally stable for all values of a, b, c satisfying equalities (1.1c, d) if and only
if

(3.16a, b) sc _-< 0-1, sc _-> -5.

The values of the parameters (0, :) satisfying these inequalities are shown by the shaded
region of Fig. 2. Inequality (3.16a) is more restrictive than (2.16a) for the generating
second-order, two-step method to be Ao-stable (see Fig. 1). Methods that fall in the
region between the lines

(3.17) so=.20 -1 and sc=0-1

and above : =- are not unconditionally stable for all values of the coefficient b
satisfying inequality (1.1d). Note that, with the exception of the two-step trapezoidal
formula, none of the methods listed in Table 1 falls in the shaded region of Fig. 2.

/
/
/

:,o

/ "...
-1 - -112

I
FIG. 2. Unconditionally stable domain of the parameters (0, ) for the unfactored scheme (3.12) with o(E),

r(E), and O’e(E) defined by (2.7a), (2.9), and (3.15).
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Remark. It is of interest to note that the explicit operator (3.15) can also be
obtained from the implicit operator (2.9) applied to fn,

cr(E)f" Of"/2 +(-EO +)f"/-(-O +1/2)f",
by using linear extrapolation, that is,

f,/2= 2f,/1 _f, + O(At2),
to approximate f.+2. Although the use of linear extrapolation might sound rather
disreputable, the application of an explicit LMM does not.

In the following section we find the rather remarkable result that an approximate
factorization of the left-hand side of (3.12) into a product of one-dimensional operators
restores most of the parameter space (0, ) for unconditional stability lost by the explicit
treatment of the mixed derivative.

4. An ADI scheme: the (E) or A tormulation. In the procedure suggested in [20]
for designing ADI schemes, the implicit operator to be inverted is constructed so that
the unknown variable to be determined at each time step is p(E)u. In the absence of a
mixed derivative this choice ensures that approximate factorization into a product of
one-dimensional operators does not upset either the temporal accuracy (second-order)
or the unconditional stability of the scheme. In this section we construct an ADI scheme
in the p(E) formulation with the mixed derivative treated explicitly with second-order
accuracy and examine the stability of the resulting algorithm.

If the spatial derivatives appearing in (3.12) are replaced by appropriate difference
quotients, then one obtains in general an enormous linear system to solve for p(E)u.
This diculty can be overcome by an approximate factorization of the left-hand side of
(3.12) which reduces the problem to a product of one-dimensional spatial operators;
that is,

1- m Ata 1-m Atc p(E)u

(4.1)
2 2 2

Comparison of the left-hand sides of (4.1) and (3.12) shows that they differ by the

ross-produt term

02 02
(4.2) 2 At2 acp(E)u.
But by expanding p(E)u in a Taylor series about u" and using the consistency and
normalization conditions (2.5a, b), one obtains

(4.3)
a()u ate+ O(at*), a 1.

Consequently, the cross-product term (4.2)

02 02 02 022 2at aox2Ca(E)u at aOxc .U u" + O(at)
(4.4)

O(At3)
is a third-order term and the formal accuracy of the scheme (3.12) is not upset by the
approximate factorization (4.1).
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In practice, the second-order, two-step methods defined by (2.7a) and (2.9) are of
primary interest and in the remainder of this section we limit our attention to these
methods. The explicit operator O’e(E) is given by (3.15). In numerical algorithms for
partial differential equations it is conventional to use n + 1 as the most advanced time
level; hence, we multiply (4.1) by E-. The shifted difference operators for the
second-order, two-step method can be written as

(4.5a) Au" E-lp(E)u" =[(1 + sO)E- (1 + 2so)+ sCE-]u,
(4.5b) [(1 + sc)A- scV]u n,
(4.5c) (1 + )un/l -(1 + 2)u" +u"-1,
(4.6a) E-lo’(E)u" fOE + ( 20 +)-( O + 1/2)E-1]u ",

(4.6b) [1 + 0A + (:- 0 + 21-)V]u ",

(4.7a) E-lcre(E)u =[(:+23-)-(c+)E ]u,
(4.7b) [1 + (sc + 1/2)V]u ",

where the symbols A and V are classical forward and backward difference operators
defined by

(4.8) Au"=u"+-u ", Vu"=u"-u"-.

As a notational convenience, we have denoted the operator E-ap(E) by A. From (4.5)
and (4.6) there [ollows

E-X[o’(E)- oop(E)]u" [( o +) ( o + 1/2)E-]u"
[1 + (s o + 1/2)V]u",

(4.9a)

(4.9b)

where

0
(4.10) tO=l+s
The factored scheme (4.1) becomes

1-oAtax 1-oAtCy Au"
(4.11)

02=At(abO-z+c)[l+(’-oo+)V]u"+Atbc3x 0y [1 + (+)V] u""

The computational sequence to implement the factored scheme (4.11) as an ADI
method is not unique, but an obviom choice is

(4.12a) 1-ta Au*=RHS(4.11),

(4.12b) 1 t c Au Au*,

(4.12c) (1 +)u"+a Au" +(1 + 2)u" u"-a,
where Au* is a dummy temporal difference (RHS stands for right-hand side).
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Remark. If the first-order explicit method with O’e(E) defined by (3.13) were used
rather than a second-order method, the right-hand side of (4.1) would be the same as
(3.14). In this case, the right-hand side of (4.11) would be replaced by

(4.13) At a+ox box, oy+c 1+ -oo+- V u

where we have used (4.9). Although the resulting scheme is first-order accurate in time
for the mixed derivative, it is unconditionally stable for values of (0, :) in the shaded
region of Fig. 1. This result was established in [20, Appendix A] by constructing the
scheme so that the characteristic equation (which determines the stability of the
method) for the factored partial difference equation had the same form as the
characteristic equation (2.13) for the ordinary differential equation.

The scheme (4.11) is second-order accurate in the mixed derivative but the
characteristic equation no longer has the form (2.13). Consequently, the stability
analysis must be redone in a less elegant manner than in [20] and is carried out in
Appendix B. The stability analysis of Appendix B is for the general two-step ADI
scheme developed in the following section. The A formulation (4.11) is a special case of
the general two-step scheme and is found to be unconditionally stable for all values of
a, b, c satisfying inequalities (1. l c, d) if and only if

2(1 +)2 1
(4.14a, b) 0 => ->

3+4 2"

The parameter space (0, sc) satisfying these inequalities is shown by theshaded region of
Fig. 3. The inequality (4.14a) is more stringent than (2.16a), and methods that fall in the

/
/

/
/

/
/

/

2(1 + )2
3+4

0 (l + 1)(/ + 1/2)

.i::::.:::::.:.
i!iiii:: 0 (/ +I)(/ + 312)

-1/2

FIG. 3. Unconditionally stable domain of the parameters (0, ) for the factored A formulation (4.11).
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region between the curves

2(1 + :)2
(4.15) =20-1 and 0=

3+4
and above : =-1/2 are not unconditionally stable for all values of the coefficient b
satisfying inequality (1.1d). This includes such popular schemes as the trapezoidal
formula and Lees method (see, e.g., [2]). However, there remains a large class of
unconditionally stable methods including, e.g., the backward differentiation formula
(see Table 1).

5. A general two-step ADI scheme. In the ADI formulation described in the
previous section it is essential that the unknown variable be at least a first difference to
ensure that the approximate factorization does not degrade the second-order accuracy
of the scheme; for example, the unknown variable E-lp(E)u Au is an approxima-
tion to At(0u/Ot) (see (4.3)). The choice of unknown variable is not unique and in fact
the most general form of a first difference using data from the three levels n 1, n, n + 1
can be written as

n+lu -(l+)u +cu
(5.)

n-1

(1 a) At
Ou" At2 02u"
+(1 +a) t2 + O(At3)
at - o

where A and V are the forward and backward operators defined by (4.8) and a is an
arbitrary real constant. The undivided difference (5.1) is a second difference if a 1 and
a first difference otherwise. The most accurate first difference is obtained when a 1.

5.1. General formulation. A general formulation of two-step ADI schemes is
obtained if we choose (A-aV)u" as the unknown variable. We first rewrite the LMM
(3.7) in a convenient form for the construction of an ADI scheme with (A- aV)u as the
unknown variable. Multiplying (3.7) by E-1 and inserting the operators
E-Ir(E), and E-lre(E) defined by (4.5b), (4.6b), and (4.7b), one can rewrite the
resulting two-step method as

At [l+(_O+)V](f,+f)+o AtVf+ Vu(5.2) Au"-to At Af’--i: l+s
After subtracting aVu"-ato At Vf’ from both sides, we find

(5.3)

At
1+ :-0+ (f’+/)(A aV)u" to At(A aV)/’

1 + sc

+o At V’ + ao At Vf’ + 1 +’- Vu"

Using (3.11), one obtains

1 to At aox2+ cy2 (A aV)u

At((5.4) =1+ a+b

u + ato At +c Vu ++to At box oyV aox 2
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The spatially factored form of (5.4) is

(5.5) 1-to Ata 1-to Atc (A-cV)u" RHS(5.4),

which can be implemented as

(5.6a)

(5.6b)

(5.6c)

The stability analysis for the general factored scheme (5.5) is given in Appendix B.
The scheme is found to be unconditionally stable for all values of a, b, c satisfying
inequalities (1 c, d) if and only if

2(1 + ) 1o_-> _->
1 + a)(1 + 2) 2(5.7a, b, c)

2 +
1 +

The parameter space (0, :) satisfying these inequalities is indicated in Fig. 4 for several
values of c. For a given value of a, the stable range is to the right of the curve labeled
with that value of a and above the curve : -1/2. The extent of the (0, ) parameter
space for unconditional stability is a monotone increasing function of a in the range
[-1, 1] with the smallest region for c =-1 and the largest for a +1. Inequality (5.7a)
is more stringent than (2.16a) as is apparent in Fig. 4. Along the line : 0, inequality
(5.7a) becomes

2
(5.8) 0-> ( 0),

2+x/1 +c’
and the smallest allowed value for 0 occurs when a 1, in which case (5.8) becomes

1(5.9) 0 -> 0.586, (c 0).
1 + x/1-

Along the lower stability boundary =-, inequality (5.7a) becomes

(5.10) 0 _->1/2, (= -1/2),

which is independent of the parameter c. As a consequence of inequalities (5.9) and
(5.10), such popular generating LMMs as the trapezoidal formula (0 =1/2, : 0) and
Lees method (0 =1/2, =-) are not unconditionally stable for all values of the
coefficient b satisfying inequality (1. ld).

If the parameter a is chosen to be /(1 +:), scheme (5.5) reduces to the A
formulation of 4. This ADI method has the peculiar property that the unknown
variable depends on the parameter , that is, on the particular LMM chosen. The
parameter space (0, :) for which the A formulation is unconditionally stable is shown by
the shaded region of Fig. 2 and the extent of the region is nearly as large as that for (5.5)
with cr 1.
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o
2 3 4

, -1/2

FZG. 4. Unconditionally stable domain ofthe parameters (0, ) for the factored generalformulation (5.5) ]:or
several values of a.

5.2. Special cases of general formulation. Various constant values of c in the range
[-1, 1] produce useful and interesting algorithms and we consider several in greater
detail. The schemes are named according to the classical difference operator represen-
ted by (5.1) for the chosen values of a.

5.2a. The A formulation (e = 0). If a is chosen to be zero, the general scheme (5.5)
reduces to

1-to At a 1- a At c Au"

+b----+c 1+ -0+ V u"(5.11)
1+: aox2 ax ay

a2
+to At b Vu" +ax ay 1 +

which we call the A formulation [1], [19] since Au" is the unknown variable. The
parameter space for unconditional stability is given by the inequalities (5.7a, b) with
a 0 and is shown graphically in Fig. 4.

5.2b. The 8z formulation (x = 1). In the general ADI formulation (5.5) the
unknown variable (A-cV)u" is an approximation to At(Ou/Ot) if a # 1 (see (5.1)). A
less natural choice for the unknown variable for a first-order (temporal) differential
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equation is the second difference obtained when c 1. In this case, (5.1) becomes

192Un
(5.12) (A-V)u" 3ZU At2"7+ O(At4),

where the classical second difference operator 3 2 is defined by

(5.13) tEun un+!-- 2Un + U n-1.
The possibility of using 32u" as the unknown variable does not arise for linear one-step
methods (e.g., the trapezoidal formula (2.11)) since these methods only involve two
time levels.

If c is set equal to one in the general two-step scheme (5.5), we obtain

1-to Atax2 1-to Atcy2 u

(5.14)
At (02 0:z 002)[ () ]+b +c 1+ + V u" 1---Vu".
1+ aox2 Ox Oy -1+

A possible advantage of the 8 2 formulation is that the cross-term error introduced
by the approximate factorization is one order higher than in the general (A-aV)
formulation with a 1. By comparing the left-hand sides of (5.4) and (5.5), we find they
differ by

02 Oz2 t2 )Uto A a ox C-d-v A- x

which, for a 1, becomes

192 192 192 192 192un2 82 toE (-" 2 +O(At5)(5.15) to AtE a19xEC-d--y2 u At4 a19x2
O(At4),

where we have used (5.12). The cross-term error for the A E-lp(E) formulation is
given by (4.4). The parameter space for which the 82 formulation is unconditionally
stable is given by inequalities (5.7a, b) with a 1 and is shown graphically in Fig. 4.

A distinct disadvantage of the 8 2 formulation occurs when it is applied to
convective (hyperbolic) model equations as briefly discussed in 8.

5.2c. The 2/z6 formulation (t =-1). As a final special case of the generalized
formulation we choose a =-1, that is,

(5.16) A-aV A+V 2/x&

2tz3u" u

where 2/6 is the classical central difference operator
n+l n-1
U(5.17)

The scheme (5.5) becomes

1 to At a0- 1 to At c0-- 2/zu"

(5.18) =i+ a+b19x219x19y+C 1+ -20+ V u"

192 1 + 2VuO+2to At b Vu" +,
19x 19y 1 + se
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The parameter space for unconditional stability of this formulation is given by inequal-
ities (5.7a, b) with a =-1,

(5.19) 0_->1+so, :=> -1/2,
which is identical to the parameter space for the unfactored scheme (3.12) (see inequality
(3.16) and Fig. 2).

5.3. Algorithm selection. From the class of unconditionally stable methods one
can choose a scheme with properties that are desirable with regard to computer storage,
computational simplicity, and temporal behavior when applied to stiff problems and/or
problems with nonsmooth data. The choice generally requires a compromise.

Consider, for example, the A formulation (4.11) of 4. The computation of the
right-hand side of (4.11) is obviously simplified if we set

(5.0) -+}=0.

Since /(1 + ), this equation can be rewritten as

(5.21) O=(+ 1)( +);
it is plotted in Fig. 3. Another variant is obtained by rewriting the right-hand side of
(4.11) as

02 0 [ ](aox-+c) (__&+)__(__&+)--X URHS(4.11) tx
(5.)

+tbOx oy 1+ + V u,
where we have used (4.9a). The calculation of (5.22) is simplified if we let

(5.3 -+=0,
which can be rewritten as

(5.4 0 ( +(+;
it is also plotted in Fig. 3. If in addition, we choose -, then (5.22) becomes simply

( 02 0) 02U
+c u "-a +tb.(5.25) RHS(4.11) t aoxz Ox Oy

In this special case, each spatial derivative on the right-hand side of (4.11) requires
evaluation at only a single time level. The time differencing (0 , ) corresponds
to the two-step trapezoidal formula (see Table 1). A0- and A-stable methods along the
bottom boundary - of Fig. 1 are "symmetric" schemes. These methods have the
unfortunate property that the modulus of at least one root of the characteristic equation
(2.13) approaches 1 as ht. Consequently, these methods can produce slowly
decaying numerical oscillations when applied to stiff problems. This observation
illustrates that computational simplicity should not provide the sole basis for selecting a
time-differencing scheme.

The computation of the right-hand side of the formulation (5.11) is obviously
simplified if we set

(5.26) -0+=0.
This special case of the formulation was given by the authors in [1; see (42)]. The
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formulation is particularly attractive for its simplicity in programming logic and minimal
computing storage requirements. Finally, the 2u formulation (5.14) has the compu-
tational advantage that all spatial derivatives on the right-hand side operate on the same
function, that is, [1 +(:+1/2)V]u". For the special case :=-1/2, the function is con-
veniently u ".

Although considerations of computer storage and computational simplicity may
not be particularly important for the simple model equation (1.1), they are of primary
concern when one deals with more complicated parabolic equations such as the
compressible Navier-Stokes equations (see, e.g., 1 ], 121 ]).

5.4. General formulation with no mixed derivative. It is important to note that if
b-= 0, that is, there is no mixed derivative, then inequalities (5.7) are replaced by

(5.27) _<- 20 1, : -> 21-, 1 -< c _-< 1,

and the general two-step ADI formula (5.5) is unconditionally stable for the same
values of (0, sc) as for the original second-order, two-step method (see inequalities
(2.16) and Fig. 1). In the absence of mixed derivatives, the natural extension of (5.5) to
three spatial dimensions is also unconditionally stable for values of (a, 0, ) satisfying
inequalities (5.27).

It is appropriate to mention the relation between the Douglas-Gunn method
[9, {} 3] for multilevel difference schemes and the general two-step ADI scheme (5.6) in
the absence of a mixed derivative, that is, b 0. The difference (5.1) corresponds to the
difference

n+l(5.28a) u+l-u,
in the Douglas-Gunn development where

(5.28b) u+1 b0u"+blu"- <bo + bl 1.

Hence, on comparing (5.28) and (5.1), one finds that

(5.29) 40 1 + a, b -a.

Douglas and Gunn give a formal procedure for devising an ADI scheme from a fully
implicit scheme supplied by the user. For example, consider the second-order, two-step
method ((3.2) with b 0), where p(E) and o-(E) are defined by (2.7a) and (2.9) and
(0, :) satisfy inequalities (2.16). If we apply the formulas (3.7) of [9], we obtain an ADI
algorithm that can be shown to be equivalent to (5.6). The resulting scheme is
unconditionally stable for -1 <= a =< 1 since the LMM is A0-stable. Recall that the
discussion of this paragraph is only for the case of no mixed derivative.

6. Time-dependent coefficients. If the coefficients a, b, c of the PDE (1.1) are
functions of time, a difficulty arises when we insert (3.11) into (3.8) since

+c(t")o-Tj -# a(tn)x2+C(t")-y2 p(E)u"(6 1) p(E) a(t")
Ox 2

This is not an equality because the time dependence of the coefficients cannot be
neglected when the temporal-difference operator p (E) is applied. This problem can be
avoided if we begin with the one-leg method (2.21) instead of the conventional LMM.

With tr and tr2 defined by (3.6), the one-leg method (2.21) is

(6.2) p (E)t" Atf (cr(E)a", cr(E)t") + Atf2(Cre (E) ft", Cre (E)t").
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For the PDE (1.1) we identify fl and fa as (3.11) and obtain

(6.3) p(E)fi" At a()
Ox2

where and e are defined by

(6.4a, b) r(E)tn, "ie ge(E)t.
If (6.3) is modified to the prefactored form by subtracting

+c()o At a ()
Oxz

from each side, we obtain

+c(i) p(E)t"1 ,oat a()Ox
(6.5)

q02 02 02
Ox 2

The prefactored form (6.5) is identical to (3.12) where a, c, and b are evaluated at and
e defined by (6.4). Consequently, the factored scheme (4.1) is valid for time-dependent
coefficients provided a, c, b are evaluated at the appropriate times and e.

For second-order, two-step methods, the shifted-difference operators are defined
by (4.6) and (4.7). For this case

(6.6a)

(6.6b)

E-’ E-lo-(E)t" + ( + 1/2) At,
E-l"[e =E-1

O"e(E) + (: + 1/2) At,

and hence the time-dependent coefficients a, b, c are all evaluated at the same time
which we denote by

(6.7) t* t" + (s + 1/2) At.

Therefore, the ADI scheme (4.12) is valid for time-dependent coefficients evaluated at
t*. Likewise, the same statement applies to the general two-step ADI scheme (5.6).

7. Numerical examples. In this section the ADI methods of the previous sections
are used to solve the parabolic equation (1.1) for a test problem with variable
coefficients. The purpose of these numerical experiments is not to find the optimum
scheme but to demonstrate by numerical example that each of the formulationsA, A,
and :achieves the purported second-order accuracy. In addition, we demonstrate
the detrimental effect on the accuracy if the mixed derivative is treated with a
first-order-accurate method or the variable coefficients are not evaluated at the proper
time level.

For the example problem, the coefficients are

(7.1a)

(7.1b)

(7.1c)

a (x, y, t) (1/2x 2 + y2)(1 + t),
b(x, y, t)= -(x + y2)(1 + t2),
c(x, y, t)= (x + 1/2y)(1 + t-).
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An exact solution is

(7.2) u (x, y, t) (x2y + xy2) exp [ ( l +) t]
Numerical solutions were computed on the unit square (0 =< x, y _-< 1) with the initial and
boundary values computed from (7.2). For example, the initial condition is

(7.3) u(x, y, 0) xZy + xy 2, 0 -< x, y <_- 1.

This model problem is a variant of an example given by McKee and Mitchell [15]
modified so that the coefficients a, b, c are time-dependent.

In the numerical computations of this section, the spatial derivatives were approxi-
mated by the following central difference approximations

(7.4)
0O
tgX 2 Lk AX 2 -[" O(AX2)’

(7.5) + O(Ay),
Oy 2

j.k Ay 2’

OQ
(7.6)

Ox Oy j,k AX Ay

1
4’Ax Ay ((/’+l,k+l {/+l,k-1 (/-1,k+l -[- (/-1,k-1),

where x =/" Ax and y k Ay. Here B and/z are classical finite-difference operators
defined by

6Oi O+l/2 Oi-1/2, 2txxOi Oi+l/2 4- O/.-1/2,

and hence

2(/xa),,Q/= Qi+l- Q/-I, etc.

Consider, for example, the A formulation (4.12). With the spatial derivatives
replaced by the central-difference quotients (7.4)-(7.6), the x- and y-operators on the
left-hand side of (4.12a, b) each requires the solution of a tridiagonal system. There is a
well-known and highly efficient solution algorithm for tridiagonal systems (see, e.g.,
[11, p. 55]). The solution of the x-operator (4.12a) (along each y-constant line) requires
the dummy temporal difference Au* along the left and right boundaries. In problems
considered in this section, we assume that u(t) is given on the boundaries, and
consequently Au* can be determined by an explicit calculation using (4.12b) applied
along both the left- and right-hand boundaries. This is the initial calculation made when
advancing the solution from n to n + 1. Application of the general two-step ADI
scheme (5.6) requires an analogous computation of a dummy temporal difference along
the left and right boundaries.

Since the algorithms considered in this paper are, in general, two-step (temporal)
schemes, a solution at At is needed together with the initial condition to start the
computation. For the numerical examples computed herein, the exact solution (7.2) at

At was used to provide the additional level of data. In practice, one can use (4.12) as
a one-step method on the first time step. This is accomplished by replacing the
right-hand side of (4.11) by (4.13) and choosing 0 1/2, sc 0.
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The numerical differentiation formulas (7.4) and (7.5) are exact (i.e., the truncation
error is zero) for a polynomial of degree not exceeding three, and (7.6) is exact for a
polynomial of degree not exceeding two. Since the exact solution (7.2) is a quadratic
polynomial of degree two in each spatial variable, the numerical solutign of an
unfactored algorithm would have the peculiar property that there would be no spatial
discretization error. Consequently, the error in a numerical solution for the example
problem (7.1) consists of the temporal discretization error and the cross-product error
term from the approximate factorization (see, e.g., (4.4)), and, of course, roundoff
error.

For each numerical experiment, we compute the L2 norm of the error which is
defined as follows. At a given time, n= nat, the error ej,k at each grid point is
defined by

(7.7) e..k uk- u(/’ Ax, k Ay, tn),

where u..k is the numerical solution and u(] Ax, k Ay, t") is the analytical solution. The
Euclidean or Lz norm of the error is defined by

[(

__
kl 2 )/jgl 1/2

(7.8) L2 error ei.k

where J and K are the total number of grid points in the x- and y-directions.
The second-order backward differentiation method (0 1, sc 1/2) (see Table 1) was

chosen as the generatingLMM for the first computational experiment. TheL errors for
the A, A, and 62 formulations (algorithms (4.12), (5.11) and (5.14)) are shown in Table
2. Each computation was carried out to a given time (t 1.0) with a fixed ratio of
At/Ax 1.0. The computations were repeated with successively smaller values of At so
that the Lz rate could be computed. (The L2 rate is the slope of a log-log graph of the L2
error vs. At. For a second-order method without roundoff error, the L2 rate should
approach two as At-* 0.) The results show the second-order accuracy of the methods.
Since the same time-differencing method was used for each computation, the
differences in the L2 error (for a given At) result from the cross-product error of the
approximate factorization.

At Ax
Ay

0.2

0.1

0.05

0.025

TABLF. 2
L2 error of the A, A, and ,52 formulations at 1.0.

Number A formulation
of time

steps At/Ax L L rate

5 5 0.785x 10-2

10 10 0.193 x 10-2

20 20 0.47910-3

40 40 0.119x 10-3

2.02

2.01

2.01

A formulation

L

0.107 x 10-1

0.266 x 10-2

0.649 x 10-3

0.160 x 10-3

L rate

2.01

2.03

2.03

formulation

L

0.134 x 10

0.137x 10-3

0.372 x 10-4

L rate

1.57

1.72

1.89

The next numerical experiment demonstrates the detrimental effect on the
accuracy if the mixed derivative is treated with first-order accuracy. The errors listed in
Table 3 were computed using the A formulation with the backward differentiation
method as the generating LMM. For reference, the results listed under column (1) are
repeated from Table 2. The L errors and rates tabulated under column (2) were
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obtained using (4.12) but with the right-hand side of (4.11) replaced by (4.13), that is, a
first-order temporal treatment for the mixed derivative. The degradation in accuracy is
obvious.

Column (3) of Table 3 shows the deterioration in accuracy when the time-
dependent coefficients a, b, c are not evaluated at the proper time level. The coefficients
should be evaluated at t* defined by (6.7) and hence for the backward differentiation
method (:=1/2) t*= +At. In obtaining the L2 errors listed in column (3), the
coefficients were evaluated at t rather than t* and the loss of accuracy is apparent.

TABLE 3
Numerical experiments illustrating (1) second-order A formulation, (2) degradation in accuracy when

mixed derivative is computed with a first-order method, (3) deterioration in accuracy when time-dependent
coefficients are not evaluated at proper time level.

At AX
=Ay

0.2

0.1

0.05

0.025

Number
of time
steps

5 5

10 10

20 20

40 40

()

L

0.758x 10-2

0.193x 10-2

0.479x 10-3

0.119x 10-3

L rate

2.02

2.01

2.01

(2)

L

0.58510-2

0.38910-2

0.21610-2

0.113x 10-2

L rate

0.59

0.85

0.94

(3)

L L rate

0.907 10-2

0.27510-2

0.88810-3

0.320 X 10-3

1.72

1.63

1.47

It is important to note for : 0 that the operator A defined by (4.5) in the A
formulation becomes

Au" =Au".
Consequently, the A and A formulations are identical if 0. (Recall that the A
algorithm is given by (5.6) with a 0.) An advantage of the A formulation is that u "-1 is
not needed to compute U

n+l in the final step (5.6c); hence, the A form generally requires
the least amount of storage. On the other hand, the A formulation for : 0 has a
significantly reduced parameter space (0, ) for unconditional stability when applied to
hyperbolic problems (see 8 and [20, 9]). Consequently, because the A and A
formulations are identical for : 0, this subclass of schemes has the simplicity of the A
form and the robustness of the A form. Table 4 compares the L2 error and rate for
several schemes with :- 0. For a fixed value of in the region of Ao-stability (see
Fig. 1), the error constant is a monotone increasing function of 0. This is verified by
comparing the L2 errors for a given value of At in Table 4.

TABLE 4
L2 error of the A formulation for 0 and several values of 0 at 1.0.

At= Ax
=Ay

0.2

0.1

0.05

0.025

Number
of time
steps

10

20

40

=0, 0=-

At/Ax L L rate

5 0.705 10-2

10 0.169X 10-2

20 0.415x 10-3

40 0.102 10-3

2.06

2.03

2.02

=0,0=

L L rate

0.87110-2

0.208 10-2

0.51110-3

0.126x 10-3

2.07

2.03

2.02

=0, 0=-

L L rate

0.262x 10-1

0.72610-2

0.181 10-2

0.448 x 10-3

1.85

2.00

2.01
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According to the stability analysis of Appendix B, methods that fall in the region
between the curves (4.15) are not unconditionally stable in the A formulation (4.11) for
all values of the coefficient b satisfying inequality (1.1 d). The last numerical experiment
verifies this result for the LMM methods listed in Table 1. The parameters used in the
computation are listed in the caption of Table 5. The loss of unconditional stability for
the trapezoidal formula and Lees method is apparent from the large error for these two
methods listed in Table 5.

TABLE 5
L2 error of A ,formulation (4.11) at 1.0. Parameters are

Ax Ay 0.025, At 0.005, number of time steps 200,
aj,k Imax At/AX2- 23.

Method

One-step trapezoidal
Backward differentiation
Lees type
Adams type
Two-step trapezoidal

L

0.246x 102
0.479x 10-5

0.405 x 1019
0.505x 10-5

0.772x 10-5

8. Concluding remarks. In this paper we combine the class of all Ao-stable
second-order linear two-step methods and the method of approximate factorization to
construct unconditionally stable ADI methods for parabolic equations (in two space
dimensions) with a mixed derivative. For computational simplicity the mixed derivative
is treated explicitly.

In the application of the approximate factorization method we consider several
different solution variables. In 4 we follow [20] and select p(E)u as the unknown
variable. This choice provides a natural framework for constructing unconditionally
stable ADI methods for parabolic PDEs by combining Ao-stable LMMs with approxi-
mate factorization. The choice of the unknown variable is not unique and for
completeness we derive a general two-step ADI scheme with (A-cV)u as the
unknown variable in 5. The general formulation contains a parameter a in addition to
the parameters (O, s) of the second-order, two-step method. The parameter space
(a, O, ) for unconditional stability is determined in Appendix B. Several general
observations can be made regarding the stability of these schemes" (1) For a given value
of a in the range [-1, 1], the parameter space (0, sc) for unconditional stability is
reduced from that of the unfactored implicit algorithm (3.2) (compare Fig. 1 with Figs. 3
and 4), but is increased from that of the unfactored implicit-explicit (i.e., explicit
treatment of mixed derivative) algorithm (3.12) (compare Fig. 2 with Figs. 3 and 4). (2)
For any allowed value of a, the reduced parameter space excludes the familiar
(one-step) trapezoidal formula and the Lees type scheme (see Table 1). (3) The 82u
formulation retains the largest parameter space for unconditional stability. (4) The p (E)
or A formulation has the peculiar property that a :/(1 + :), that is, a depends on the
particular LMM chosen. The extent of the parameter space for unconditional stability
(Fig. 3) is nearly as large as for the 2 formulation (Fig. 4 with a 1). (5) Although
not considered in this paper, it can be shown that if the general (.A-aV) formulation is
applied to the model convection equation

0u 0u 0u
(8.1) -Cl 7-- c2

Ot ox Oy
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then only the o(E) formulation (i.e., a /(1 + )) retains the same parameter space
(shaded region of Fig. 1) for unconditional stability as the generating A-stable LMM. In
fact, the 6 2 formulation has no parameter values (0, sc) for which the scheme is
unconditionally stable.

The emphasis of this paper is on the construction of unconditionally stable
second-order accurate ADI methods for the model parabolic equation (1.1). By
following the approach outlined herein (i.e., the use of A0-stable LMMs in conjunction
with the method of approximate factorization) one can easily construct algorithms for
multidimensional nonlinear parabolic systems. For some auspicious reason, the
parameter space (0, sc) for which, the class of second-order two-step methods is
Ao-stable happens to coincide with the parameter space for which this class of methods
is A-stable. Consequently, one can use the class of time-differencing schemes of this
paper to design second-order ADI algorithms for mixed hyperbolic-parabolic systems
of nonlinear equations. A noniterative algorithm in the A-form for nonlinear systems
was considered in [1] and a general development for the p(E) formulation is in a
companion paper [21].

Appendix A. Stability analysis of combined LMMs. In this appendix we examine
the stability of the combined LMM (3.7) applied to the model split ODE:

(A. la,b) dU-AlU+A2u AI<0,
dt

where h and A2 are real constants. In addition, we investigate the stability of the

unfacwred scheme (3.12) for the PDE (1.1). The analysis is for the class of all
second-order, two-step methods.

Consider the combined LMM (3.7) where p(E), o-(E), and re(E) are defined by
(2.7a), (2.9), and (3.15). If we apply this scheme to the model equation (A.1) with

fl =/ U and f: h 2u, we obtain a difference equation whose characteristic equation is

(A.2)

where

(A.3a)

(A.3b)

a2"2
-b a 1( q- ao 0,

a:=(1 -b )-- 0/1AI

a -(1 + 2s#) (s# 20 + -)/ At (: +)A2 At,

(A.3c) ao sc + (:- 0 + 1/2)hi At + (: +) z At.

Equation (A.2) is a yon Neumann polynomial [16], that is, 1’1 <- 1, if and only if

(A.4a) ao <= az,

and

(A.4b) --(a2 + ao) _<- al ----< a2 + ao,

where without loss of generality az is assumed to be positive. The inequalities (A.lb)
and (A.4) lead to the following conditions for the stability of the combined two-step
scheme:

(A.5a,b) : _-> 1/2, 0 <- (1 + 2:) + (1 20 + )/1 At + (1 + s)h 2 At.

In particular, the conditions for Ao-stability are

(A.6a,b) :_-> -1/2, 2>_-
(1-20 +so)A1.

1+’
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Note that for the special case ,a 0, (A.6b) becomes sc -< 20-1 and conditions (A.6)
reduce to (2.16).

For the stability analysis of the unfactored scheme (3.12) for the PDE (1.1) we need
only consider the stability of the linear two-step scheme (3.7) applied to the ODE (3.4)
for the Fourier coefficient. In this appendix we consider only the spatially continuous
solution; however, the results are applicable to the spatially discrete case (see last
paragraph of Appendix B). The conditions on the parameters (0, :) for the uncondi-
tional stability of (3.12) can be derived from the Ao-stability requirements (A.6) and the
relations

(A.7a,b) AI= -(at + o),
obtained by comparing (A.1) and (3.4b). There follows

(A.8a,b)
>----1/2, -btcltC2 >- (1-20 +)(ax + cx).

(1+)

The inequalities (A.8a,b) together with (1.1c,d) imply

(A.9a,b) => ,
sc =< 0 1.

Inequality (A.9b) is more restrictive than the inequality (2.16a) for the generating
two-step method (2.6) to be Ao-stable. Consequently, we have the result that the
second-order explicit treatment of the mixed derivative reduces the parameter space
(0, ) for which the unfactored scheme (3.12) is unconditionally stable (see Fig. 2).

Appendix B. Stability analysis for two-step ADI schemes. In this appendix we
perform a linear stability analysis for the factored scheme (5.5). We assume that u is
spatially continuous and seek a solution of the form

i((lX +:2y)(B.1) u"=v"e

where v" is the Fourier coefficient and 1K2, are the Fourier variables. Prior to an actual
numerical computation, the spatial derivatives are replaced by appropriate difference
quotients; however, as indicated at the end of this appendix, the stability proof for the
spatially discrete case requires only a minor modification of the following stability
proof.

By substituting (B.1) into (5.5), we find that the Fourier coefficient satisfies

(I+A)(I+C)(A-aV)v"=---;(A+B+C) 1+ :-0+ V v"
(B.2)

-BVv"-a(A + C)Vv" + i +.-ce Vv,
where we have defined

(B.3) A to At axe, B to At bxxa, C to At cu
and to 0/(1 + ). The amplification factor is defined by

(B.4) v"+ (v ",

and consequently it follows from (B.2) that " satisfies the quadratic equation

(B.5) a2(2+al(+ao=O,
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where

(B.6a) a:z (l + A)(l + C),

a=-(+)(+A)(+C)+-d ’-0+ (A+B+C)

(.bl
+B+c(A+C)-

l+sC
-c

ao=(+l(+cl- -0+
(.cl

-B-(A + C) +
1 +-In the one-dimensional case (b c 0 in (1.1) and B C 0 in (B.5)), the roots of

the quadratic (B.5) have modulus bounded by unity for those values of (0, ) shown in
the shaded region of Fig. 1, that is,

(B.7a,b) N20-1, N-5.
This one-dimensional result follows from the analysis [20]. Note that only enters as a
parameter in the two-dimensional acmred algorithm (5.5). (Recall that (5.2) and (5.3)
are actually identical.) One can easily verify that the coecients (B.6) do not depend on

if B C 0. We must determine if there are additional restrictions on the parameters
(0, ) for the unconditional stability of the factored scheme (5.5) for arbitrary values of
a, b, c subject only to the parabolicity conditions

(B.8a,b) a > 0, b < 4ac

of the partial differential equation (1.1). Since the one-dimensional problem (b c 0)
is a special case of the two-dimensional problem, we need not consider values of (0, )
outside the domain (B.7). Hence > 0, A and C as defined by (B.3) are positive, and

(B.9) A+B+C= t (a +b+c)>0,
since the positive definiteness of this quadratic form was the condition which led
originally to (B.8).

The coecients (B.6) of the quadratic (B.5) are real and consequently the roots (
satisfy I N 1 if and only if the inequalities (A.4) of Appendix A are satisfied. If we insert
ao and a as given by (B.6) into (A.4a), there follows

=+.+(1-c+ + (+B+C),

which is satisfied for all allowable A, B, C if and only if

(B.) N 1.

(Recall that the parameters 0 and are required to satisly inequalities (B.7).) Likewise
the left inequality of (A.4b) is satisfied. If the coecients (B.6) are inserted into the right
inequality of (A.4b) one obtains

(B.12) 0N(I+)AC 1B + + 2- (A +C)
1+

The determination of necessary and sucient conditions for this inequality is simplified
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if it is rewritten as

(B.13) 0-<_(l+a)ac(kk2)2-1bkk2+ + 2- (ak +ck)

where we have used the definitions (B.3) and defined:

(B.14a,b) kl /o At K1, k2 w t

It can be shown that necessary and sufficient conditions for the polynomial P in kl, k2
defined by

(B.15) P el(klk:)z + ezklk2 + e3 + e4k + esk
to be positive semidefinite (i.e., P N 0 for all real kl, k:) are

(B.16a) el, e3, e4, e5 N0,

(B. 16b) [e[ 2+25.
Comparison of (B. 15) and (B. 13) leads to the conditions

1+2(B. 17a,b) (1 +a)ac 0, 0,
1+

a N0, 2- c N0,

(B.17e) N2 (l+)acl+ ac.

Inequalities (B.17a, b, c, d) are satisfied by virtue of inequalities (B.7), (B.8a), and
(B.11) plus the constraint"

(B.18) -1N.

Inequality (B.17e) can be rewritten as

(B.19) ’b 2[(1 + a)(1+2) + (2-)]1+
which is satisfied for all allowable a, b, c (see inequalities (B.8)) if and only if

(B.20) ---1 (1 +")(1 +2)+ (2 )w 1+
or

(B.21) 0>_-
2(1 + )
’(1 + a)(1 + 2sc)2+

1+
Hence the final inequalities which must be satisfied are (B.7b), (B.11), (B.18), and
(B.21).

In the above stability analysis we assumed that the spatial derivatives were
continuous. Since in practice the spatial derivatives are replaced by discrete difference
quotients, it remains to consider the spatially discrete case. ItS, for example, the spatial
derivatives in (5.5) are replaced by the second-order difference quotients (7.4)-(7.6),
then the stability analysis proceeds as above with the exception that the exponential in
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(B.1) is replaced by
i(r, ljAX+<2kAy)(B.22) U,k V e

where x j Ax, y k Ay. If we make the following correspondence

2 sin (01/2) 2 sin (02/2)
(B.23a,b) :1 /2 <’"

Ax Ay

01 02(B.24) B <- B cos -- cos -,
where

191 /(’1 AX, 192

between the parameters for the discrete and continuous case, then the amplification
factor for the discrete case satisfies the same quadratic (B.5) with coefficients (B.6).
Since the stability region defined by inequalities (B.7b), (B.11), (B.18), and (B.21) is
valid for arbitrary values of K1 and K2 and

(B.25) 01 02
cos -- cos -- -< IB l,

we obtain the same stability range for the discrete case. If one uses a noncentered
approximation for the mixed derivative such as

02Q l--]---[Vx A +a V ]O, + O(ax, Aye),
Ox Oy j,k 2 Ax Ay

1
(B.26) (Q+l,k 2Qi,k + Qi-, Qi+,-

2Ax Ay

where

’O/’,k*l -]- Qj,k-1- Qj-l,k.l) " 0(mX2, Ay2),

axQ] Qj+I Q.i, VxQ.i Qi Qi-1, etc.,

the only modification necessary in the stability analysis is replacement of (B.24) by

(B.27) B B cos
2
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NUMERICAL SOLUTIONS FOR MAXIMUM SUSTAINABLE CONSUMPTION
GROWTH WITH A MULTI-GRADE EXHAUSTIBLE RESOURCE*

U. ASCHERt AND F. Y. M. WAN*

Abstract. An efficient method is developed for the accurate numerical solution of the nonlinear boundary
value problem (BVP) governing the optimal economic growth with a finite multi-grade deposit of nonrenew-
able and nonaugmentable essential resource under R. M. Solow’s maximum sustainable per head consump-
tion level criterion. Unusual computational features of the BVP include: (1) the semi-infinite (time) domain of
the problem is divided into a number of subintervals of unknown (and unequal) lengths with a different set of
differential equations for each subinterval and with the subinterval lengths to be determined in the solution
process; (2) some solution components are known to be unbounded at infinity while others decay very slowly,
and (3) in a certain range of parameter values, a previously used solution method is known to be sensitive to
boundary data. The new method is used to generate new accurate numerical solutions for single-grade
resource problems with a high unit extraction cost and more accurate results for two-grade deposit problems
previously investigated. As well, it enables us to investigate for the first time problems with more than two
grades of deposits. The implications of these new results are analyzed.

Key words, exhaustible resource, boundary value problem, semi-infinite domain, switch joints, collo-
cation

1. Introduction. One of the principal societal concerns of the nineteen seventies
has been the proper use of the Earth’s natural resources. This concern is reflected in the
considerable amount of research activities in natural resource economics1. In the area
of exhaustible resources, questions on the proper management and exploitation of finite
nonrenewable deposits, such as fossil fuel and minerals, are usually formulated quan-
titatively as mathematical problems in optimal control. An appropriate formulation of
the relevant optimal control problem is not always straightforward, and an exact
solution of the problem in terms of elementary or special functions is not always
possible. When a numerical solution of the optimal control problem is necessary, the
computational procedure required is not always routine.

In this article, we consider a problem of current interest in exhaustible resource
economics, and develop a new efficient method for a numerical solution of the
associated optimal control problem. The economic problem is a slightly more general
version of R. M. Solow’s optimal growth under the maximum sustainable consumption
rate criterion with a single-grade [1], [3] and a two-grade [2], [3] nonrenewable a.nd
nonaugmentable resource deposit. We consider here the same optimal growth problem,
but now for a multi-grade resource deposit. The relevant boundary value problem
(BVP) for the determination of the optimal growth program for this problem is
substantially more complex than the corresponding BVP investigated in [1], [2], [3].
Correspondingly, the computational difficulties associated with a numerical solution for
our BVP are more extensive than those experienced in [2] and [3] and are summarized
as follows:
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(1) The domain of the solution is semi-infinite when the economic planning is for
the entire future; the solution for some of the unknown quantities is known to
be unbounded at infinity while other solution components decay slowly.

(2) The solution domain I-0, c) is divided up into a number of consecutive
subintervals, [0, T1), IT1, T2),’’’, ITj, ), with a different set of differential
equations for each of the subintervals; the location of the switch points
Ta, T2," ", Tj is not known and is to be determined as a part of the solution
process.

(3) In a certain range of parameter values, a numerical solution of the BVP in its
natural (reduced) form is very sensitive to boundary data [3].

Many of these features are direct consequences of economic considerations and their
meaning will be clear once we describe the economic model which gives rise to the
optimal control problem.

As pointed out in [3], an accurate numerical method of solution that is practical
beyond the two-grade deposit case is needed for the above nonconventional nonlinear
BVP. In this article, we develop such a numerical method which turns out to be also
more efficient than those used in [2] and [3] when applied to problems with a
single-grade or a two-grade deposit. Our approach is essentially to eliminate some
of the computational difficulties by various reductions, transformations and
simplifications of the BVP for the optimal program. The reduced problem is in a form
suitable for the application of a BVP solver COLSYS [4], [5]. A brief description of this
general purpose code is given in the Appendix of this paper.

To report the method developed and its applications to specific problems, we begin
with a brief summary of the relevant optimal economic growth model in 2; full details
and justifications can be found in [1], [2!, [3]. Here, we proceed to formulate the BVP
for the determination of the optimal growth program for the general multi-grade
deposit case. The two principal results of this section are: (1) the reduction of the
complicated BVP to a sequence of simple BVP’s of the same type over consecutive time
intervals, each involving only one first order ODE, and (2) the demonstration of the
coincidence of the optimal growth program and the program for maximum capital stock
accumulation for the particular consumption rate of the optimal growth program. The
second result generalizes a corresponding result in [3] and is obtained by a different,
more general means.

The special case of a single-grade resource problem previously treated in [1], [3] is
considered in 3 in the framework of the reduced BVP of 2. We use it as a vehicle to
describe the way we handle the semi-infinite domain aspect of the problem (including
the unboundedness and slow decay of the solution components). The same technique is
also used later for the general multi-grade problem. With the efficient method of
solution developed in 3, we solve several more difficult single-grade resource prob-
lems with high extraction costs to show how close the actual solution for the consump-
tion level is to its upper bound in some cases. These results explain, for the first time,
why a larger resource deposit may not notably alter the consumption level under some
circumstances.

The reduced BVP’s of 2 for the optimal growth program are coupled through the
unknown constant consumption rate and must be solved simultaneously, each for an
unknown solution domain. In 4, we transform this sequence of BVP’s over consecu-
tive (unknown) time intervals into a single BVP over the interval (0, 1) for a system of
2(J+ 1) first order ODE’s. The resulting problem is in a form suitable for the
application of COLSYS. More accurate solutions of the two-grade resource problems
analyzed in [2], I-3] are obtained by the new method of solution to demonstrate its
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efficiency. The method also enables us to study, for the first time, problems involving
more than two grades of resource deposits. Sample results for a three-grade deposit
problem are reported and analyzed for the effects of various input parameters on the
maximum sustainable consumption level. From a computational viewpoint, we note the
important fact that the computing time required for a solution with the same degree of
accuracy increases only moderately with the number of resource grades. Thus, our
method can be used for multi-grade resource problems with the number of different
grade deposits considerably larger than three.

2. Problem formulation and simplifications. Recall the simple economic model
studied in [1] and [2], in which a single nonrenewable and nonaugmentable resource is
an essential input to the production of some commodity. At any instant t, let k(t) and
r(t) be the capital stock and resource flow per head, respectively, and take the per head
output of the commodity to be q karb with 0 < b < a < a + b < 1. Capital accumula-
tion in this model is governed by

(2.1) / karb-Or-c,
where c is the per head consumption rate and 0 is the known unit extraction cost of the
resource which characterizes the quality of the deposit.

The Rawls-Solow max-min principle [1] requires that c be a constant. Our
problem is to maximize a permanently sustainable consumption level c subject to
equation (2.1), a prescribed initial stock of capital

(2.2) k(O) ko,

the nonnegativity constraints

(2.3) r(t) >= 0 and k(t) >= 0
(which are incorporated automatically into (2.1)) and the conditions of a finite stock of
exhaustible resource in several grades of deposits specified below.

Suppo_se the stock_ of resource consists of J+ 1 different grade deposits of
amount D1, D2,’" ,Dj/I, respectively, and with constant unit extraction costs
01, 02, , 0j/l, respectively (0-< 01 < 02 <" < 0j/l). According to [2], the resource
stock must be depleted in the order of increasing unit extraction cost under the optimal
program. Let T. be the time when the/’th resource is exhausted, 0 To < T1 <" <
T < Tj/I =oo, and let the remaining resource stock at time t, D(t) be defined by

(2.4) /) -r,

(2.5) D(oo) 0,

as the stock of resource will be eventually exhausted under the optimal program. Then,
we have also

J+l

(2.6) D(T.) Y’. Di, (j 0, 1,..., J)
=j+l

and O(t) 0j in the interval T._x < < T.,/" 1, 2,. , J + 1.
Thus our problem is to choose r(t) to maximize the constant c subject to the

equations of state (2.1) and (2.4) and the auxiliary conditions (2.2), (2.5) and (2.6). In
addition, k and D must be continuous across T., j 1, , J. The switch points T. are
unspecified and are to be determined in the solution process.

The necessary conditions for an interior maximum c consist of a system of
differential equations and transversality conditions for the Lagrange multipliers Ak and
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AD [6]:

(2.7,8) --’(k aka-lrbhk, --hO 0 (Tj_ < < T),

(2.9) 0 ,D hk(bk’rb-1 Oj)

for/" 1, 2,. , J + 1, with

(2.10,11) hk (T.-) h(T.+), lim h(t) 0,

(2.12) [h (kr Oir c) hDr]/t=Ti- =0

for f 1, 2,..., J. The conditions (2.7)-(2.12) can be reduced to the corresponding
conditions in [3] for the two-grade deposit case but have been obtained without the
plausible assumption of maximum capital stock accumulation during the cheaper-grade
phase of the growth program adopted there. Note that when the planning is for the
entire future, the maximum principle may not apply so that these necessary conditions
are formal conditions. In this article (and in [1], E2] and [3]), we are concerned only with
the process of obtaining a continuous, piecewise differentiable interior solution [6] of
these formal necessary conditions. All indications are that the interior solution obtained
is unique. For brevity, we will henceforth refer to it as the optimal program for the
economic growth problem.

In theory, the BVP defined by (2.1)-(2.12) determines within each subinterval the
resource extraction rate r(t), the resource stock depletion D(t) and the capital accumu-
lation k(t) (as well as other quantities) for the optimal program, with D(t) and k(t)
continuous across the switch points. The task on hand is to find an ecient method for
the numerical solution of this complex BVP. For this purpose, we perform some
preliminary reductions of the BVP. We begin the reductions by observing that the final
(semi-infinite) phase of the optimal program is merely the optimal program for a
single-grade resource case with an initial capital stock k k(T) inherited from an
earlier phase of the program. Also, the relevant system of ODE’s is autonomous; so the
starting time T for the final phase is just a reference time and has no substantive effect
on the solution. Thus we can use the results in [3] to conclude that for the

(J + 1)-th phase (T < < )"

(2.13) (1-b)kr =c.

For the growth program to sustain the same consumption rate for all > 0 in spite of
the finiteness of the resource deposit needed for the production of consumption goods,
it is necessary to have k as , as is apparent from (2.15) below (e.g., k(t) is linear
in for the special case 0j+ 0). To avoid a numerical solution of k(t) directly, we use
(2.13) to eliminate k(t) from the BVP. We can write (2.1) for > Tj as

(2.14)
c

O+r- c +0+
1-b 1-b

or

(2.15)
bc

k(t)=
1 b (t- Tr)+ Oj+I(D-Dj+I)+ kj,

where kr k(T+)= k(Tr-). This explicit integration not only reduces the size of the
resulting BVP (by one differential equation per resource grade), but also takes care of
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possible numerical sensitivity to small changes in k0 which was experienced in [3]. Using
(2.13) again, we can write (2.4), (2.6) and (2.5) as

If]/(2.16, 17, 18) D
1 b

k -/b), D(T+) D/, D(oe) O.

In the neighborhood of Tj, we may use (2.9), (2.10) and (2.13) to deduce from the
continuity condition (2.12)

[(1 b)karb --C],=T,- [(1 b)karb C]t=T 0

or

(2.19) [(1--b)karb]t=r,-=c.
Incidentally, the condition (2.19) implies the continuity of r across the switch point Tj

(and therewith ,k (T) # 0). We now use (2.19) in a reduction similar to that for a single
grade resource case to get for (see [3]) the

J-th phase (Tj_I < < Tj)"

(2.20)

(2.21)

(1- b)k’rb c,

k=
bc (t-T_)+O(D-bj-b+)+k-_,
1-b

[1__C b] 1/b

(2.22,23,24) /)= k-(/), D(T-I+) D: +D:+I, D(Tj-)=Dz+I,

where k-i k(T+l+) k(Tj_-).
Upon repeating the same reduction for each subinterval, we get for the
]-th phase (T.-1 < < T.)"

(2.25) (1-b)krb =c,

bc
(t- r]-l) -[- O] D O + k’-l,(2.26) k =l-b i=i

(2.27, 28, 29) /)
1

k -(/b), D(._) 2 D,

for ] 2, 3,..., J with ki_ k(._+) k(._x-).
Finally, the same reduction also gives for the
1-st phase (0 < < r):

J+l

D(T)= E D,
i=/+1

(2.30) (1-b)krb =c,

(2.31) k
bct +1

+O(D-D)+ko, D= Di,
1-b i=x

C ]l/b J+l

(2.32, 33, 34) /}=- l-b k-(’/b), D(0)=D, D(T1) Di.
i=2

We now simplify the expressions (2.15), (2.21) and (2.26) for k(t) by deriving an
explicit expression for kj. From (2.26), (2.28) and (2.29) we obtain the recursive relation

bc
(2.35) kj k T.)

l b
(T] T/._I) OiDi + k]-l.
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Hence

(2.36) ki l’"b T. , OD + ko (./= 1,..., J).

Substituting back in (2.26), we get for T.-1 < < T.,

Y+l j-1

(2.38) K ko- Oi , D ., OD (j 1,..., J + 1).
i=/" i=1

Throughout the paper we use the convention that when a sum is empty, its value is 0.
Thus the original complex BVP summarizing the necessary conditions for the optimal
program is reduced to the much simpler BVP

(2.39) )
1 b 1 b

+ OD + T._ < < Ti)

subject to the boundary conditions (2.6) for 1,..., J + 1, with To 0, T+I ,
D(o) 0, and with k(t) and r(t) given in terms of D(t) by (2.37) and (2.25) (or (2.4)),
respectively. Even without solving this simpler problem, our reduction has already
yielded the remarkable result that, independent of the number of grades of deposit, the
maximum sustainable per head consumption rate over an infinite horizon is achieved by
steering the economy along the "optimal tra]ectory", (1-b)krb =c, in the capital-
resource flow space. This trafectory was found in [3] (by a conceptually different
argument) to be the path of maximum capital accumulation for the particular consump-
tion rate c, and is of course the optimal growth path for the two-grade resource problem
obtained them.

For the solution of the reduced BVP, we may heuristically regard the BVP of the
initial phase as one for determining D(t), k(t), r(t) and T1 for 0< < T1 with c as an
unknown parameter. This solution gives us Tl(C) to be used in the BVP of phase 2 for
determiningD (t), k(t), r(t) and T2 for Ta < < T2, still with c as an unknown parameter.
Tz(c) will then be used in the BVP of phase 3, etc. Finally, the (J + 1)th (semi-infinite)
phase uses T(c) from the Jth phase to determine D(t), k(t), r(t) and c for T(c) < <.

3. Numerical solutions for a single-grade deposit. Before we discuss the numerical
procedure for the general problem of a multi-grade resource deposit, we consider, in
this section, the single-grade deposit case (with constant for all > 0) to illustrate
how we handle the semi-infinite domain in our numerical scheme and to investigate the
effects of high extraction costs on the solution.

The problem has been reduced in 2 to

(3.1) /=-
1 b i_l-b

+OD-OD+o (0< <),

(3.2,3) D(0) D, D() 0.

It was pointed out in [3] that (3.1) (or the equivalent equation for r(t)) admits an
exact solution in the form of a quadrature. However, the quadrature has to be evaluated
numerically, and we might as well obtain a numerical solution of (3.1)-(3.3) directly.
While it is possible to integrate the initial value problem (3.1) and (3.2) for a fixed c, and

where

bct
(2.37) k(t)

1 b
+ OjD(t) + Kj,
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then to iterate on c until (3.3) is satisfied [3], we prefer a different approach which takes
advantage of an available BVP solver, COLSYS. A brief description of COLSYS can be
found in the Appendix.

To use COLSYS, the consumption rate will be treated as a function of time, and an
auxiliary differential equation

(3.4) 6 =0

is introduced to stipulate the fact that c is really independent of time. The system
(3.1)-(3.4) now defines a standard two point BVP, and the BVP solver, COLSYS, will
be applicable to this problem once we decide how to handle the semi-infinite interval.

Next we transform the semi-infinite domain [0, ) into a finite interval (0, 1] by
making a nonlinear change of independent variable

for some constant o-> O. In terms of x, the BVP takes the form

dD _(o.+1)/o.[ c j1/bl[_ bc (x_(1/)_I)+O(D _)+/o]-(a/b)(3.6) d=X 1 b 1 b
(0<x<l)

dc
(3.7) xx=0
with the boundary conditions

(3.8, 9) D(0) 0, D(1) D.

The second-order transformed problem (3.6)-(3.9) is now in standard form for
COLSYS.

It should be noted that the mapping of the semi-infinite interval [0, ) onto (0, 1]
by (3.5) is at the expense of a singular point in the ODE (3.6) at x 0. Fortunately, such
singularity poses no problem for COLSYS in this context, provided dD/dx is bounded
there. For (3.6), dD/dx is bounded if -((tr+ 1)/tr)+a/(bo’)>=O, or o- should satisfy

a-b
(3.10) or_-<----

b

In practice, tr should not be too small in order to avoid loss of significant digits in the
right side of (3.6).

The frequently used procedure for handling a semi-infinite interval is simply to cut
it at some finite point L, with L "large enough", and to solve the problem on [0, L] with
the boundary conditions, originally given at o, imposed at L. An adequate value for
L is found experimentally and depends on the rate at which the solution components
approach their asymptotic values. Here, however, the slow decay of D(t) would
necessitate taking extremely large values of L, particularly when b >-_ a/2, or when 0 is
relatively large. In fact, in [3] the asymptotic expression of D(t) had to be used to
provide a better approximation of the boundary condition at L, thus making the size of
L manageable (but still very large) for one-grade resource problems. The trans-
formation (3.5) together with COLSYS resolves this numerical difficulty in an auto-
matic, elegant way.

Accurate numerical solutions for the maximum sustainable per head consumption
rates c of the single-grade resource problem for several sets of parameter values have
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been obtained by the method described above and are shown in Table I to illustrate the
efficiency of our approach to the handling of the semi-infinite interval. (The cor-
responding r(0) is obtained from (2.25).) For all runs reported in this paper, we use
n 4 collocation points per element, a tolerance tol 10-5 on all solution components
and a uniform initial mesh of N 5 elements. For all cases, unless otherwise stated, the
initial guess for the nonlinear iteration consists of c 1.2 and a linear interpolant of the
boundary conditions for D. Also we fix 0-=0.3 if b =.05; 0-= 1/3 otherwise2.

TABLE
Single-grade resource (a 0.2,/o 2.4, E3 50).

Case E Eest N CPU

(1) .05 0 1.21287 .16-10 .15-9 20 0.7
(2) .05 .03 1.16540 .40-9 20 0.8
(3) .05 .09 1.10742 .51-10 40 1.3
(4) .10 0 1.18618 .30-9 .28-8 12 0.4
(5) .10 .03 1.15741 .27-10 20 0.4
(6) .10 .09 1.09629 .34-9 20 0.8
(7) .15 0 1.05198 .16-9 .15-8 10 0.3
(8) .15 .03 1.04384 .67-9 10 0.3
(9) .15 .09 1.02466 .80-8 10 0.3

For all cases in Table 1, we fix a =0.2, k0 =2.4 and D =50. Values of the
maximum per head consumption rate c for various values of b and 0 are tabulated,
together with the estimated error in c (under "Eest"), the final mesh size ("N") and the
computer run time in seconds ("CPU"). For the special case 0 0, the exact solution is
known [1], 13] and the exact error is listed under "E". The notation, a- means
a 10-. All results reported here were run on an Amdah1470 V/6-II computer using

double precision (14 hexadecimal digits).
From Table 1, we see that the values of c are determined very accurately and

efficiently by COLSYS. In fact these values are much more accurate than the 5 digits
sought. This is because the solution component c is more stable than D. Also for c the
estimate (A.4) applies. Compared to other solution methods for handling the semi-
infinite interval, our experience with the cases reported here and others indicates that
the transformation (3.5) together with COLSYS is superior, particularly for b >= a/2.
For example, while the results for the same cases obtained in [3] agree with those given
in Table 1 to at least four significant figures (and six significant figures for b 0.05
cases), the efficiency of the method used in [3] varies with b. To achieve the same
accuracy for cases with relatively large b in [3] required more iterations and a larger
terminal time L (where we prescribed the expected asymptotic behavior). While it is
possible to reduce L by using more terms in the asymptotic boundary value, the method
developed here is more attractive in that even without any asymptotic analysis, the CPU
time required for all cases considered does not vary by an order of magnitude.

For a given set of parameter values for a, b, 0 and k0, it follows from a result of [3]
that the sustainable per head consumption rate c is bounded by

(3.11) Cmax (1-- b),)/(1-b) () b/(1-b).
(It would not be possible to maintain the consumption with any finite amount of
resources otherwise.) The actual solution for c is of course determined by the size of the

This choice of tr makes -(tr + 1)/or / a/(btr) a nonnegative integer.
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resource deposit; the larger the deposit, the closer c is to Cmax. However, the value Cmax
can not be attained for it corresponds to a constant resource extraction rate which would
exhaust the finite resource deposit in finite time [3]. Table 2 shows how close the
solution c is to Cmax for cases with a high resource extraction cost and a relatively large
amount of resource. More importantly, the results indicate that a larger deposit has very
little effect on c in this range of parameter values since Cmax is independent ofD (see last
two cases in Table 2). For larger values of b (or larger b/O ratios) however, c is
considerably smaller than Cmax (e.g., in the last two cases of Table 1 as well as the
corresponding results in [3]) and is expected to increase with D.

The limitation on the parameter values for the purpose of optimal growth with a
sustainable per head consumption rate may be viewed from still another perspective.
For a given set of values of a, b and ko and a desired level of per head consumption rate
c, to sustain c for the whole future imposes an upper bound on 0,

(3.12) 0 < 0max b/b (____)1 b (1-b)/b.
For the cases in Table 2, the actual values for 0 are extremely close to this bound.

TABLE 2

Effect of high extraction costs in single-grade resource growth* (a 0.2, b 0.05, ko 2.4).

Case / Cmax 0ma,, CPU N

(1) 50 .09 1.1075 1.1074 .09008 0.9 14
(2) 50 .10 1.1013 1.1013 .10004 0.8 16
(3) 50 .11 1.0958 1.0958 .11002 1.0 16
(4) 50 .12 1.0908 1.0908 .12001 0.8 16
(5) 50 .15 1.0781 1.0781 .15000 1.3 28
(6) 50 .20 1.0619 1.0619 .20000 2.1 18
(7) 50 .25 1.0495 1.0495 .25000 2.3 18
(8) 100 .25 1.0495 1.0495 .25000 3.1 20

* The initial guess D J0 was used for the nonlinear iterations in these cases. Also for
0 =>, 12 a larger initial value for c is used.

4. Numerical solutions for the multi-grade resource problem. To facilitate an
efficient solution of the (reduced) BVP for optimal growth with a multi-grade resource,
we further transform (2.39) and (2.6) into a form suitable for the application of
COLSYS. To avoid working with unknown subintervals (T/_, T.), j 1, 2, , J + 1
(with To 0 and T+I ), we map each of these subintervals onto (0, 1). Evidently,
the switch points T., ] 1, , J, are mapped into boundary points and the continuity
conditions across them become boundary conditions. In order to have only separated
boundary conditions, we let

t-T.-1 (for odd j _-<J),r,.-
T.-t (for even/" =<J),

(4.1) x

1 (for odd j J + 1),

(-) (for even j =J+ 1)
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for Ti_1 < t< T with O<r<=(a-b)/b. The change of variable in the last subinterval
(Tj, o) is again a transformation of the type (3.5) for some constant r. With Di(x)
D(t) in the subinterval T/-1 < < T. and )’= d( )/dx, the differential equations (2.39)
become

(4.2) D

C bc Ri]
-(a/b)

(r/" r-l) 1-b{ri-l+x(ri-ri-1)}+OiDi+ (] odd),

[ bc ]-o/>(r/.- r]-l) ]-b {T.-x(T.- ri_l)}+OiDi+g
(j even)

for 1 =< ] <= J and

(4.3) Dj+l

/b

T(1--X)-(I+’)/’[o" 1
bc,
b T(1-x)-(1/)

Or+1Dr+l + gy+l]-(a/b)-+
J

x_(l+r)/ bc
1-b o" 1-b

(J + 1 odd),

Tjx -(1/) + Oj+IDj+I q- j+l]-(a/b)

(J + 1 even),

where Kj,/" 1, , J + 1 are given by (2.38). The switch points T.,/" 1,. , J now
appear as unknown parameters in the system of ODE’s (4.2) and (4.3). To apply
COLSYS, we add one ODE for each T. and one ODE for the unknown constant c as
in3"

(4.4) T 0 (1 -<_/" _<- J),

(4.5) c’=0.

Equations (4.2)-(4.5) are 2(J + 1) first-order ODE’s for the 2(J + 1) unknowns D
(1 -</" _-< J + 1), T. (1 -< ] =< J) and . For them, we have the following 2(J + 1) boundary
conditions from (2.28) and (2.29):

(4.6)

(4.7)

IJ+l
i=i Di (] odd),

Di(O)
/ Y+l

| 2 /i ( even),
[.i=i+1
f J+l

| E D; (jodd),

Di(1)_
i=j+l

J+

iY=/i (] even),

The BVP defined by (4.2)-(4.7) on the known interval (0, 1) is in a form suitable for the
application of COLSYS.

The above method for the solution of the constant consumption rate growth
problem with a multi-grade exhaustible resource has been used to generate accurate
solutions (to five significant figures) for all the two-grade resource problems studied in
[3] and two others not reported there. It is known that the results for c obtained in [3]
are also good to five significant figures, but the same can not be said about the results for
T1 and kl, the switchover time and the capital stock accumulated at that point. (Using
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only the leading term asymptotic behavior for the boundary condition at the finite
terminal time L, only two significant figure accuracy for T1 was assured in some cases,
mostly those with b 0.15, by the maximum value of L allowed before the onset of
error accumulation.) The results in Table 3 of this report show that the values for k

TABLE 3
Maximum per head consumption rate and switchover time for a two-grade resource deposit*

(a .2, 02 .09)

Case /o 1 2 01 T1 1 k(T1) CPU N

(1) .05 2.4 10 50 0 1.1587 9.4760 2.9779 1.8 32
(2) .05 2.4 10 50 .03 1.1406 11.030 2.7621 1.3 18
(3) .10 2.4 10 50 0 1.1560 6.3030 3.2096 0.5 10
(4) .10 2.4 10 50 .03 1.1386 6.6762 2.9446 1.0 20
(5) .15 2.4 10 50 0 1.0743 10.096 4.3140 0.5 10
(6) .15 2.4 10 50 .03 1.0674 9.8405 3.9535 0.5 10
(7) .05 2.4 10 25 0 1.1566 10.015 3.0097 0.9 20
(8) .05 2.4 10 25 .03 1.1392 11.489 2.7889 1.0 20
(9) .10 2.4 10 25 0 1.1209 9.6156 3.5976 0.5 10

(10) .10 2.4 10 25 .03 1.1080 9.8154 3.3084 0.6 10
(11) .15 2.4 10 25 0 .98496 24.841 6.7177 0.6 10
(12) .15 2.4 10 25 .03 .98053 24.014 6.2552 0.6 10
(13) .05 2.4 50 50 0 1.2291 24.029 3.9545 1.0 20
(14) .05 2.4 50 50 .03 1.1693 35.914 3.1102 1.9 28
(15) .05 4.8 10 50 0 1.3154 10.389 5.5193 1.8 20
(16) .05 4.8 10 50 .03 1.3036 11.325 5.2771 1.8 20
(17) .10 4.8 10 50 0 1.2764 8.8278 6.0519 0.6 10
(18) .10 4.8 10 50 .03 1.2675 8.9836 5.7652 0.5 10
(19) .15 4.8 10 50 0 1.1254 18.391 8.4525 0.5 10
(20) .15 4.8 10 50 .03 1.1222 18.106 8.0854 0.5 10

* The initial guess T1 10 was used for the nonlinear iterations here, with c--1.2 and D linear
interpolants of their boundary conditions,/" 1, 2.

obtained in [3] are accurate to at least four significant figures except for one case with a
0.4% error. In contrast, the values for Tx obtained in [3] are not as accurate though the
percentage error is still less than 0.5% in all cases. Evidently, the method of solution
developed here has enabled us to achieve a degree of accuracy in the numerical solution
for the two-grade resource not practical hitherto. More importantly, the high accuracy
is attained with no asymptotic analysis (which is needed in [3]), minimal programming
and a relatively small amount of computing time for all cases investigated as shown
under the CPU time column of Table 3. The effects of the various input parameters as
suggested by Table 3 have already been analyzed in [3] and will not be repeated
here.

With the same method, we can, for the first time, generate accurate numerical
solutions for maximum constant consumption rate problems with a resource deposit of
more than two grades. Again, the solution process requires minimal programming and a
relatively small amount of computing time to achieve the desired accuracy (and of
course no asymptotic analyses). To illustrate, we report in Table 4 some sample
calculations for three-grade resource problems. In all fifteen cases, we have kept
a 0.2, k-0 2.4,/1 10 and/2 25. The CPU seconds required for a single case (to
achieve a five significant figure accuracy) range from 1.0 to 10.7, and increase with more
low grade deposit D3 or higher unit extraction costs 0j,/" 1, 2, 3. The CPU time is
lower when b 0.1 or b 0.15 and is higher for b 0.05.
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TABLE 4
Maximum per head consumption rate and switchover times for a three-grade resource deposit*

(a .2,/o 2.4,/ 10,/2 25)

Case 3 01 02 03 T T k(T1) k(T2) CPU N

(1) .05 50 0 .03 .09 1.1864 4.9364 26.981 2.7082 3.3348 2.3 18
(2) .10 50 0 .03 .09 1.2090 3.6195 19.070 2.8862 4.2118 1.1 10
(3) .15 50 0 .03 .09 1.1451 5.7698 46.515 3.5660 11.050 1.3 10

(4) .05 100 0 .03 .09 1.1865 4.9307 26.892 2.7079 3.3293 4.7 36
(5) .10 100 0 .03 .09 1.2202 3.2491 15.804 2.8405 3.7926 2.0 20
(6) .15 100 0 .03 .09 1.2226 3.4120 18.347 3.1362 5.6086 1.0 10

(7) .05 50 .03 .06 .09 1.1498 8.5208 37.518 2.6157 2.8705 4.3 36
(8) .10 50 .03 .06 .09 1.1668 4.8616 21.508 2.7303 3.3884 1.1 10
(9) .15 50 .03 .06 .09 1.1289 5.9716 41.451 3.2896 8.8578 1.3 10

(10) .05 50 .03 .09 .25 1.1400 11.237 61.743 2.7742 3.5545 6.3 20
(11) .10 50 .03 .09 .25 1.1356 6.9199 37.145 2.9731 4.5369 2.3 20
(12) .15 50 .03 .09 .25 1.1139 6.6984 45.423 3.4167 8.7789 1.3 10

(13) .05 100 .03 .09 .25 1.1400 11.237 61.743 2.7732 3.5545 10.7 48
(14) .10 100 .03 .09 .25 1.1358 6.9055 36.888 2.9715 4.5051 4.4 20
(15) .15 100 .03 .09 .25 1.1440 5.3403 27.623 3.1781 5.4265 1.4 10

* The initial guess, T1 8, T2 16, c 1.2 and linear interpolants of boundary conditions for Di,/"
1, 2, 3, was used for all cases but No. 10, 13, 14. For the latter 3 cases, the initial guess was changed to T2 50,
C 2.0, D3/3

By comparing cases (1)-(3) with cases (4)-(6), respectively, we see that doubling
the low grade resource deposit D3 hardly affects the b =0.05 case, changes the
consumption rate level by only 1% in the b 0.1 case but changes c by about 7% in the
b 0.15 case. These results conform with our observations in 3 for single-grade
resource problems; evidently, c is still considerably less than Cmax for the b 0.15 case
so that it can be increased by a larger low grade resource deposit D3. To achieve the 7%
change in c by doubling D3 in this case involves a substantial change in the growth
program. It allows the switch-over times T1 and T2 to go from 5.7698 and 46.515 down
to 3.4120 and 18.347, respectively. Correspondingly, it allows kl and k2 to go from
3.5660 and 11.050 down to 3.1362 and 5.6086. Evidently, with more low-grade
resource, the economy requires less initial capital for the last phase of the program
covering the semi-infinite interval (T2, o) so that the higher grade deposits can be used
up sooner to achieve a higher per head consumption rate c in all three phases of the
program. In contrast, c is very nearly Cmax in cases (10), (11), (13) and (14) with very high
extraction costs; we can not increase c much by doubling D3.

Cases (1)-(3) in conjunction with cases (7)-(9) demonstrate the effects of an
increase of the unit extraction costs 01 and 02 for the two high grade deposits. Higher
values of 01 and 02 use up more output at each instant. To keep down the extraction cost
per unit time, the new optimal programs of cases (7)-(9) reduce c to slow down the
resource extraction and to build up a capital stock at the switch points comparable to
those for cases (1)-(3), respectively. A good size capital stock in turn moderates the
reduction in consumption level.

Finally, cases (10)-(12) in conjunction with cases (7)-(9) show that an increase in 02
and 03 gives rise to analogous effects.

By comparing the CPU time for related single-grade, two-grade and three-grade
problems in Tables 1-4, e.g., cases (6), (4) and (2) in Tables 1, 3 and 4, respectively, we
see that CPU time increases only moderately with the number of resource grades. This
suggests that our solution procedure is still practical even when J is larger.
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Appendix. The general purpose BVP solver COLSYS [4], [5] is based on spline
collocation at Gaussian points and is capable of handling mixed order systems of
nonlinear multi-point BVP’s. Here it is sufficient to consider a two-point BVP for a first
order system,

(A. 1) z’ f(x, z), x s (a, b),

(A.2) g’(z(a)) 0, g2(z(b)) 0,

where z, [ are vector functions of order rn, gl is of order m and g2 is of order

rn2 m- rnl. The functions f, g and g may be nonlinear.
In COLSYS, the problem (A.1)-(A.2) is solved on a sequence of meshes, until

user-specified error tolerances are satisfied. For a specific mesh a x0 < x <’" <
XN b, with hi--Xi--Xi--1, h =maxl<=i<_Nhi, and an integer n > 1, the collocation
solution v(x) (v l, , v,) is a piecewise polynomial vector function" for each/’, 1 -<_

f<-m, vjs C[a,b] is a polynomial of degree <-n on each element (xi-,xi), i=
1,..., N. The piecewise polynomial solutions are represented in terms of a B-spline
basis. The approximate solution is determined by requiring that it satisfy (A.2) and the
differential equation (A.1) at the images of the n zeros of the appropriate Legendre
polynomial in each element. Under sufficient smoothness conditions, the error in v for
X [Xi, Xi+I) is given by

n+l n+2)(A.3) zj(x)- vi(x Kzn+l) (xi)hi + O(h

where K is a known bounded function of x, and at the mesh point xi,

(A.4) Zi(Xi) ldj(Xi) O(h (]=l,...,m) (i=0, 1,. ,N).

Expression (A.3) is used both for estimating the error accurately via mesh halving and
for automatic new mesh selection. For nonlinear problems, the damped Newton’s
method is used for the first mesh to find the collocation solution, and modified Newton
iterations with a fixed Jacobian are performed for subsequent refined meshes. Full
details of the code can be found in [4], [5] and references therein.
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FFT AS NESTED MULTIPLICATION, WITH A TWIST*

CARL DE BOOR"

Abstract. A simple, yet complete and detailed description of the fast Fourier transform for general N is
given with the aim of making the underlying idea quite apparent. To help with this didactic goal, a simple twist,
i.e., a shifting of information from rows to columns during the calculations, is introduced which allows us to
give a simple meaning to intermediate results and assures that the final results need no further reordering.

Key words. FFT fast Fourier transform, nested multiplication

1. Introduction. The discrete Fourier transform (DFT) . Frz of an N-vector z is
given by the rule

N

(1) Znto (l-1)(n-1), V 1, N,
n=l

with

(2) wu =exp (- 2-x/--- 1/N)
a principal Nth root of unity. Thus, is given as the value of a polynomial of degree <N

--1at the point ton and can therefore be calculated, by nested multiplication, in N
operations. Here, I follow Cooley and Tukey [1] in counting a complex multiplication
followed by a complex addition as one operation.

In the last twenty years, various forms of a fast Fourier transform (FFT) have
become popular. The various algorithms have in common that they produce the DFT on
N points in about N In (N) rather than N2 operations. See Winograd 10] for the latest
developments. But, while these ideas, notably through Cooley and Tukey [1], have
found wide application in computations, their didactic treatment has left something to
be desired.

In a recent article [7], H. R. Schwarz attempts, as he says, to remove the mystical
aspect which the FFT has for many people. He does this by describing the FFT in terms
of a factorization of the transformation matrix, an idea which he ascribes to Theil-
heimer [9] but which occurs already in Good [5], where a FFT different from that of
Cooley and Tukey is given. A factorization of the transformation matrix is also the basic
idea on which Glassman [4] builds his FFT, and Drubin [2] has refined this further; see
Ferguson [3] for a lucid description and a simple Fortran program.

By contrast, I want to give here what I believe to be a simple description of the FFT
for a general N in terms of nested multiplication. Certainly, Cooley and Tukey [1]
thought of the FFT in these terms.

2. The case of two factors. Suppose that N PQ for two integers P and Q greater
than 1. Think of the N-vector z as stored FORrRAN fashion in a one-dimensional array.
Then we can interpret that array also FOR:RAr fashion as a two-dimensional array Z
of dimension (P, Q). This means that

(3) Z(p,q)=zp+p(q-1), p=l,...,P, q=l,...,Q.

* Received by the editors June 15, 1979, and in revised form November 8, 1979.
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Correspondingly, factor the sum (1) for into a double sum,
P Q

(v-1)[p-l+P(q-1)]

p=l q=l

Y’. Z(p, q) to-l)(q-1) toN
p=l q

Here, we have made use of the fact that
P

This makes apparent the crucial fact that the inner sum in the last right-hand side is
Q-periodic in v; i.e., replacing v by u / Q does not change its value, due to the fact that
to o 1. This means that we need only calculate this sum for u 1, , Q (and for each
p). Thus, for each p 1,. , P, we calculate, from the Q-vector Z(p,. ), the Q-vector
whose entries are the numbers

Q

(4) Y. Z(p, q) to--l)(q--l) /2 1 Q"
q=l

i.e., we calculate the DFT FoZ(p," ), p 1,..., P, at a total cost of P. Q2= N. Q
operations.

Now, we could store the transform of Z(p, over Z(p, ). But in anticipation of
further developments, we choose to store the transform FoZ(p, in ZI(" p), where
Z is a two dimensional array of size (Q, P), rather than (P, Q).

With this, the calculation of . is reduced to the evaluation of the sum

P

(5) = Y’. Zl(Vo, p) to-x)p-x), v= 1,’" N.
p=l

Here, we have used the notation vo to indicate the integer between 1 and Q for which
v-vo is divisible by Q. At this point, it becomes convenient to think of the one-
dimensional array which is to contain the N-vector . equivalently as a two-dimensional
array Z0, of size (Q, P). This means that

(6) 3+o(,- Zo(v,/) for v 1,. , Q, / 1,. , P.

With this, (5) can be written equivalently as

P

Zo(v, 12,) Y’, Z(v, p) to v 1,..., Q, t2, 1,..., P.
p=l

-1+o,-) ThisHere, the right-hand side is a polynomial of degree <P in the quantity to N

quantity can be generated as one goes along, as in the following convenient arrange-
ment of the calculations"

x:=l

for /. 1,..., P, do:

for v= 1,. ., Q, do:
(7) p

Zo(v, tz) := Y’. Zl(v, p)xp-
1o=1

X :-- X toN.

The sum in the innermost loop is, of course, to be evaluated by nested multiplication.
The total cost of this step is then Q. p2= N. P operations (if we neglect the N
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multiplications needed to generate the various x’s). In this way, we have obtained in Zo
the discrete Fourier transform of z at a cost of only N(P+ Q) rather than N2

operations.

3. The general case. "It is easy to see how successive applications of the above
procedure, starting with its application to (4), give an m-step algorithm requiring

T N(P1 + P2 4-" 4- Pro)

operations, where

(8) N--PI" P2 Pro."
So say Cooley and Tukey 1] (except for a change in symbols and equation numbers). In
effect, they point out that the first step of the calculations above consists in forming the
DFT of various O-vectors. Hence, if Q itself is the product of two integers greater than
1, this calculation can be carried out in fewer than O2 operations by applying the same
procedure to it, etc. The actual implementation of this idea may not be immediately
obvious, though. For this reason, I now discuss a slightly different (and novel) view,
according to which the entire transform can be effected by m applications of a slightly
enlarged version of (7).

The basic idea is to interpret the storage arrays for the various N-vectors involved
in various ways as multidimensional arrays and to shift information appropriately from
"rows to columns" as we did earlier when storing the DFT of the row Z(p, of Z in the
column ZI(’,p) of Z1. For this, I need some notation to indicate that a given
one-dimensional array is being considered equivalently as a two- or three-dimensional
array.

If Z is a one-dimensional array of length N, then ZA denotes the equivalent
two-dimensional array of dimension (A,N/A), and ZA’B denotes the equivalent
three-dimensional array of dimension (A, B, N/(AB)). Thus

ZA’B (a, b, c) za(a, b + B(c 1)) ZAB (a + A(b 1), c)
(9)

Z(a +A(b 1 +B (c 1))).

Let now Z be a one-dimensional array containing z, as before, and, for k
0,. , m, let Zk be a one-dimensional array satisfying

(10) Z (’, C) FAZBP(c, "), 1,’’’, BP

with

(11) B := Bk := PI Pk-1, P := Pk, A := Ak := P,,, Pk+l,

Then Z,,, Z, and Zo contains FNZ. Further, with A, P, B as given by (11), one
obtains Zk- from Zk by the following slightly extended version of (7)"

x:=l

for p 1,...,P, do:

tor a=l,...,A, do"
(12) tor b 1,. , B, do"

P
AP ,rr-1

Zk" (a, p, b) ., Z’n (a, b, rr) x

X :--- X O.)Ap.
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Indeed, the algorithm produces

P

Z’’__P1 (a, p, b)= Z Z’’B (a, b, qT’)tO/I+A(p-1)](#-I)
,rr=l

On the other hand, (10) implies that

A

Z’" (., b, rr) FAZS’P(b, r,. E zs’P(b, zr, o)to-1)(a-l)

Therefore,

P A
Z’__I (a, p, b)= Z zn’P(b, 7r, ol)o)(f1-1)(a-1)+[a-l+A(p-1)](-l)

-rr=l a=l

APBut now, since tOAp 1, we may add to the exponent on the right-hand side any integer
multiple of AP; this allows the conclusion that

P A

Z’-P (a, p, b) Z Y zn’P(b, "n’, ol)o) [a-l+A(p-1)][’rr-l+P(-l)]AP
r=l

and so proves that Zk-x, as produced by (12), satisfies (10) (with k replaced by k- 1).
This shows that the DFT is obtainable, in Z0, by m applications of algorithm (12),

starting from Z,, containing z. Since the kth such application costs PkAkBkPk N Pk
operations, the total number of required operations is indeed given by (8).

In a FORTRAN implementation of the algorithm, one would, of course, need only
two arrays to play the role, in alternation, of the m + 1 arrays Z,,, , Zo. See Fig. 1.

SUBROUTINE FFT Z I, Z2, N, INZEE
CONSTRUCTS THE DISCRETE FOURIER TRANS,ORM OF Z (OR Z2) IN THE COOLEY-
C TUKEY WAY, BUT WITH A TWIST.

INTEGER INZEE, N, AFTER, BEFORE, NEXT, NEXTMX, NOW, PR IME 2)
COMPLEX ZI(N),Z2(N)

C****** I N P U T ******
C ZI, Z2 COMPLEX N-VECTORS
C N LENGTH OF Z1 AND Z2
C INZEE INTEGER INDICATING WHETHER Z OR Z2 IS TO BE TRANSFORMED
C TRANSFORM Z1
C 2 TRANSFORM Z2
C****** W 0 R K A R E A S ******
C Z I, Z2 ARE BOTH USED AS WORKARRAYS
C****** 0 U T P U T ******
C Z OR Z2 CONTAINS THE DESIRED TRANSFORM (IN THE CORRECT ORDER)
C INZEE INTEGER INDICATING WHETHER Z OR Z2 CONTAINS THE TRANSFORM,
C TRANSFORM IS IN Z
C 2 TRANSFORM IS IN Z2
C****** M E T H 0 D ******
C THE INTEGER N IS DIVIDED INTO ITS PRIME FACTORS (UP TO A POINT).
C FOR EACH SUCH FACTOR P THE P-TRANSFORM OF APPROPRIATE P-SUBVECTORS
C OF Z1 (OR Z2) IS CALCULATED IN F F T S T P AND STORED IN A SUIT-
C ABLE WAY IN Z2 (OR ZI). SEE TEXT FOR DETAILS.
C

DATA NEXTMX,PRIME / 12, 2,3,5,7, 11, 13, 17, 19,23,29,31,37 /
AFTER
BEFOR E N
NEXT
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I0 IF ((BEFORE/PRIME(NEXT))*PRIME(NEXT) .LT. BEFORE) THEN
NEXT NEXT +
IF (NEXT .LE. NEXTMX) THEN

GO TO 10
ELSE

NOW BEFORE
BEFORE

END IF
ELSE

NOW PRIME(NEXT)
BEFORE BEFORE/PRIME(NEXT)

E ND IF
C

IF (INZEE .EQ. I) THEN
CALL FFTSTP( Z I, AFTER, NOW, BEFORE, Z2

ELSE
CALL FFTSTP( Z2, AFTER, NOW, BEFORE, Z

END IF
INZEE 3 -INZEE
IF (BEFORE .EQ. I) RETURN
AFTER AFTER*NOW

GO TO 10
END
SUBROUTINE FFTSTP ZIN, AFTER, NOW, BEFORE, ZOUT

CALLED IN F F T
CARRIES OUT ONE STEP OF THE DISCRETE FAST FOURIER TRANSFORM.

INTEGER AFTER,BEFORE,NOW, IA, IB,IN, J
REAL ANGLE,RATIO,TWOPI
COMPLEX ZIN(AFTER,BEFORE,NOW),ZOUT(AFTER,NOW,BEFORE),

DATA TWOPI / 6.2831 85307 17958 64769 /
ANGLE TWOPI/FLOAT(NOW*AFTER)
OMEGA CMPLX(COS(ANGLE),-SIN(ANGLE))
ARG CMPLX(I.,O.)
DO IO0.J=I,NOW

DO 90 IA=I,AFTER
DO 80 IB=I,BEFORE

VALUE ZIN(IA,IB,NOW)
DO 70 IN=NOW-I,I,-I

VALUE VALUE*ARG + ZIN(IA,IB,IN)
ZOUT(IA,J,IB) VALUE

ARG ARG*OMEGA

70
8O
9O
I00 CONTINUE

END
RETURN

FIG.

ARG, OMEGA,
VALUE

There is no claim that the above program is competitive with the carefully
constructed codes such as that of Singleton [8]. Its virtue lies chiefly in its simplicity and
transparency. On the other hand, Eric Grosse [6] found that the above code, modified
to give special treatment in FFTSTP for the case NOW 2, and to avoid subroutine
calls for the complex arithmetic operations, and compiled by an optimizing compiler,
needed only 1.5 to 2 times as much computing time as did Singleton’s program for a
variety of choices of N.

Finally, the above discussion is based on the FORTRAN convention whereby
multidimensional arrays are stored "column by column", i.e., with the first index
running fastest. It is easy to base the discussion instead on the ALGOL convention
whereby arrays are stored "row by row", i.e., with the last index running fastest.

Acknowledgment. I am grateful to Warren Ferguson for several discussions
concerning fast Fourier transforms and for comments on an earlier draft. I am indebted
to Eric Grosse for carrying out the comparisons mentioned above and for suggesting
that the more leisurely discussion in an earlier draft be replaced by showing directly that
the Zk as generated by (12) satisfy (10).
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Finally, I am very grateful to the referees for additional information which I have
collected, for the reader’s edification, in the following

Postscript. (i) A "twist" (though not exactly the one used here) to avoid explicit
sorting was used as early as 1969 by Uhrich [15] for the case N 2r, and has meanwhile
been used in the mixed radix case by Temperton [14]. To this should be added that
Glassman’s [4] version of the FFT is very similar to Temperton’s and, in particular,
contains such a "twist" as becomes evident from [3]. Finally, I found the "twist" of help
in other Kronecker product calculations; see [11].

(ii) The FORrRAN program presented here could be made much more efficient if
factors of 4 were used whenever possible and special coding for the cases NOW 2, 3, 4
and 5 were used in FFTSTP. In addition, the work for the polynomial evaluation (the
innermost loop in FFTSTP) can be cut in half for an odd NOW by a standard device.

(iii) Brigham’s book [12] is a good reference for the algorithm and for its many
applications, while Jenkins and Watts [13; pp. 313-317] contains a very intuitive
description of the algorithm.
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DISTRIBUTION OVER CONVEX POLYGONS*
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Abstract. A method for computing the integral of the bivariate normal density function over a convex

polygon is given. A comparison with two recently published methods is made.

Key words. Probability: special processes, geometric probability applications; statistics" multivariate
analysis

1. Introduction. The integration of the general bivariate normal distribution
(BND) over a convex polygon is an important computation in statistics. It is used to find
the probability that an event or observation occurs in a specified polygonal area where
the random variations in the position of an observation can be described by a BND. One
of the most important applications is in weapon evaluations. A BND often is used to
describe the distribution of impact points in the firing of projectiles. The aim point of the
weapon is usually taken as the mean (tZw, tzz) of the distribution. The standard
deviations O’w and Oz, in the w and z directions, are due to random errors in azimuth and
elevation directions for some types of weapons and range and deflection directions for
other types, and these are estimated from firing data. A correlation coefficient p is also
estimated from the data. The problem then is to determine the probability of the
projectile hitting, or perhaps missing, a specified circular, elliptical, or polygonal area in
the wz-plane.

Many applications also occur outside the weapons field. H. L. Crutcher [2] presents
a set of 13 applications to geophysical data. Regions over which the probabilities are
found are either elliptical or circular. We briefly mention three of these applications.

a. Lunar tides. After fitting the circular normal distribution to 40 data points on a
harmonic dial of lunar tides, estimate the probability of observing a lunar tide of
magnitude less than 0.05 mm Hg.

b. Solar wind ions. An extensive set of observations by a spacecraft provided data
on ions in the solar wind. When represented as points (U’, b), where E’=
1 + log10 E with E given in KEV and 4) is longitude in the spacecraft coordinate
system, the major portion of the data is well described by an elliptical BND.
Estimate the proportion of solar wind ions with combinations of energy and
direction in a particular range.

c. Tropical storms. Using data on the paths of tropical storms that have previously
passed through a particular region, predict the probability that a new storm will
be within 2 degrees of latitude of city A 36 hours after it passes through the
specified region.

Of course, in each of these examples, the circular or elliptical region originally used can
be replaced with a polygonal one. In fact, there is often more versatility with the use of
polygons. Moreover, with convex polygons of 8 vertices or fewer, the computer
program for finding the probability would, in most cases, be faster than one used for the
computation over an ellipse or a circle.

Many methods have been developed for carrying out the integration of the BND
over polygons numerically, e.g., 1 ], [3], [4], [5], [6], [7], [8]. We present a method which
has led to a very fast, automatic computer program.

* Received by the editors May 25, 1979 and in revised form January 24, 1980.
Naval Surface Weapons Center, Dahlgren, Virginia.
Our programs are in Fortran IV for the CDC 6700. It does about 106 arithmetic operations per second

on 14 decimal digit mantissas.
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Our approach is to find the probability over an angular region and then combine an
appropriate number of these to obtain the probability over a convex polygon. We define
an angular region A as the semi-infinite part of the plane bounded by two intersecting
directed straight lines. Of course, by this definition there are four such regions, hence it
is always necessary to specify which one is needed. Computing normal probabilities
over angular regions appears to have first been considered explicitly by Gideon and
Gurland [6]. We briefly discuss their work in 3. In that section, we also compare our
results with those given recently by Drezner [5].

In a subsequent paper, we shall show how the present program for probabilities
over convex polygons can be used to compute automatically normal probabilities over
arbitrary polygons. Fortran IV listings of these programs are available upon request.

2. Normal probability over an angular region. We are interested in the numerical
evaluation, for the angular region A, of

(1) P(A)=- Z(w,z,o) dwdz,

where

(2)
Z(w, z, p)=-[2rO’wO2:(1 _p2)1/2]-1

with (/w,/2:) the mean and
2

po"WO"2: O" J

the covariance matrix of the random variable (w, z) with correlation coefficient p. The
well-known linear transformation

[ W ,w Z
p

w z (z -z)
(3) x y , I< ,
reduces the integrand (2) to one with circular symmetry, i.e.,

ill [ (x2 + y2)] dx dy,(4) P() P(A) exp
2

A

where A is also an angular region since (3) takes straight lines into straight lines. Hence,
hereafter we deal only with (4) unless noted otherwise.

The angular region A can be specified by the distance R of its vertex V from the
origin and the angles 0 and 02 which the two sides 1 and 2 of A make with the extension
L of the straight line passing through the origin and vertex. This is shown in Fig. 1. The
angles are measured positive in the counterclockwise direction about the vertex at V
from the line L.

It is convenient to make several elementary coordinate transformations, the first of
which takes advantage of the circular symmetry shown in (4). First we rotate the axes
through the angle (Fig. 1), so that the new x-axis is along OV and contains the vertex
V. Then we translate the axes through a distance R, putting the origin at the vertex V or
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() L

FIG. 1. The angular region A specified by R, 01, 02.

the point (R, 0) relative to the rotated axes, and finally we introduce polar coordinates
(r, 0) centered at the new origin V. If x, y are rectangular coordinates relative to the
rotated axes with origin at O (see Fig. 2), and (r, 0) are these polar coordinates centered
at V, the mutual relationships are given by

(5) x R + r cos 0, y r sin 0

as shown in Fig. 2. In this case (4) becomes

(6)

exp -(R2 + 2rR cos 0 + r2) r dr dOP(A) --1 _IR2/2 r2/2

2r
e e- e-’r dr dO,

R V x
o

FIG. 2. The angular region A relative to rotated axes.
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where

(7) p R cos 0.

An integration by parts for the integral in r yields

(8) I e -r:/2 e-’rr dr 1 2u
Jo

effc (u)
z(u)

where

2 I =_p__=R(9) z(,) =-- exp (- ua), erfc (u)=- z(t) dr, u
.,/- /-

cos 0.

Using (8) in (6) and carrying out the obvious part of the 0-integration reduces (6) to

(10) _R2/2 { 02 01
P(A) e

2r

This relation has also been obtained in a much different way by Amos 1]. We note from
(10) that if R 0, then P(A)= (02-01)/2rr as required.

The difficulty of evaluating the integral in (10) is resolved by using the minimax
polynomial fit to erfc (u)/z(u) for 0 -<_ u -<_ C(a). For a given 6 > 0, a set of real numbers,
{ak}, and a least positive integer K are found such that

(11) erfc(u)-z(u) a,u < 6, 0 < <C(6)

The constant C(6) is chosen, once is specified, so that

(12)
1

exp --1 (x 2 + y2) dx dy =-1 erfc (C) e -27r A* 2 2 /r

where A* denotes the angular region R x/C, 02 7r/2 01, i.e., the infinite region
to the right of the line x /C. For 5(- 4)( 5 x 10-4), 5(- 7), 5( 10), 2(- 13), the
values of C(6), K, and the minimax coefficients, a, are given in [4]. In case 6 5(- 4),
C 2.46, K 4, and for 6 5(- ), C 4.382, K 14.

If a maximum error of (2/()6 can be incurred in approximating erfc (u), as
indicated by (1}, then the truncation error in computing P(A) from (10) can be no
larger than 6/v . Indeed, multiplying (11) by ue-R/Z/[Z(U)] and integrating with
respect to 0 yields

(13)
e-/a .0 erfc(u) Zau+a dO e, <0<02Nut 2 20 0

where use has been made of the fact that

(14) e-/2 ue dO= err sin 02 -eft sin
2

Recurrence relations allow us now to carry out the integration in (10) numerically.
We have, using (11),

e-/2 02-0 aJ+ ....2 o 2
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where

(16)

and

Jk COS
k 0 dO,

01

cos0 sin0 +k Jk-1(17) Jk+l
k +1 - ol

with

R R
(18) Jo 02 01, J1 - sin 02 sin 01.

Since (11) only holds for u >_-0, we require -r/2-<_ 01 <-- 02 <-- r/2. For cases outside this
range we make use of the relation

1
erfc(sin O)-P[A(R, O, ,n-- 0)], "tr<_ 0 <"rr,2(19) P[A(R, O, 0)]=

2

where A(R, O, O) denotes the angular region with its vertex at x R, y 0, with 01 0,
02 0 (see Fig. 2).

3. Normal probability over a convex polygon. The probabilities over an appro-
priate set of angular regions yield the probability P(H) over a convex polygon H(N) of
N sides. In [6] Gideon and Gurland propose using angular regions to determine
probabilities over triangles and quadrilaterals and then using various combinations of
these to find the probability P(H). Our procedure in general will be more efficient,
requiring only N angular regions for H(N) as compared to 3(N-2) regions using
triangles. If quadrilaterals are used for N even or quadrilaterals and one triangle for N
odd, probabilities over 2N-4 or 2N-3 angular regions, respectively, are needed.

Let H(h,’", tu) denote a convex polygon of N vertices at coordinate points
h, , tu, where t. (x, y.). The vertices {ti} are ordered counterclockwise, i.e., so that
the area of H is on the left as one traverses the boundary continuously. We then can
write

(20) P(H) P(A 1)- 2 P(Ai) + P(AN),
2

where A1 is the angular region determined by an interior angle of H with its vertex
assigned as tl. The Ai, 2, , N- 1 denote angular regions defined by the exterior
angles and associated vertices t2,’’’, tN-1 of H as shown in Fig. 3 for N 6. The
angular region Au is obtained from the vertical angle of the interior angle of H at tN. It
is easy to visualize and argue the validity of (20). Note for the particular case of N 6 in
Fig. 3, that the probabilities over disjoint shaded regions/2, E3, ’4, E5 diminish the
value of P(H) in (20) by an amount exactly compensated for by the addition of P(Au)
since

U Ei=AN.
2

The proof of (20) is not difficult; it is not given here.

Note that (3) takes convex polygons into convex polygons.
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t 1 t2
FIG. 3. Shows angular regions A1, A6; E2, E3, E4, E5, associated with H(6) and equation (20)

In keeping with our efforts for an efficient program, we make use of the following
result. Let O(i) denote the quantity 02-01 which appears in (10), for the ith angular
region of H. Then, since the interior angles of H(N) add up to (N-2)r radians, we
have

N-1

(21) O(N) 0(1) + E O(i).
2

Hence, no more than N- 1 calls to the arctangent routine are needed. Other innova-
tions to keep the program fast, such as when R is sufficiently small or sufficiently large,
are discussed in [4].

When 02--01 is very close to either zero or 7r, there exists the possibility of a
catastrophic error due to round-off. A procedure was found to test for this situation and
to assure a correct result if it occurred. For example, suppose 02 01 r r where r is
a small positive number, but through round-off the computer shows r + v, v another
small positive number. This slight deviation from the assumption A0 <= 7r (N _-> 3) leads
to incorrect signs for cos 01 and/or cos 02 which then will result in a wrong value for P.
We keep this from occurring by sensing on the sign of sin (02 01). If this quantity, which
is computed from an algebraic relation, is negative, we set 02- 01 r in this case, and
appropriate measures are taken to obtain the correct result. Details are given in [4].

4. Comparison with other methods. In this section, we compare our method for
computing P(A) with [6], [7] and [5]. Programs were constructed for both [6], [7] and
[5] procedures.

Our program is designed to give 3 levels of accuracy, i.e., the user may choose to
obtain P(A) accurate to 3, 6 or 9 decimal digits. We have also listed in [4] the necessary
changes and appropriate values of some input parameters so that the program can be
easily changed to also obtain 12 decimal digit accuracy.

The method of Gideon and Gurland [6], [7] is a novel and very efficient procedure
for evaluating P(A). It is limited, however, to 5-decimal-digit accuracy. They give an
expression for P[A(R, O, 0)];

(22) P[A(R, O, 0)]=erfc [(bo+biR +b2R2)O+(b3+b4R)O3+(bs+b6R)05],
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where [0] =< zr/4. The bj coefficients were determined by least squares on 15 subintervals
in R with 0 -< R -< 4. In general, when 01 0, they need to use (22) twice. Thus they need
two calls to the arctangent routine (for P(H(N)), 2N- 1 calls are needed). Moreover,
since (22) holds only for [0[-< zr/4, which is not mentioned in [7], they require in
addition to (19)

P[A(R, O, 0)]=erfc -sin erfc -cos
(23)

-P[A(R,O, 0)], -Tr--< 0 <’4=-2
As noted earlier, we require one call to (19) if 7r/2 < 0 < 32r/4 or 32r/4 =< 0 < zr. In the
second case, they also use (19) once; however, in the first case they need both (19) and
(23). Hence counting the erfc function needed in (22) once for each case, it is easy to
show by enumeration of cases that their method takes on the average 3.5 times as many
erfc evaluations as ours. In addition, since they need both 01 and 02, whereas we use
only 02-01, they require at least twice as many arctangents as we do. As a result,
computer runs showed the average computing time per angular region was about 25%
longer for their procedure for five-decimal-digit accuracy.

The bivariate normal integral is given [10] by

(24) (m, k, p)=-(2zrx/1-p2)-1 exp dw dz,
o 2(1

where the integration is taken over a right angular region, B, with IPl < 1. Drezner [5]
gives a method for evaluating this integral. We found the program capable of giving very
high accuracy, but at the same time it was much less efficient than ours. The relationship
between (m, k, p) and P(A) for the corresponding A is given in [7]. The equations
connecting m, k, p and the associated values of R, O, 02 are given in [4].

Drezner’s procedure is based on transforming in (24) to

(25) dp(m,k,p) (x/l-P2/ fm fm- e -’ e f(u, v du dr,
\ / Jo J

where

(m-w) (k-z) m k
u= v= M= K=

.#2(1-p2) .,/2{1-p2)’ .,/2(1 p2), /2(1-p2)’
(26)

[(u, v) exp [M(2u-M)+K(2v-K)+2p(u-M)(v-K)].

Gaussian integration is used to evaluate (25) when m, k, p are all nonpositive, i.e.,

(/1 _p2) j

(27) CP(m, k, p) Z Z CCjf(u, v),
’/’/" j=l i=1

(28) m=<0, k=<0, p_-<0,

where Ci are the positive weights and u, vi are the Gaussian abscissae, as given in [9].
Drezner makes the significant observation that f(u, v)-<_l when (28) holds, and
consequently high accuracy can be obtained using (27). For J 5 the maximum
observed error is reported to be 5.5 10-7. If (28) does not hold, the equivalent of (19)
is used with (27), and, in fact, it can be shown that his method requires an erfc function
calculation whenever ours does and vice versa.
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A .comparison of the procedures was carried out by running both programs over a
span of arguments which covered a large part of the plane. The accuracy of the results
agreed within claims made in both methods. However, for 6-decimal-digit accuracy the
Drezner program was about 4 times as slow as ours and about 8 times as slow for
9-decimal-digits of accuracy. This was not surprising because of the large number of
exponentials required by Drezner. For example, for J 5 (6 digit accuracy), it requires
25 exponentials when mkp <-_ 0 and 50 exponentials when mkp > O.

In programming the Drezner method, a need for the limiting values of when
p - 1 or 1 arose. Rounding error can result in p 1 or p 1. The limiting values are
given in [4], but do not appear in [5]. Two typographical errors were also found. In (10)
of [5] 1/2r should be 1//, and in (12) the plus sign should be replaced with a minus
sign in the expression for 8hk.

Acknowledgment. The authors wish to express their thanks to David Hoaglin for
furnishing reference [2] and for helpful suggestions which improved the presentation.
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A MODIFICATION TO THE DISCRETE 11 LINEAR
APPROXIMATION ALGORITHM OF BARRODALE AND ROBERTS*

STEPHEN C. BANKS," AND HOWARD L. TAYLOR

Abstract. A modification to the discrete ll linear approximation algorithm of Barrodale and Roberts
allows the determination of the vector x that minimizes Ilelll / Ilxlll, where e is the residual vector defined by
the linear system Ax + e b. The matrix A is m n, where rn is not necessarily greater than or equal to n.
Computational and storage properties of the unmodified algorithm are preserved.

Key words, ll approximation, 11 norm, linear programming, simplex method, approximation theory.

1. Introduction. Given an overdetermined linear system Ax b, where A (aij) is
m x n with m _-> n, x (xj) is n x 1, and b (bi) is m x 1, the usual 11 linear approxima-
tion problem is to minimize i=1 leil where e=b-Ax. Claerbout and Muir [3]
discussed the desirability, in geophysical applications, of applying objective functions
whose arguments include the magnitudes of the components of both x and e. Taylor,
Banks, and McCoy [4] applied the recommendations of Claerbout and Muir to
geophysical problems involving seismic processing. In so doing, the following problem
arose. Find vectors x and e to

(1) Minimize pileil + A q, lx,
i=1 j=l

subject to Ax + e b,

where _-> 0, and pi, qi > 0 for all i, j. The constants Pi, qi are weighting factors, and the
value of A is chosen according to the particular application. This formulation is
applicable to deconvolution and other pattern recognition and feature extraction
processes [4]. The relative magnitudes of the positive integers rn and n are not
restricted to the case m _-> n. For > 0, if we make the change of variables

e piei, x Aqxj,

and then let

the problem can be written:

piai
bi =pibi,ai-(Aq)’

Minimize Y’, leVI + ]x;I
i=1 j=l

subject to A’x’ + e’ b’,

which is in the form required by the following modified algorithm.

2. The algorithm modification. The following modification to the discrete 11 linear
approximation algorithm of Barrodale and Roberts [1], [2], ACM Algorithm 478,
allows the determination of a vector x that minimizes "i=1 leil/Y’,i=l Ix.l, where the
residual vector e is defined by the linear system Ax + e b. Assuming the m x n matrix
A is suitably scaled, a solution x can be obtained in the case m < n as well as m n. The

* Received by the editors July 20, 1979.
Sun Production Co., Box 936, Richardson, Texas 75080.
Consultant, Box 354, Richardson, Texas 75080.
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modification does not change the capability of the original algorithm to minimize
Y,__ levi when m _-> n.

In order to minimize Y.i--1 lel+Z_- Ixl subject to Ax +e =b, let xj= rj-s, and
ei ui- vi. The objective function is minimized by an optimal solution to the linear
programming problem"

Minimize (r+s)+ , (u+vi)
]=1 i=1

(2) subject to aij(r- s) / ui- vi bi, 1, 2,. , m,

and r, sj, ui, l)i O.

This formulation corresponds to that of Barrodale and Roberts [1], [2] with the
exception of the objective function.

If we assume each bi is nonnegative, then in the initial condensed simplex tableau
of Barrodale and Roberts [1] the marginal costs corresponding to the variables r are

-1.0+ ai, f=l,2,...,n.
i=1

The sum of the marginal costs of r and s. is seen to be -2.0 for each f. So,
regardless of the rank of A, we are not assured that any specific number of xj’s will be
represented by a column vector A.. or -A.. in the final (optimal) basis. Therefore, we
skip Stage 1 of the Barrodale and Roberts algorithm and go directly to Stage 2 (after
setting the counting indices of Stage 1 to their initial values). The algorithm then
proceeds exactly as described by Barrodale and Roberts [1], [2]. Note that the
capability of passing through several simplex vertices at each iteration is preserved, and
the declared storage space required is unchanged.

Additional changes in ACM Algorithm 478 [2] are required for the output. The
solution is feasible after Stage 2 is completed, since Stage 1 was omitted. Each value in
the feasible solution must then be checked to see if it is an x or ei, since these are no
longer partitioned in the final tableau. The sum of the solution values in the final tableau
will be mi=l ]eil/-i=x ]xjl. Finally, the variable that represented the rank of the
coefficient matrix has lost its original meaning.

In order to preserve the algorithm’s capability of minimizing i--1 [e/I, a flagging
parameter can be passed into the subroutine and used to determine if"

(i) -1.0 should be subtracted from the initial marginal cost of each ri,
(ii) Stage 1 should be omitted, and
(iii) the optimal solution checked for feasibility.
One last change makes the original algorithm and the modification more compati-

ble. The original code can be changed so that, independent of the value of A, each
solution value is checked, regardless of its position in the final tableau, to see if it is an x.
or el.

The modification was coded in FORTRAN for use on a CDC Cyber 172, and has
been tested extensively [4].

The problem

(3)

Minimize leil/ [x,I
i=1 j=l

subject to Ax + e b

listing of the algorithm is available from the first author.
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can be solved for x by the algorithm of Barrodale and Roberts when it is formulated as

(4)

m+n

Minimize E d,
i=1

However, the modified algorithm applied to (3) does not require the additional storage
demanded by (4). The reduced data memory requirements are important in handling
large scale seismic processing problems efficiently. We note the problems (3) and (4) are
solvable when m < n.

In some applications [4], it is desirable to force many of the components of x to
zero. This can be done by increasing in (1). As , is increased, the execution time tends
to decrease because fewer components of x will, in general, be brought into the basis for
the optimal solution. The effect of on the solution x can be studied by using
parametric linear programming [4].

Example. A seismic trace b can be modeled as the digital convolution of a spike
train x of length n and a wave w of length k. If noise is added to the convolution we have

(5) x.w+e=b,

where the trace b and the noise term e are each of length m n + k- 1 [3, 4].
The convolution (5) can be given the linear algebra formulation

(6) Ax + e b,

where the m x n matrix A is formed from the wave w by setting

aq Wi-j+l, 1 <= i--j + 1 <-- k

=0 otherwise.

The columns of A are thus shifted copies of the wave w [4]. The vector x is n 1, and the
vectors e and b are m 1.

Traces 1, 2, and 3 in Fig. 1 illustrate the model. The series x of trace 1 is convolved
with the wavelet w of trace 2. Noise is then added and the result is trace 3. Time is shown
in milliseconds (msec) and a sample occurs at time zero and then at multiples of 4 msec.
The series x is of length n 110, or 436 msec. The wave w is of length k 24. The series
b is of length m 133.

We attempt to recover the original reflectivity series x of trace 1 assuming we are
given the wave w of trace 2 and the noisy series b of trace 3. The approach is to find the
vectors x and e that

(7)

Minimize pi[eil + A qilx,
i=1 /=1

subject to Ax + e b,

where , _-> 0, pi, q > 0 for all i, j, A is the wavelet matrix previously defined in (6), and b
is trace 3.

For the results shown in Fig. 1, we let pi 1 for all i, and let
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FIG.

With this choice of qj we only need to consider A e [0, 100] as the optimal solution of (7)
for A > 100 will then be x. 0 for all j.

The optimal solutions x corresponding to A 30, 20, 10, and 0 are shown in Fig. 1
by traces 4, 5, 6, and 7 respectively. These solutions can be improved by using a more
complicated set of weights pi [4]. The importance of the term including , in the
objective function can be seen by considering trace 7, where 0, and comparing it to
traces 4, 5, and 6 which more nearly reproduce trace 1. In our work of this type [4], we
found that [20, 30] produced satisfactory results.
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A TEST OF MOVING MESH REFINEMENT
FOR 2-D SCALAR HYPERBOLIC PROBLEMS*

WILLIAM D. GROPP

Abstract. We present an algorithm for numerically solving hyperbolic equations with moving shock
fronts. The central idea is a moving, finer mesh which follows the shock. Computational results are
presented.

Key words, hyperbolic partial differential equations, finite differences, mesh refinement, shocks

Introduction. The solution of hyperbolic partial differential equations often con-
tains shocks. In solving these problems by finite differences, it seems reasonable to use
a finer grid in the region of the shocks. Since, in general, the positions of the shocks
change with time, the position of the finer grid must also change to follow the shocks.
Further, it may be desirable to use a different method near a shock. For example, a
lower order method may be used on the fine grid to reduce unwanted oscillations in
the solution (Harten and Zwas [4] do this, but they do not use a local refinement). A
conservative scheme could be used near a shock and a simpler scheme used elsewhere.

Similar ideas have been successfully applied to problems where the fine grid
remains fixed in time, for example, parabolic problems [2], boundary layers in
hyperbolic problems [1], [7], and elliptic problems [5]. Grids which change in time
have been used in some gas dynamics computations [9]. In this paper we describe a
program which tests all of these ideas. Using ut+UUx+UUy=O on the unit square as a
simple test problem, we compare its efficiency with a conventional finite difference
method of equal accuracy.

This technique can be applied to problems which contain a shock or other sharp
front, and which are relatively quiescent away from the shock front. Combustion
along a moving front is one example. Shocks in gas dynamics furnish another.
example, though the algorithm presented here offers no improvement for the calcula-
tion of rarefaction waves.

Description of the grids. Two grids are used. One, called the coarse grid, is n n,
with Ax=Ay= 1/(n-1) and At/Ax=). The coarse grid determines cells in space.
Each cell is Ax Ay, with the corners of the cell at coarse grid points. Each cell which
is refined contains a fine grid with mesh size 8x=8y=Ax/(m-1). The time step for
the fine grid is 8t=At/(rn-1), so the ratio 8t/Sx=At/Ax is the same on both grids.
It should be pointed out that Browning, Kreiss, and Oliger [1] have shown that the
coarse grid must be sufficiently fine to represent accurately those parts of the solution
which are not in a refined region. The example at the end of their paper demonstrates
the need for this. Further, they show that if the solution is well represented on the
coarse grid, there will be no problem with waves passing through the coarse grid-fine
grid boundary.

Algorithm. The following steps are followed to integrate the solution from time T
to T+ At.

*Received by the editors September 5, 1979, and in revised form January 24, 1980.
tLawrence Livermore Laboratory, University of California, Livermore, California 94550. Present

address: Department of Computer Science, Stanford University, Stanford, California 94304. This research
was conducted under the auspices of the U.S. Department of Energy by the Lawrence Livermore
Laboratory under contract W-7405-ENG-48.
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(1) Integrate on the coarse grid one time step, saving the values of u on
the grid from the previous time step. For convenience, call the values of u
on the coarse grid at time T+ At the new coarse u-values, and the values of u on the
coarse grid at time T the old coarse u-values.

(2) Using the new coarse u-values, determine where the fine grid will be for the
time step from T to T+ At. This is done by estimating the gradient of u across each
cell. The new fine grid is then composed of two categories of cells. The first category
is made up of those cells across which the estimated gradient is larger than a specified
tolerance. The second category of cells are those cells adjacent to cells in the first
category. The cells in the first category cover the area where the solution is changing
rapidly. The cells in the second category provide a buffer zone which serves to both
isolate the coarse grid from the shock (see step 5) and to leave room for the fine grid
to dissipate oscillations. These oscillations come from the computation of the shock.
We do not want these oscillations to enter the coarse grid. Thus we must leave enough
space between the shock and the coarse grid-fine grid boundary for the viscosity in
the method to damp out these oscillations.

(3) Next, we need the values of u on this fine grid for time T. The cells which are
refined at this time step may or may not have been refined before. If a cell was
refined for the previous time step, we already have the values of u on the fine grid at
time T. Otherwise, we use the values of u at the corners of the cell to interpolate the
values of u for that cell. This is why the old coarse u-values were saved. Because such
a cell is in the buffer zone, the old coarse values of u are slowly varying there, and a
simple first order interpolation scheme may be used.

(4) At this point, the fine grid is integrated from time T to T+ At. A different
type of integration scheme from the one on the coarse grid may be used here if
desired. However, we need to specify boundary values on the fine grid where it abuts
an unrefined cell. At these boundaries, we simply specify the value of u on the fine
grid by using linear interpolation from the old and new coarse u-values. The physical
boundaries at x 0, x l, y 0, and y-=- are handled in the same way for both the
fine and coarse grids. As this is problem dependent, it is discussed in the examples
below.

(5) Finally, for a point which is an interior point on both the coarse grid and the
fine grid, the value of u at T/ At on the coarse grid is taken to be the value of u just
computed on the fine grid. This serves to isolate the values of u on the coarse grid
from a shock. Since the stencil for the integrator is small, if the region of refinement is
wide enough, then the values of u outside the region of refinement will be unaffected
by the shock.

The solution at time T+ At is now complete; the algorithm is repeated until the
desired final time is reached.

The following examples were programmed in FOR:,Aq and run on a CRAY-1
computer without vectorization.

Examples. We tried three test problems with the equation

ut+uu,,+UUy=O, 0<=x < 0<=y < 0<t< 125

Note that under the rotation x’=(x+y)/X/, y’=(-x+y)/V’, the equation be-
comes ut+/ uux,=0; the solutions of this equation are well known [3], [8].

In each example we compare calculations with and without mesh refinement.
Those with mesh refinement are compared to a conventional calculation that pro-
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(0,0]

u=l/2

u=-1/2

[1,0]
FIG 1. Exact solution to Example at T--1.125.

duces the same answers. The boundary conditions for the differential equation are the
values that u would have if the problem was naturally extended into the entire x-y
plane. In all three examples, the coarse grid has Ax=Ay= , and At= . The fine
mesh has 6x=6y= o, o, and ;-. The tables compare the time and space used by
mesh refinement with a calculation using a uniform grid with the same spacing as the
fine grid in the mesh refinement calculation.

Example 1. The initial conditions are:

__<y<- if 0 <_-x <_- - and 0
2’

u(x,y,t=O)= -- if-<x<=land-<y<__l,- otherwise.

The exact solution at T= 1.125 is shown in Fig. 1.
The integrator used on both the coarse and fine grids is MacCormack’s scheme

[6], a second order explicit method. At the boundaries x=0, x= 1, y=0, andy= the
value of u is specified to be the exact solution. A cell is placed in the first category in
step 2 if the change in u across a cell is greater than 0.10. The results of the timing
studies are shown in Table 1; sample plots for T= 1.125 are shown in Figs. 2 and 3.

TABLE

Spacing of Time, Time, with Space saved

finest mesh refinement refinement with refinement

3 sees 21/2 sees -239 words
+/- 27 sees 10 sees 2769 wordsso

54 sees 21 sees 4389 words



194 WILLIAM D. GROPP

FIG 2. Surface plot of calculated solution to Exarrle at T-1.125.

.45000

FIG 3. Contour plot of Fig. 2.



A TEST OF MOVING MESH REFINEMENT 195

FIG 4. Region of refinement at T= 1.125 usedfor calculating Figs. 2 and 3.

Fig. 4 shows the region of refinement at the same time. As can be seen from Table 1,
mesh refinement produces the same results at about half the cost in both time and
space.

Example 2. The initial conditions are:

u(x,y,t=0)=

_<yif0<__x<__ and0 <1

if - <x < and - <y<= 1,

otherwise.

The exact solution to this problem is similar to the solution of Example 1, except that
all of the shocks move towards the lower right (cf. Fig. 1).

The integrator used on both the coarse and fine grids is again
MacCormack’s scheme. The boundaries at x--0 and y =0 are inflow boundaries, and
the value of u on these is specified as the exact solution at all times. The boundaries at
x= and y= are outflow boundaries; the values of u on these boundaries is
computed by upstream differencing. A cell is placed in the first category in step 2 if
the change in u across the cell is greater than 0.03.

The results of the timing studies are shown in Table 2. Again, using mesh
refinement can save as much as 50% of the time and space needed to do a
computation.
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TABLE 2

Spacing of Time, Time, with Space saved

finest mesh refinement refinement with refinement

3 secs 3 sees -654 words
+/- 28 sees 13 sees 664 words80

54 sees 22 secs 3519 words

Example 3. We use the same problem as in Example 2, but with upstream
differencing as the integrator on the fine grid. The boundaries are handled in the same
way. The same criterion is used to decide which cells to refine. This computation
produces a reasonably sharp shock front with no overshooting (Fig. 5) and is less
expensive than a similar calculation without refinement.

Conclusion. It is clear from these examples that this technique can be a valuable
method for hyperbolic problems whose major features are sharp shock fronts. The
savings in time and space that result from using a fine grid only where necessary are
considerable. For a system with more dependent variables the savings would be even
greater because the addition of more variables increases the computation per grid
point but has little effect on the overhead associated with the moving fine grid. By
using a first order integrator on the fine mesh, a sharp clean shock front can be
calculated. For problems with more complicated solutions, the method described in
step two for deciding where to refine could be replaced by a method which chooses
where to refine by estimating the local truncation error, for example.

Acknowledgments. I would like to thank M. Berger, G. Majda, and J. Oliger for
many stimulating discussions. Most of all, the author would like to thank G.
Hedstrom for suggesting the problem to me and for his many useful suggestions and
advice.

FIG 5. Surface plot of calculated solution to Example 3 at T= 1.125.
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AN ALGORITHM FOR COMPUTING THE MATRIX COSINE*

STEVEN M. SERBIN AND SYBIL A. BLALOCKt

Abstract. We present and analyze an algorithm for computing the cosine of a matrix which is based on
the double-angle formula cos 2A 2 cos A I. We discuss the relevance of this computation to second-order
matrix differential equations. We draw the analogy between this method for the cosine and the familiar
scaling and squaring method for computing the matrix exponential. Numerical experiments employing
polynomial and rational approximations to the cosine, in conjunction with the double angle technique, are
presented.

Key words, matrix cosine

1. Introduction. In recent years, extensive work has been done to achieve algo-
rithms for the accurate approximate calculation of the matrix exponential. An
excellent survey of the many and varied approaches to this problem has been done
recently by Moler and Van Loan [4]; of the many methods, one of the more
successful, which proceeds without the determination of the eigensystem, is the scaling
and squaring method proposed and analyzed by Ward [8].

One important interest in this computation is for the solution of the first-order
differential system

(1) y’=Ay, y(0) =y0

where A is a real n n matrix, and y and Y0 are vectors in R". This problem arises, for
example, in the semidiscretization of the heat equation [7].

The purpose of this note, on the other hand, is to consider a scheme for the
computation of the matrix cosine. This scheme seems to be the analogue of Ward’s
exponential method; in particular, it shares the advantage that no computation of
eigenvalues or eigenvectors is required.

The interest in this computation stems from the fact that

cs Atj.o(-.= 1)J(At):J
(2j)!

satisfies the second-order system

(2) Y"(t)+AY(t)=O, Y(0) I, Y’(0) 0.

The corresponding vector-matrix system,

(3) y"(t)+A2y(t)=O,

can be obtained from semidiscretization of the wave equation (cf. [6]). Then, ap-
proximations for the cosine operator, along with analogous schemes for the sine
operator, might be combined to produce schemes for the second-order system (3)
(with general initial conditions) directly, rather than by converting it into an equiva-
lent first-order system of twice the size.

*Received by the editors October 16, 1979. This research was supported by the U.S. Army Research
Office under Grant DAAG 29-78-C0024.

Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37916.
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The problem of computing the matrix cosine solution of (2) has been discussed
by Apostol [1], but his method does require computation of eigenvalues, as well as
solution of successively generated second-order scalar constant coefficient nonhomo-
geneous equations, and so does not appear to be well-suited for large scale problems
and automatic computation.

The algorithm we propose can be applied in principle to any matrix; however, the
case we analyze requires that A be normal and have real eigenvalues (e.g., Hermitian).

2. The double-angle method. The premise of scaling and squaring for the ex-
ponential is that local methods, such as Taylor series or the Pad6 rational schemes,
provide extremely accurate approximations to expA if AII is sufficiently small (but
cannot be used directly for large [IAII). Then, to compute expA for general A, the
matrix is scaled down by an appropriate factor 2, so that a good approximation
r(A/2j) to exp(A/2j) may be determined. Then, since the exponential enjoys the
unique property

(4) { exp( A/2j) }-= expA,

the approximation to expA is obtained by applyingj successive squarings to r(A/2).
The cosine operator enjoys a different, but analogous property. Let us define

(5) Yj= cosA /2N-j, j=O,..., N.

Then, just as in the scalar case, it can be shown easily that

2A
(6) Y+, =cos =2y2-I.

2N-J

This is just the matrix version of the double-angle formula cos20=2cos20 1. The
approximation scheme then becomes

Let Uo=R(A/2n), where R(z) is some (in general,
(7) rational) approximation to cos z; then let

(8) Uj+,=2Uj2-I, j= O, n- 1.

3. Error analysis. We now proceed to consider the error in the approximation.
Since Yv=cos A, we wish to investigate E----Y.-U, j=0 N. Let us first assume
that A is normal. Then, if f is any function analytic on the spectrum o(A), and we
denote by p(A) the spectral radius of A and IIAIIE[P(A*A)] 1/2, it follows that

(9) f(A) is normal, and

(10) Ilf(A)llE=O(f(A))= sup [f(’)l.

If further we assume that A has real eigenvalues, then it follows easily from (10) that
A

(11) Yj" 112 cos
2v-s 2 1.

We make one final assumption: the (rational) approximation R(z) to cos z is chosen
to be analytic on o(A), such that

(12) Ilg0ll2=ll R II==
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Recall that the Chebyshev polynominal of the first kind of degree two is TE(X)=
2x2- 1. It is well known that

(13)

Then, (8) can be written

(14)

sup [T2(x)l=l.
-x<

It follows using (10), (12), (13), (14), and induction, that

u _-< 1, j=0 N.(15)

Now,

Ej+,= Y+,- Uj.+,=(2Y=-I)-(2Uj.=-I)

=2(Yj.+ U)(Y- Uj.) 2(Yj+ Uj.)E,
where we have used the fact that Yj. and Uj. are both analytic functions of A, and so

Yj.Uj.= gY. Taking norms and applying (11) and (15), we obtain

(16) E+ 2 -< 2IIY/ U 2 E 2 -< 411E 2.

From this, an induction gives

(17) Ej
_ -<- 22 E0 2, j- 1,..., g.

Even with the assumptions we have made, this bound appears pessimistic, but it
still yields, with appropriate choice of R(z) and N, in exact arithmetic, approxima-
tions to cos A of arbitrarily close accuracy. (This analysis does not include the effect
of roundoff.)

Of the approximation R(z), we demand

(18) IR(z)[< Vlzl<=n, (stability),

(19) Icosz-g(z)l<__c,,lzl" Vlzl<__g,

with r/,’, C constants. These conditions are met by the usual Taylor and Pad6
approximates as well as by a new family of rational approximates, introduced in [2],
defined by

(20) R(z)= q,5.S)(x)z2a/(1 +x=z=) s,
j=0

with

(21)
S

x2(j_k
k=O (2k)! j-k

Here, x is a free parameter. For x large enough (i.e., x__>x()) with r/infinite, and if z
is real and nonnegative and u=2s+2 in (19), then (18) holds. If O<x<=x(), then rt is
finite and must be determined for each s, but u=2s+4 is achievable (cf. [2]). The
advantage to the approximation (20) lies in the computational efficiency it affords in
the calculation of Rx(A/UV); replacing the scalar z by a matrix argument B=A/2
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requires that we solve

(22) (I+x2B2)R(B) rh}.*)(x)B2.
j=0

Then, performing a direct solution by elimination requires triangular factorization of
only one real matrix. In contrast, the higher order Pad6 schemes require either
factorization of a high order polynomial in B2 into quadratic factors or complex linear
factors, or explicit determination of the high order polynomial, followed by elimina-
tion. As a further remark, we observe that in (20), only even powers of B (hence A)
are.involved. Thus, if the differential equation (2) is actually given by Y" + CY=O, we
never have to compute A C/2.

Under assumptions (18) and (19), satisfied by choosing N large enough, it is easy
to show from (17) that

(23) Ilcos 4 u <-- C2(-)[ o(A)] .
Suppose that 2- _<_ o(A) < 2t. Then, from (23),

(24) Ilcos h- U <= 22N+(-m"
We first require that the order of accuracy in (19) satisfy u > 2. Then in order that the
bound in (24) decrease for u fixed, we choose N>flu/(u-2). For fl 0, any positive
N works. For fl>0, it is easily seen that as , increases, the function g(u)=fl,/(,-2)
is decreasing; thus increasing the order of accuracy (u) results (as we would expect) in
a decrease in the number of steps N needed to achieve a given accuracy. In fact, it is
easily seen from (24) that for any e > 0 we can achieve Ilcos A--UN <-- if we choose
N>(fl,-log2e)/(,-2). Obviously, different choices of N and , are possible to
achieve the same tolerance e. It would be possible to select optimal pairs on the basis
of work estimates for a given e.

The above direct analysis of the absolute error is limited to solutions for which
the terms Y and U remain bounded for all j. A backward error analysis to obtain
relative error bounds, similar to that performed by Moler and Van Loan [4] for the
Pad6 approximations for the exponential, might extend the analysis appreciably, but
the techniques of proof employed by Moler and Van Loan are particular to the
exponential, and the required analysis for our case has not been performed.

4. Numerical results. We have performed many experiments using the double
angle method to compute cos A. We shall present here only a small representative
sample of the results; other experiments are reported in [3]. The experiments we have
run are for relatively small matrices (n__< 10), but the size of the matrix seems to have
little effect on the performance of the method (except, of course, with regard to
execution time). We have tested the method on both normal and non-normal
matrices, but all sample matrices have only real eigenvalues and are diagonalizable.
From the results obtained this far, although normality plays a crucial role in the error
estimation we have done, it apparently is not needed for the successful application of
the method to this class of problems.

We have used for R(z), Taylor approximations of varying orders,

P (-1)9

j=o (2j)!
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TABLE

T2(z) r3(z) T6(z) RSN(Z) Rx(Z)
0’ 6) (, 8) (, 10) (, 6) (,- 8)

.2952(-2) 5301(-4) .2469(- 10) 3972(-2) .8237(-3)

.1639(- 3) .7330(-6) .4552(- 14) .2393(- 3) .1432(-6)

.6181(-6) .1725(-9) .9256(-6) .3634(-8)

.8497(- 11) .9853(- 13) .3613(-8) .2057(- 11)

.3883(- 10) .1301( 10) .2903(- 10)

for which ,=2p+2; several Pad6 schemes, of which we single out the St6rmer-
Numerov approximation

(26) Rsg(Z)=
+z2

, 6;

and, from the family of approximations (20), we select

+ V"15
(27) Rx(Z), s=2, x=

60

for which it can be shown that v=8. Both (26) and (27) are conditionally stable
approximations, i.e., rl finite in (18). It may be that for large problems with widely
separated eigenvalues we might want to go to unconditionally stable approximations
(of. Table 3 below for some evidence).

The test problems have been constructed by applying a similarity transformation
A P-DP, to diagonal D, so that the actual cosine can easily be determined for error
computation (cos A P- cos DP). For the first class of problems, P is orthogonal (a
Householder reflector) so that A is normal (in fact, symmetric). In Table we show
the error, measured for convenience in the matrix norm IlElloo, where E is the
difference between the actual and approximated-by-double-angle cosine. In this case,
n=4 and D=diag{-1, 1, -2, 2}. Recall that N represents the number of times the
double angle formula is applied.

Apparently, for a small problem, the Taylor approximations of high order Work
well, as do the rational approximations used. One can see in the first and last columns
the effect of roundoff error as N increases; eventually, for any method, increasing N
will yield diminishing returns due to roundoff.

In Table 2, we show results of an experiment with n--10, D=diag(-1, -2
10}, A again symmetric.

TABLE 2

N T2(z) T3(z) T4(z) RSN(Z R(z)

1017(4) .2562(3) .3224 .2562(2) .1829(2)
.2881(1) .7218 .5844(-4) .4142(1) .1925(1)
.8957(-2) .5267(-4) .5441(- 11) .2583(-2) .2341(-3)
.3341(-4) .1224(-7) .9906(-5) .6063(-7)
.1302(-6) .7213(-9) .3866(-7) .1780(- 10)
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N

TABLE 3

r(z) s(Z) g(z) g;(z)

.1343(12) .4757(2) .2763(2) .1275

.5197(18) .4372(4) .1535(4) .2089(1)

.9403(31) .1811(14) .6840(12) .1748(1)
1060(1) .2545 .1366 .7562
.1680(-2) .2461(-2) .9206(-4) .7724(- 1)

This example clearly shows the need for scaling; other examples we have tested with
A having larger norm are even more convincing, and show the effect of instability in
the approximation. In Table 3, even for n=2, compare results with the Taylor and
rational approximations to results using (20) with

x =----/1/4 + /1/24
which can be shown to be unconditionally stable, with ,=6. We use D= diag(- 100,
100). Obviously, if N is not large enough, the former approximations exhibit wild
instability, while the latter one, although perhaps not too accurate, does not blow up.
Of course, choosing N large enough brings IIA/2II back into the range for the
conditionally stable methods, where they are more accurate.

Finally, as an example of a problem where A is not normal, we use similarity to
construct A P-DP; but this time P is not orthogonal. In fact,

e

-1 0 0 0
-1 2 -1 0 0

0 -1 2 -1

0 -1 2

In Table 4 we present results for a problem with n= 10, D=diag( __+ 1, __+ 2, 3, 4,
__+ 5), which are qualitatively quite similar to those for the normal (symmetric) case.

We conclude that the double-angle method shows great promise for the cosine
computation, and experiments and analysis should be extended to cases not treated
here. We should mention that we have made some preliminary comparisons of the
double angle method with one suggested by Parlett [5], in which A is first reduced to

TABLE 4

N T2(Z) T3(z) T6(z) RSN(Z) R2x(Z)

.4556(1) .6235 .6797(--9) .5435(1) .3239(1)

.1292 .3337(-2) .5405(--8) .1657 .4522(-- 1)

.4068(-3) .6470(-6) .1313(- 10) .6043(--3) .1329(-4)

.1569(- 5) .2900(-9) .2353(--5) .3427(--8)

.6422(-8) .1053(--7) .2916(--8)
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real Schur form and then an analytic function of a quasi-triangular matrix is
computed one superdiagonal at a time. Our results indicate that both methods arrive
at the same cosine matrix, but no detailed comparison (e.g., work estimates) has been
performed; this should be the subject of future investigation.
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ESTIMATING MATRIX CONDITION NUMBERS*

DIANNE PROST O’LEARY

Abstract. In this note we study certain estimators for the condition number of a matrix which, given an
LU factorization of a matrix, are easily calculated. The main observations are that the choice of estimator is
very norm-dependent, and that although some simple estimators are consistently bad, none is consistently
best. These theoretical conclusions are confirmed by experimental data, and recommendations are made for
the one and infinity norms.

Key words. Matrix condition number

1. Introduction. Cline, Moler, Stewart, and Wilkinson [1] give an excellent exposi-
tion of various methods for estimating the condition number of a matrix

where I]" is some matrix norm compatible with a vector norm. One of the applica-
tions considered is that of estimating x given a LU factorization of a matrix formed
using partial pivoting:

A =LU,
where L is unit lower triangular, U is upper triangular, and all elements of L are
bounded in absolute value by 1. The strategy suggested is to solve two linear systems,

A,c=e,
Ay- x,

and to use y [[/I] x as the estimate for A-ill. Here the vector e is chosen during the
first step of the solution procedure, finding z such that Urz=e. Each element e; is + 1,
with sign to promote growth in the subsequent components of z. A ]1 or A can
easily be calculated exactly, and A 2 can be estimated using, for example, the power
method.

The experiments in [1] show this to be a good algorithm for the one-norm, but the
strategy is norm-dependent as suggested by the following example.

Example. Let A, be the Hadamard matrix of dimension n-2k defined by

=[
0 -2

Ak_ Ak_l ILk_l_. 0

A:_ --Ak_ Lk_ L,_
k>l.

TIt is easy to see that to estimate IIA-II, the choice of e will be such that Aken----e,

*Received by the editors September 26, 1979.
This work was supported by the National Bureau of Standards and the U.S. Office of Naval Research

under Grant N00014-76-C-0391.
Computer Science Department and Institute for Physical Science and Technology, University of

Maryland, College Park, Maryland, and National Bureau of Standards, Gaithersburg, Maryland.
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where e is the nth unit vector. Then y=A;le,,=e/n, and we obtain the estimates

IIA-1II1 -1, A- l-- 1,

A-l zl//-, 11A-l[12= 1,

llA-lllooI/n, A I.

Although the one-norm estimate is exact, the infinity norm estimate is off by a
factor of n.

2. Methods. To study the behavior of norm estimates, we develop some basic
relations. Recall that the one-norm of a matrix is the maximum absolute column sum:
if a matrix B has columns bj. with components bij. then

IIBxllB I1-- max max bi:l max bf’y,
x0 Ilxlll :=l i=1 j--1

where Yj is a vector with components 1, with signs chosen to match those of bj. Also
recall that B Br

1. The strategy defined above is designed to produce a vector
x which is close to being a maximizer for Bx ]1/]] x ]], where B=A- 1. In the course of
computing the vector x, another estimate, based on the sizes of the vectors e and
x= Bre, is available for the condition number. Let

= Ilyll,/llxll,

too fly IIo/II x ,

oo- Ilxll,/llell,,

where the first two estimate A-1l[ and the last two estimate A -1][ oo- Then

j=l

H

H J=l

(b:e)bij
j=l

1---

j=l

max
i-- n

(bjT. e)bij
j-I

i--1 n
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From this we obtain the relationships

V j=l

LI (.bfe) bij
j---1

n

Pl

n j----1

max
i--1 n

n(bjT’e) I--bij
"=1

The third relation says that the improvement gained by solving the second linear
system, Ay=x, is greater for the infinity norm estimate than for the one-norm
estimate. The second relation says that the first one-norm estimate is an upper bound
for the first infinity norm estimate. For a symmetric matrix the two norms are equal
and so the one-norm estimate is always more accurate. (No such relation exists
between the estimates/ and/.) The first equation gives the relation between the
two one-norm estimators.

Unfortunately none of the estimators can be labeled as best. The estimate v
(respectively, v) is sometimes greater than g (/z) and sometimes less. Because of
this, estimators which use all the information might be more useful:

Pl =max(, v),

p max(/, v).
To gain a better understanding of the behavior of the condition number estima-

tors, tests were performed on matrices with elements taken from a uniform distribu-
tion on [-1, 1]. The LINPACK [2] routine SGECO, which factors a matrix and
returns an estimate of the condition number based on , was modified to compute all
of the estimators. LINPACK’s SGEDI was used to compute the inverse so that

A-Ill could be calculated for comparison. Test results are summarized in Tables
and 2. Results for 5 =< n <= 50 were obtained using 100 matrices of each dimension n. A
distribution-free method gave confidence intervals for the medians [3]. From this data
we make the following observations"

(1) For small n(n<20), Vl produced a better estimate than the LINPACK
estimate in over 50% of the trials. For larger n(n=50) the estimate was
better approximately 80% of the time.

(2) The estimate 01, the maximum of these estimates, was a noticeable improve-
ment over both v and/ for small n.

(3) For each set of trials, the estimate v had a higher maximum than/l (except
on symmetric matrices of dimension 50), and a lower minimum (except on
general matrices of dimension 5). For small matrices v was often exact

(l! A-a lit- in 42 trials out of 100 for n 5) and for such matrices,/ was
often 30% smaller.

(4) The first estimate of the infinity norm, v, was unreliable and the second was
almost always better.
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TABLE 2
99% confidence intervalsfor the medians:for trials on general matrices

5 .80- 1.00 .67-.73 .83-1.00
10 .60- .80 .57-.65 .67- .80
20 .42- .55 .50-.57 .54- .61
30 .33- .50 .46-.52 .48- .56
40 .23- .34 .41- .49 .41- .50
50 .23- .33 .43-.49 .44- .50

(5) The infinity norm estimates had consistently larger relative error than the
one-norm estimates.

(6) Results for matrices with elements randomly 1, 0, or were similar to those
tabulated.

3. Conclusion. An inexpensive algorithm to estimate the one-norm of A- using
an LU factorization of A, is:

(a) Solve Arx =e where e is chosen as described above. Let , x oo.
(b) Solve Ay x and let 1 y Ill/II x .
(c) Estimate 114-111 by tg =max(vl,/Z).

This costs only n comparisons more than the LINPACK algorithm and gives more
reliable results for small matrices.

To estimate the infinity norm of A-l, the above algorithm should be applied to
the matrix Ar. This gives better results than the procedure formed by interchanging
the roles of the one and infinity norms in the three steps above.

Acknowledgment. This work benefited from helpful comments of G. W. Stewart.

REFERENCES

A. K. CLINE, C. B. MOLER, G. W. STEWART, AND J. H. WILKINSON, An estimate for the condition number
of a matrix, SIAM J. Numer. Anal., 16 (1979), pp. 368-375.

[2] J. J. DONGARRA, C. B. MOLER, J. R. BUNCH, AND G. W. STEWART, LINPACK Users’ Guide, Society for
Industrial and Applied Mathematics, Philadelphia, 1979.

[3] WILLIAM J. MAcKINNON, Table for both the sign test and distribution-free confidence intervals of the
median for sample sizes to 1000, J. Amer. Statist. Assoc. (1964), pp. 935-956.



SIAM J. SCL STAT. COMPUT.
Vol. 1, No. 2, June 1980

(C) 1980 Society for Industrial and Applied Mathematics

0196-5204/80/0102-0006 $1.00/0

USE OF THE SINGULAR VALUE DECOMPOSITION WITH THE
MANTEUFFEL ALGORITHM FOR NONSYMMETRIC LINEAR SYSTEMS*

PAUL E. SAYLORf

Abstract. Optimum Chebyshev parameters may be computed dynamically by the Manteuffel algorithm
for use with a generalization of Richardson’s iterative method and the Jacobi semi-iterative method to solve
nonsymmetric linear algebraic systems. The algorithm determines the convex hull of eigenvalues of a matrix
associated with the system and from the convex hull determines the parameters. The singular value
decomposition may be used to test the reliability of a simple technique to reduce execution and storage
costs of the power method. The same technique also yields an inexpensive singular value decomposition,
making it feasible to determine precisely when to call the Manteuffel algorithm.

Key words, singular value decomposition, Manteuffel algorithm, nonsymmetric, linear algebraic equa-
tions, Richardson’s method, Jacobi method, eigenvalues, power method, matrix

1. Introduction. The main concern here is the efficient use of the Manteuffel
algorithm [11] for computing Chebyshev parameters to accelerate the iterative solu-
tion of a real nonsymmetric system of linear algebraic equations, Ax= b. There are
two objectives. One is to determine when to call the Manteuffel algorithm; the other is
to reduce the costs of execution and storage. A result of knowing when to call the
algorithm is that the iteration takes fewer steps.

Chebyshev acceleration parameters are computed from the convex hull of eigen-
values of A or M-1A, where M results from a splitting [2] of A. Eigenvalues are
obtained from the power method, which, for a real square matrix B with a single
dominant eigenvalue, is based on the observation that under the proper assumptions
the Krylov sequence (yj:yj=BJyo,O<=j<=k) tends to that eigenvector corresponding
to the dominant eigenvalue. A dominant nonreal eigenvalue of a real matrix is not
unique because eigenvalues and the corresponding eigenvectors appear in conjugate
pairs. A dominant nonreal eigenvalue would cause Yk, for large enough k, to be a
linear combination of two eigenvectors, one the conjugate of the other. If so, Yk, Y,+ l,

and Yk / 2 are linearly dependent. The coefficients expressing linear independence,

(1) OYk+TlYk+l +’/2Yk+2 0,

are seen to be the coefficients of a polynomial whose roots are the dominant
eigenvalue and its conjugate. A least squares solution of the overdetermined system
(1) yields the coefficients 17, p. 580].

The computation is less expensive and takes less storage if fewer, randomly
selected components of Yk, Yk+ l, Y+2 are used, which is equivalent to replacing

Yk+ 1’ Yg+2 in the overdetermined system by their projections, P(Yk), P(Yk+ 1), P(Yk+2)
onto a subspace (cf. [9]). The projections must also be linearly dependent.

The linear dependence of a set of vectors, (Vl,..., vp}, is equivalent to the
existence of a zero singular value of the matrix (Vl--. vp). The question of whether
P(Yk), P(Y,+I), and P(Y,+2) yield satisfactory eigenvalues reduces to a test of the
smallest (in magnitude) singular value of the matrix, D, with these column vectors.
Other tests are possible. As an alternative one could determine the rank of DrD

*Received by the editors September 12, 1979, and in revised form March 27, 1980. This research was
supported in part by the National Science Foundation under Grant NSF 76-81100 and NSF 79-06123.

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois
61801.
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(suggested by Manteuffel [12. p. 189] for a slightly different application), but an
efficient, stable algorithm due to Businger and Golub [1] is available to compute
singular values and is generally superior [13, p. 382] to this approach.

If the smallest singular value is too large, that is, if the column vectors of

(2) (PC.v,,), PC.v++,), PC.v+++))

are independent, there is no information in the singular values to suggest whether it is
because k should have been larger or because the projection was onto a badly chosen
subspace. The smallest singular value is like clinical temperature, which may show
that a patient is sick, but gives no diagnosis. Linear dependence results in the limit as
k increases if the matrix is not defective. However, linear dependence does not
necessarily mean that the dominant eigenvalue or any eigenvalue can be approxi-
mately computed, for it is possible, although unlikely, that P(y,)=0 for all k. Even if
P(Yk) is nonzero, the dominant eigenvalue cannot be computed unless P(y,) has a
nonzero component along the projection of the dominant eigenvector. Despite what
could go wrong, it is not unreasonable to dismiss these risks. First, the eigenvalues of
interesting, application-derived matrices may be assumed to be distinct, which assures
that the matrix is not defective. Second, it is improbable that there would be no trace
of the dominant eigenvector in P(y,).

In practice, rather than test the smallest (in magnitude) singular value to
determine linear dependence, the ratio of the smallest to the largest (in magnitude)
should be tested. If there is linear dependence, the next step is to solve the least
squares problem, which may be done at no additional cost by using the singular value
decomposition.

No theoretical study is presented here of the problem of how small a number of
components would be satisfactory, although numerical experiments are presented to
support the technique. If the dominant eigenvalue were real and approximated by the
least squares solution, "0, of

then 3’0 would be a weighted mean of the ratio of the components of P(y,+ ) and
P(y,). It is a familiar statistical sampling problem to compare the mean of a sample
to the mean of the population. The problem of eigenvalue accuracy is thus a variant
of the mean sampling problem.

Current implementations of the Manteuffel algorithm compute new eigenvalues
after a fixed number of steps of the power method, a costly strategy if the eigenvector
estimates are mature after fewer steps. Linear dependence should be monitored in
order to compute new eigenvalues precisely when they are accurate. If the number of
rows of D were small, it would be economical to compute singular values for this after
each iterative step, and so new eigenvalues could be computed precisely when they
were available, resulting in an efficient iteration. Computing singular values to
monitor linear dependence thus yields two benefits: lower overhead in executing the
Manteuffel algorithm, and fewer iterative steps.

The basic facts about Richardson’s method are presented in 2, and the tech-
niques to estimate iteration parameters dynamically (the Manteuffel algorithm) are
explained briefly in 3. Richardson’s method is used to explain the dynamic compu-
tion of parameters in the Manteuffel algorithm and the relation of the power
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method to matrix iterative methods, but the Manteuffel algorithm can be applied to
other iterative methods as well, for example, to the Jacobi semi-iterative method [16],
[19]. In practice, Richardson’s method is often used with a matrix splitting [2], [16]. In
the remainder of the paper, details of the power method and the technique of using
the singular value decomposition are presented, together with the results of numerical
experiments.

2. Richardson’s method. The basic iteration is a gradient procedure,

(3) x (’ + 1)= X(k)_ tk( Ax(g) b ).
The error, defined to be e(k)--X--X(k), satisfies

(4) e(’)= ( I- t,_ ,A )e(’- ’)= R,(A )e),
where

Rk(,)=(1--tk_,,)’’’ (l--t03,),
called the residualpolynomial[14, p. 6], is such that

(5) Rk(0) 1.

For A nonsymmetric with eigenvalues in, say, the right halfplane, the gradient
procedure converges if Rk(x) P,()), where

P,(,) Tk[ (d- X /c T(d/c ),
and where T, is the Chebyshev polynomial of degree k. P, will be called the
Chebyshet residual polynomial. The resulting iteration is called Richardson’s method
[19]. Parameters d and c are such that d is the center and d+_ c are the loci of a family
of ellipses such that one member contains the eigenvalues of A and lies in the fight (or
left) halfplane. The minimax polynomial is that polynomial, subject to (5), whose
maximum modulus over any ellipse of the family is less than or equal to the maximum
of any such polynomial over that ellipse. If d and c2 are real, the Chebyshev residual
polynomial either is the minimax polynomial or else approximates it asymptotically
[11, p. 315]. (A negative c2 means a vertical major axis.)

The Chebyshev residual polynomial depends on the center and focal length of
the enclosing ellipses. Optimal values of the center and focal length are determined by
the convex hull of the eigenvalues, which may be computed dynamically by the power
method, as explained next. (Richardson’s method in the form above, (3), is awkward
and unstable, but convenient for discussion. Another version of the iteration [11, p.
316] is recommended in practice.)

3. Dynamic estimation of the eigenvalues. The residual error at step k,

r (k) b -Ax() Ae(k)

satisfies

r(’>=P#(A)r(>,
analogous to (4) for the error. For large k, Pk(X)’[M(X)] k, where M(X)=(d-X+
[(d-X)2-c2]l/2)/[d+(d2-c2)l/2], an approximation which follows from T,(w)"
ekcsh-’’/2. Therefore,

r() M(A)]’r(o).
Vectors r (k) thus are the iterates of the power method applied to the matrix M(A). If
/z and 1 are the dominant eigenvalues of M(A) corresponding to eigenvectors v and
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x

FIG 1. The eigenvalues of A must lie in an ellipse with center d and foci d+_ c contained in the right (or left)
halfplane.

Fl, which are also eigenvectors of A, then r (k) is approximately a linear combination
of vl and 61 from which/ may be computed. An eigenvalue, X, of A is the solution
of ttl=M(l). This summarizes the method by which the Manteuffel algorithm
computes eigenvalues dynamically [10], [11], [12] (cf. [9], [18]).

4. The power method for a nonsylmnetric matrix. Let B be an n n nonsymrnetric
real matrix with a dominant complex eigenvalue X corresponding to eigenvector
Complex eigenvalues and eigenvectors occur in conjugate pairs. Assume for conve-
nience that B is nondefective, that is, any vector Y0 may be expressed as a sum of
eigenvectors,

Y0 fllvl +/31l +
If fll V0, multiplication by Bk yields

(6) yk= Bkyo fll]Vl +/lXlrl +-.-,
in which the dominant term is a sum of two eigenvectors. An estimate of )1 may be
computed from y, and two additional terms, Yk+ and Yk+ _, by a method [17, p. 580]
which follows from the observation that if 3’0 and 3’1 are the coefficients of the
polynomial p2(X)’- (k-- Xl)(X--Xl)-" y0 +’)/l x q_2, then

(7) ’oY, + "rl Y, + 1-2_ -y,+ 2"

Values of Y0 and "l that make the left side nearly equal the right are therefore
approximate values of the coefficients of p2(X). This is an overdetermined system in
two unknowns, % and "/1, a solution of which may be computed from the method of
least squares. The solution of the least squares problem is only an approximation to
the coefficients of P2. Nevertheless, the same symbols are used to denote the solution.
For convenience, only the computation of 1 and ;k is discussed here. In practice the
power method is used to compute at least four eigenvalues at a time [9, p. 18].

Let E-’(yk, Yk+l) be the n2 matrix of system (7). Thus,

The least squares solution is the solution of the 2 2 system of normal equations
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The work required to form the normal equations is 5(n-1) multiplications, which
takes into account the symmetry of ErE.

Equation (7) is not necessarily the proper way to state the least squares problem,
but this form is the one followed elsewhere [10], [12]. Also, it is well known that a
solution of the normal equations is not as accurate as a solution obtained from the
QR decomposition.

The failing of (7) is an overemphasis on the coefficient ofy/2, which is assumed
to be unity. An unbiased formulation of the least squares problem is as follows.
Compute the least squares solution of

(8) Dc=O

subject to

(9) c I 1,

where D=(y,, y,+ l, Y,+_) and cr= (3’0, 3’1, 3’2).

5. A reduction in the work to solve the least squares problem. To reduce the work,
a subsystem of equations could be selected from the overdetermined system (8) at
random, and the method of least squares applied to the subsystem. In this instance the
number, n, of equations, or statistical observations, is so much greater than the
number of parameters, 3’0, 3’1 and 3’2, that one can reasonably expect variations about
the true value of the parameters to be uniform for a smaller number of observations.
Reliability of the technique may be checked by computing the singular value decom-
position of the subsystem.

Let i, 7i, T/i be the ith components of y,, y,+ l, Y,+2 respectively. The least
squares solution of (8) will be approximated by the least squares solution of a smaller
system

subject to the same constraint (9). Whether the number of equations is adequate may
be determined in a precise way. If there are no subdominant eigenvalues, the column
vectors P(Y,)=(Ii,,’", rti,)r,P(Y,+)=(qi,, li,)r, and P(yk+z)=(rti,, ,rti,)r
are linearly dependent. Therefore the matrix

has a singular value zero If the system is small, it would be economical to compute
the singular values as a check on accuracy.

There is an obvious alternative test of convergence of a sequence, ((), of
approximate eigenvalues, namely, to compute and halt when this
ratio is less than some prescribed value. The singular value test is preferable because it
determines convergence of the coefficients of the polynomial of which ;k([’) is a root
without any comparison to previous values. In a practical code, one may not want to
compute eigenvalue approximations at each step but rather after, say, every five steps.
It may well happen that X’-5) is a rough value while X’) is accurate, and so the
alternative test could fail.
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6. The singular value decomposition and the least squares problem. Any lp
matrix, D, may be decomposed in the form

where U is an lp orthogonal matrix, E=diag(ol,..-, op) is a pp diagonal matrix,
the diagonal elements of which are the singular values, and V is a pp orthogonal
matrix [5], [6], [13]. This is called the singular value decomposition (SVD). The ratio of
the largest (in magnitude) singular value to the smallest measures the linear indepen-
dence of the column vectors of D. The SVD reduces the question of linear indepen-
dence to a single quantity, the ratio of the extreme singular values.

The singular value decomposition now yields the solution of the least squares
problem,

(11) Dr 2 minimum

subject to

(12) c 2 1,

where cr=(-r,0, yp_ 1). To express the solution, assume that the singular values of
D are sorted in descending order of magnitude, with oe the smallest singular value [3,
p. 11.4]. The solution of the least squares problem

:112-- minimum

subject to

112 1,

is 6=(0,... ,0,1)r. The solution of the least squares problem (11), (12) is c= Vr. The
kpapproximate eigenvalues are the roots of Y0 +"" + 7p-l

7. Numerical experiments. Two matrices were used in a set of numerical experi-
ments, the tridiagonal heat flow matrix, [-1,2,- 1]nxn and a test matrix of P.
Eberlein [4], which is a 16 16 real matrix with complex eigenvalues. The purposes of
the experiments are to compare the ratio of the singular values to the relative error of
the eigenvalue approximation and to compare the eigenvalue accuracy obtained from
all components of the iterates to the accuracy obtained from a small number of
components. In each experiment the components of the initial iterate, Y0, were
randomly generated.

The experiments are numbered to correspond to the figures. Experiments (2)
through (5) were made with the heat flow matrix. At each step of the power method,
an approximation to the dominant eigenvalue was computed from the matrix
(P(Y,), P(Yk+ 1))" In each of Figs. 2 and 3 there are two curves, one the relative error
in the approximate eigenvalue, and the other, the ratio of the smallest singular value
to the largest singular value. The matrix is 64 64 (n=64). In Fig. 2, the singular
values and eigenvalues are computed from all the components, whereas in Fig. 3 only
four randomly selected components are used: P(Yk)=(Yk,5,Yk,27,Yk,33,Yk,62)" In both
figures, relative error is correlated with the ratio of singular values.

In a practical code, one would not necessarily want to compute singular values at
each step. Experience suggests that a computation every five steps is sufficient.
Current implementations of the Manteuffel algorithm compute eigenvalues every
twenty steps. Suppose we not only compute the SVD, and new eigenvalues if needed,
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every five steps but also keep the work the same as now used by the Manteuffel
algorithm, which is 5n multiplications to compute one eigenvalue and 14n to compute
two, where n is the number of unknowns. If D is an lp matrix, it takes lp2-p3/3
multiplications [3, p. 9.21] to compute the QR decomposition of D, which is of the
form D= QR, where Q is np and R is p p. The singular values and right singular
vectors of R are the same as for D. Since R is a pp matrix, the additional work to
compute the SVD of R is negligible if p<<n. The total work will be taken to be lp2

multiplications. In experiment (3), the value l=4 is 6% of n=64.
The amount, 6%, is not a lower limit. In experiment (4), l is 1% of n(n---500). The

approximate values obtained from five components oscillate around the values
obtained from five hundred components. One would expect the five-component
values to be less accurate, but for most steps they are more accurate. Even when the
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FIG 3. Comparison of the ratio of the smallest to the largest singular value (solid line) with the relative error in
the eigenvalue (dashed line). Number of components ofyk =64; number of components of P(yk)----4.

five-component values are less accurate they are still satisfactory. The oscillations
smooth out if more components are used, as exemplified in Fig. 5.

The last two experiments were made with the Eberlein matrix. Fig. 6 shows that
four randomly selected components may yield approximate eigenvalues almost indis-
tinguishable from the sixteen-component approximations.

The dominant eigenvalues of the Eberlein matrix are 60_20i. An eigenvalue of
this magnitude causes a scaling problem in the matrix D=(P(y+2) P(Y+ l), P(Y)).
If Y 2 1, then Y+2 2

-" 60= + 202-- 5200. The largest singular value of D will be
roughly distorted by five thousand.

In general, of course, the magnitude of the dominant eigenvalue is unknown. The
column vectors of D should be normalized to have unit magnitude, but then the
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FIG 4. The effect of a small number of components on the eigenvalue relative error for the heat flow matrix.

n=500, 1=5.

eigenvalues could not be computed from the scaled matrix. To explain more precisely,
let S be the diagonal matrix of scale factors such that the columns of DS are of unit
magnitude. Linear independence should be determined from the singular values of DS
whereas eigenvalues must be computed from the matrix of right singular vectors of D.
Both computations may be performed at regligible cost, except that required to
compute S, if it is assumed that p<<n. For, let D QR be the QR decomposition of D,
where R is p p. The singular values of DS are the same as those of RS, and the right
singular vectors of D are the same as those of R. Two SVDs have to be computed,
but, since p<<n, the extra work is only that required to compute S, which for the
2-norm is pl multiplications. If the total work, which is now lp2+ lp multiplications, is
to be the same as for current versions of the Manteuffel algorithm, then l must be 12%
of n (when p 5).
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FIG 5. Oscillations in the eigenvalue relative error are smoother for 1= 50, n 500. The heat flow matrix.

8. Conclusion. Richardson’s method employs Chebyshev acceleration parameters
determined by the convex hull of eigenvalues of the residual polynomial matrix. The
Manteuffel algorithm, which estimates parameters dynamically, performs two basic
operations: It computes the convex hull by the power method, which requires a least
squares procedure; and it computes the best parameters from the convex hull.
Computation of the best parameters is inexpensive once the eigenvalues are known.
The cost of the Manteuffel algorithm is in the solution of the least squares problem.
Examination of a method to reduce execution time and storage requirements for the
least squares problem by using fewer components of the power method iterates shows
that the method works if the projected iterates, which form the columns of matrix D,
are (approximately) linearly dependent. The singular values of D may be used to test
linear dependence and at the same time provide the solution of the least squares
problem. This summarizes the paper except for the results of numerical experiments.
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If fewer compoments are used, there are fewer rows of D and the singular values
are inexpensive to compute. Singular values have allowed the use of fewer compo-
ments, but now fewer components allow the free use of singular values. Inexpensive
singular values could be computed after each iteration to test whether new eigenvalues
and therefore improved acceleration parameters are ready. Testing singular values
displaces the old strategy of waiting a fixed number of iterations before improving
acceleration parameters. The Manteuffel algorithm now falls in step with the iterative
method further enhancing convergence.
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comments; to Gene Golub and the referee of another version of this paper, who
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TETRAHEDRAL FINITE ELEMENTS FOR INTERPOLATION*

OSCAR BUNEMAN

Abstract. A uniform, space-filling array of tetrahedra is described whose vertices form a body-centered
cubic grid. The symmetries of this system make it, in a sense, more isotropic than alternatives. Linear finite
elements over this array result in a 9-point Laplace operator. Their use for interpolation of spectral data is
studied, and the best mean-square fit to any harmonic is obtained; RMS errors are calculated. Aliassing
limits are determined: this occurs outside a rhombic dodecahedron in wave-number space. An economical
scheme is described for using FFT’s to link discrete spectra with records over a tetrahedral mesh. Finally,
the logic of tetrahedral indexing and the evaluation of the weights for interpolation are merged into one
compact algorithm.

Key words, finite element, tetrahedral interpolation, body-centered cubic lattice, aliassing, spectral
methods, tent function

1. Introduction. The motivation for this work arose from a need to minimize table
look-ups for function evaluations in three dimensions. In a parallel processor (such as
the CRAY), data retrieval from memory can only be vectorized if the data are
adjacent or equi-spaced; in general, the look-ups have to be done one by one in scalar
mode.

Rather than evaluating functions locally from a large data base, using high-order
interpolation or high-order splines, one turns to low-order interpolation, from a
minimal data base. Trilinear interpolation in three dimensions (linear in x times linear
in y times linear in z) requires eight data look-ups. A genuine linear interpolation in
three dimensions, involving no products of coordinate variables (approximant ax + by
+ cz + d), requires only four data. One therefore aims at making up the approximant
from piecewise linear finite elements, defined over a tetrahedral mesh, with continuity
between adjacent tetrahedra.

This latter feature is guaranteed by pegging the linear approximants to the
vertices of each tetrahedron; this process is described in texts on finite elements such
as Zienkiewicz [1]. On the triangular faces between adjacent tetrahedra the approxi-
mants are both the same. However, it is important to realize that making the tabulated
values at the vertices identical with those of the function to be interpolated may not
be the best choice ("best" in the sense of optimal mean-square fit). Fig. illustrates
the case of two-dimensional triangular interpolation; in the case of the convex
function shown, it obviously pays to raise the vertex data a little above the function
values. Section 6 below is devoted to the problem of determining the best fit when the
spectral composition of the function is available.

Finding the tetrahedral finite elements which best interpolate a given function is,
obviously, a typical Galerkin type problem. Having decided on a particular choice of
finite elements, one can, however, explore and exploit their use for other variational
problems, such as those associated with partial differential equations. In 4 we
consider the Laplace problem as an example.

The choice of suitable tetrahedra is the first concern of this paper. It is not a
trivial one. We do not assume any prior knowledge of the features of the function to

*Received by the editors August 22, 1979, and in final form March 18, 1980.
Institute for Plasma Research, Stanford University, Stanford, California. This work was supported by
the U.S. Department of Energy.
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FIG 1. A convex function of 2 ariables approximated by triangular finite elements.

be interpolated (i.e., where it varies slowly or rapidly), and so our set of tetrahedra
should be uniform in space. Also, we aim at "isotropy" in the sense that any system of
axes which serves to define the tetrahedra should possess a high degree of angular
symmetry. To make clear what is meant, consider again the two-dimensional ana-
logue. Cartesian axes, and any interpolation scheme based on them, will have 4-fold
angular symmetry. A mesh of equilateral triangles, on the other hand (Fig. 11), has
6-fold symmetry, and it could be considered "more isotropic." A choice of triangles as
shown in Fig. 2, however, has only 2-fold angular symmetry: all the diagonals run
between NE and SW, and none between NW and SE. (Surprisingly, when these latter
triangles are used as finite elements for the Laplace operator, one is led to the familiar
5-point operator which has 4-fold symmetry; see P61ya [2]).

The uninitiated will want to take a cue from the two-dimensional situation, and
suggest a mesh of regular tetrahedra for interpolation. Unfortunately, there exists no
close packing of regular tetrahedra, as crystallographers well know (see, for instance,
[3]). The three-dimensional analogue of what is shown in Fig. 2 is undesirable because
of its lack of symmetry, although here, again, the Laplace operator becomes the
familiar 7-point operator which has the same symmetries as the Cartesian axes.

After experimentation with a variety of other configurations, the author eventu-
ally homed in on a tetrahedral mesh which is embedded into a body-centered cubic
mesh as indicated in Fig. 3. The full array of tetrahedra is generated by drawing the
lines for a regular Cartesian cubic mesh, then drawing the lines for the parallel mesh
of the cube centers, and, finally, drawing all the space diagonals (these are common to
the cubic meshes).

FIG 2. Triangular linear finite elements leading to the 5-point Laplace operator. Dotted area: domain of
influence of single entry.
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FIG 3. Tetrahedral mesh connecting cube centers and cube corners, with two of the tetrahedra errhasized.

2. Some features of the tetrahedral mesh. Taking the side of the original Carte-
sian cubic mesh as two units of length, the tetrahedra have two edges of length 2 and
four of length /3. Their faces are isosceles triangles set at right angles to each other
in pairs. The two long edges are parallel to two of the Cartesian axes, the third
Cartesian axis is parallel to the line connecting the centers of these two long edges.
The short edges run parallel to the four space diagonals of the Cartesian mesh.

There are 6 significantly different orientations of these tetrahedra. The prototype
is shown in Fig. 4. The long edges are parallel to x and z, and one proceeds in the +y
direction from the midpoint of the side parallel to x, to the midpoint of the side
parallel to z. This orientation, then, we shall define as the "x-y-z" orientation. The
tetrahedra emphasized in Fig. 3 are, accordingly, in the "z-x-y" and "y-z-x" orienta-
tions, the latter meaning that proceeding in the positive z-direction takes one from the
middle of the long edge parallel to y to the middle of the long edge parallel to x. The
six permutations of x,y,z provide the six distinct orientations. Isotropy is assured by
the fact that each orientation occurs with equal frequency.

At each meshpoint, 24 tetrahedra meet, 4 of them in each of the 6 orientations.
There is no discrimination between the lattice points of what we introduced, for
purposes of explanation, as the "original" cubic lattice, and the lattice of cube centers.
They are like the Cs and C1 atoms in a cesium chloride crystal (see Fig. 5b), but it
doesn’t matter which is which. In two dimensions, Birdsall et al. [4] have found it
beneficial to introduce information at the centers of a square mesh, and thus to create
two "interlaced" square meshes. They then use bilinear square interpolation over each
of these, and form the arithmetic mean of the results.

3. Domain of influence: tent functions; random walks. An important feature of
any finite-element mesh is the "domain of influence" of a single entry. Suppose one
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FIG 4. Prototype tetrahedron in orientation "x-y-z" AB CD 2 units, AC-- CB BD DA "v units.

FIG 5. The crystal structure of (a) sodium chloride, Co) cesuim chloride. From A. F. Wells, [3].

FIG 6. Bilinear interpolation in 2 dimensions: interpolant due to a single nonvanishing entry.
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has a table of data in which all entries vanish except one. Interpolation will then result
in zero values over most of space. Only the tetrahedra which share the point of a
nonvanishing entry will contain nonvanishing interpolated values. Going back into
two dimensions, one can illustrate the interpolating function over a plane; for
instance, for standard bilinear interpolation over Cartesian square mesh (linear in x
times linear in y) one gets what is shown in Fig. 6 (note the curvature in the surface
generated from the products). For the triangular mesh shown in Fig. 2, the interpolant
looks like a teepee with (nonregular) hexagonal base. For an equilateral triangular
mesh, one gets a teepee with a base in the form of a regular hexagon. Fig. 11
illustrates such a "tent" function over a hexagonal base, together with contour lines
which are nested hexagons. In three dimensions, we can only indicate the shape of the
base to which nonvanishing interpolated values extend. This base surrounds the point
of the nonvanishing entry. For the generalization of the mesh of Fig. 2 into three
dimensions, one finds a domain which is strongly elongated along one of the space
diagonals, shown in Fig. 7. It was this grossly anisotropic domain which made the
author reject the associated tetrahedral mesh.

The new tetrahedra lead to a more isotropic domain of influence, namely the
region covered by the 24 tetrahedra that meet at one point. The solid formed by these
is a "rhombic dodecahedron." Fig. 8 shows this interesting solid, and how it envelops
the cube which surrounds the point of nonzero value. Fig. 9 shows another view, and
how the dodecahedron can be generated by translating a parallelepiped along its own
diagonal. Obviously, we are much closer to a "sphere" of influence here than with the
domain shown in Fig. 7. Also, there would seem to be an improvement in isotropy
over the cube, which is the domain of influence for conventional "tri-linear" interpo-
lation over a Cartesian mesh. In this very loose sense, then, we have progressed
toward isotropy. (The rhombic dodecahedron will be encountered again in the section
on aliassing).

Inside the domain of influence one has nonvanishing function values distributed
as follows. The 24 linear finite elements generated by a single nonvanishing entry
make up a continuous piecewise linear function of x,y,z, which can be visualized in
terms of a nested set of rhombic dodecahedra, centered on the vertex where the

FIG 7. Domain of influence for tetrahedral elements aligned along the + + + diagonal.
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FIG 8. Domain of influence for tetrahedral mesh shown in Fig. 3: rhombic dodecahedron, to be constructedfrom
two cubes. From A. F. Wells [3].

A

FIG 9. Rhombic dodecahedron: construction from parallelepiped with sides along three body-diagonals OM, OJ,

OD, translated along fourth body diagonal OC.
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FIG 10. Top-hat and triangle functions.
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nonvanishing entry occurs. On each of these nested surfaces the function adopts a
constant value. From surface to surface the values rise linearly inwards toward the
center, starting with zero on the outermost rhombic dodecahedron. We shall refer to
this function as a "tent function," as a generalization of the case of a two-dimensional
case where the corresponding function, plotted over its hexagonal base, gives the
appearance of a tent; see Fig. 11.

The general trial function to be used in our variational (Galerkin) procedures is a
superposition of such tent functions with different central vertices, scaled according to
the function values at these vertices. Tent functions can be generated by convolution

r(x)=of rr-functions (the "top-hat" function r(x) is defined by rr(x)=0 for Ixl > ,
,(x)=’ ’.for xl (, for xl =, see Fig. 10). Over a one-dimensional base the tent

function becomes the triangle function A(x), illustrated in Fig. 10, which is the
convolution of r(x) with itself. A(x) can also be looked upon as the probability of
arrival at x after a random walk of maximum length to either side (this produces the
r function), followed by another such random walk.

FIG 11. Ground view and elevation of tent function over two dimensions.
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Over two dimensions one can obtain the symmetrical tent function with hexago-
nal base by performing three random walks, one in the 60 direction (along JOE in
Fig. 12), another along -60 (DOK in Fig. 12), and the third along 0 (GOH in Fig.
12). After the first two walks, the probability of arrival is uniform inside the rhombus
BGMH; after the third, when the rhombus has been shifted by arbitrary amounts (less
than 1) to the right and to the left, the probability of arrival is given by the tent2

function of Fig. 11. It is easy to check this, first, along the x-axis (where one generates
a triangle function as in the one-dimensional case), and then along lines parallel to the
x-axis, where one generates trapezoidal functions of x. A single random walk along

FIG 12. Rhombic top-hat function due to convolution of two one-dimensional top-hat functions, prior to third
convolution for generating tent function of Fig. 11. Ground view and elevation.
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the 0-direction or opposite is described by the expression r(x cos 0 +y sin O)6(y cos 0
xsin0); this is a function which, for 0=60, is unity along the stretch JOE in Fig. 12
and zero elsewhere. By convolving three such functions, with 0=60, -60 and 180,
one can obtain the tent function of Fig. 11 explicitly.

Proceeding now to three dimensions, one expects to be able to generate a
symmetrical piecewise linear tent function by four random walks in four symmetri-
cally placed directions. The four body-diagonals suggest themselves. After three such
random walks, along say, JOE, DOK and BOM as shown by dotted lines in Fig. 9,
one will have filled a parallelepiped uniformly with points of arrival. The parallele-
piped is shaped like ODIMNLGJO in Fig. 9, or like CAEHKOBFC, but it lies
midway between these two and envelops the origin O. The remaining random walk,
along LOC, will then move this parallelepiped between the two extremes shown and
fill up the entire rhombic dodecahedron. This introduces the linear variation of
frequency of points of arrival; for instance, it generates a simple triangle function
along LOC, with the crest at O. The linearity, plus the fact that the function comes to
zero on the faces of the rhombic dodecahedron, guarantees that our original tent is
thus generated.

A single one of the four random walks, for instance that along the + + +
diagonal, results in a probability of arrival (1/X/)r(x’/X/- )6(y’)d(z’), where
x’, y’, z’ are orthonormal coordinates with x’ along the + + + direction, for instance

x’
x+y+z x-y

z’ 2z-x-y

We have chosen (1/X/ )r(x’/X/ ) rather than r(x’) so that after all four random
walks the distance OC, for instance, comes out as X/ in conformity with the scales
chosen for Fig. 4. The convolution of four such r66-functions, each with x’, y’, z’ as
given, but with different signs in front of y and z, provides a formal expression for our
tent function.

The resulting expression, after carrying out the convolutions, is complicated and
not very helpful. However, we must deal with the normalization of the tent function
so constructed. Its total, over the entire domain of influence, will be unity, since this
tent function is identified as a probability of arrival anywhere. The volume of the
domain is 16 units (the side of the cube in Fig. 8 is 2 units). In each of the tetrahedra
that make up this domain, the mean value of the function is of the central vertex
value; this is fairly obvious, but see 5 for confirmation. We conclude that the tent
function obtained from the random walks must have z as its central vertex value.

Convolutions are most easily performed in Fourier space. The Fourier transform
of r(x) is given by

+ 2 k
r(x)eixdx= sin-.

In three dimensions we use the exponential ei’--’ei(lx+my+nz) for transforming.
To transform the function (1//-)r(x’/X/- )6(y’)6(z’), one introduces rotated
coordinates ;k,/, u in l, m, n-space: X=(I+ m+n)/X/, tz=(l-m)/X/, t,=(2t,-X-
/)/X/-, so that lx + my+ nz=Xx’ + tzy’ + ,z’. The two delta functions transform to
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unit factors, and (1/k/ )r(x’/X/ ) transforms to

2 X/ 2
sin

X/- 2 l+ m + n
sin

l+m+n

One concludes that the Fourier transform of the tent function, to be denoted N, is the
product of four such functions with different sign combinations in front of l, m, and n"

N=( 2 sinm+n+l)( 2 m+n-l)m+n+l 2 m+n-I
sin

2

sin-- sin
n+l-m 2 l+m-n 2

4. The Laplace operator. The differential equation div grad f=0 is associ-
l(grad f)2ated with a variational (Galerkin) problem: L(f)--fff dxdydz=

extremum. The gradient components of the linear function f(x, y, z) which passes
through the corner values fa, fs, fc, fD of the prototype tetrahedron shown in Fig. 4
are found by inspection:

Of fa-f f fc+fo fa +f Of= fo--fc
x 2 Oy 2 2 z 2

(The gradient is uniform inside the tetrahedron, and hence its x- and z- components
can be read off the two long edges; the y-component is obtained by proceeding along
the line connecting their midpoints). The integrand is the constant

f +fg +fd-

2and the integration merely introduces the volume of the tetrahedron, 5, as a factor,
turning "4" into a "6."

Consider now the variation of f,. The contribution of our prototype tetrahedron
to OL/)f, is 5 f4--g(fc+fz). Note that C and D are corners of the cube which
surrounds A. Adding the contributions from all the 24 tetrahedra which contain A, we
see that C and D, like all the 8 corners of this cube, each occur just 6 times; hence the
variational procedure yields:

8fcenter Xfcorners -’0,

a very plausible 9-point formula for connecting the vertex values. This applies at every
meshpoint, irrespective of whether it is a cube center in the mesh used for this
derivation, or whether it is a cube center in the complementary mesh (here char-
acterized as the mesh of corners). We note a very slight improvement in isotropy over
the 7-point formula: eight, instead of six symmetrically placed nearest neighbors are
referred to.
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5. Linear tetrahedral finite elements: their mean and their mean-square deviation.
The use of linear finite elements as optimal interpolants ("optimal" in the sense of
least mean-square error) will require more detailed information on the finite elements
than needed for the Laplace application. Specifically, we shall need to know the mean
value of the linear function through the four vertex data as well as its mean square.

One would guess that the mean of the linear function is the mean of the four
vertex values. There are various ways of convincing oneself of this fact; it will result
easily from the systematic calculation which follows.

It is not obvious that the mean-square deviation of the linear function within the
tetrahedron is one-fifth of the mean-square deviation of the vertex values. To prove
this, we perform a rigorous integration. In fact, we prove this for general tetrahedral
elements, not only for the specific elements described above which possess consider-
able symmetry.

The two statements regarding the mean and the mean-square deviation need only
be proved for the case where one of the vertex values is zero, since the addition of a
uniform constant to all vertex values changes the levels of all the means by the same
constant and the mean-square deviation not at all. Moreover, a common multiplier of
the four vertex values will manifest itself as the same multiplier of the linear function,
and hence we can normalize our linear function conveniently. Lastly, we can intro-
duce coordinates x, y, z for the purpose of integration which may differ from those in
routine use with these tetrahedral finite elements. We choose one of the axes, z, so
that it points along the gradient of the finite element, and we place the origin at the
vertex where a zero value is prescribed. With suitable normalization, the finite-element
linear function then becomes just z itself.

We have to calculate three moments for the tetrahedron, the volume,
fff dx dy dz, the first moment, fffz dx dy dz, and the second moment, fffz 2 dx dy dz,
in order to deduce the mean and the mean square. Fig. 13 shows the general
tetrahedron ABCO for which these integrations are to be performed, and two

C

P

A z

B

A C

0

FIG 13. General tetrahedron ABCO made up as AB’C’Oplus A’B’CO minus A’BC’O. P at samey and z as B,
Q on y-axis.
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projections of it into the plane z =0, one from A (base area OB’C’), the other through
C (base area OA’B’). We orient the x-axis to run parallel to the intersection A’B’C’ of
the ABC-face extension with the plane z=0.

The heights of A, B, and C, which are also the vertex values, will be denoted as

Further, we introduce

z(A)=a, z(B)=b, z(C)=c.

y(Q)=h, x(B)-x(P)=s,

where Q is the intercept of B’C’ on the y-axis, and P is the point on CA which is at the
same z-level as B. By similar triangles CBP and CA’B’, one deduces

B’A’ z= CB’ PC =c (b-c),

and by similar triangles ABP and AC’B’:

C’B’ :s=AC’ AB =a:(a-b).

From these one finds the two base areas

1/2hsahsc
A’B’O and B’C’O

(b-c) (a-b)

For the purpose of the integrations, we make up the tetrahedron ABCO from
three tetrahedra which each have one face in the plane z =0, namely as AB’C’O plus
A’B’CO minus A’BC’O. In AB’C’O the integration from 0 to a has to be done with a
horizontal cross section which varies quadratically with the distance from A, and
which is therefore B’C’O(1-z/a)2. The contribution from this tetrahedron to the nth
moment is then

a

)2B’C’O z (1 z/a dz--
2B,C,Oan+l

(n+l)(n+2)(n+3)

Similarly, A’B’CO contributes the amount

2A,B,Ocn+l

(n+l)(n+2)(n+3)’

while the contribution from A’BC’O,

2( A’B’O + B’C’O )bn+l

(n+l)(n+Z)(n+3)

must be subtracted. Overall we get

2 ( )(n+ 1)(n+2)(n+3)
B’C’O(an+l-bn+l)+ A’B’O(cn+l-bn+l)

hs ( an+ bn+l
(n+ 1)(n+2)(n+3) a-b

a
cn+ bn+

c-b

on substitution of the previously calculated areas.
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Taking now the three moments one by one we obtain, for n=0,

volume hs(a- c)/6,

and for n 1,

first moment=hs((a+ b)a-(c+b)c)/24

hs(a + b + c)(a-c)/24

volume. a + b + c)/4,

in confirmation of the statement,

mean of function, (z),=mean of vertex values, (Zvertex),

remembering that the fourth vertex value is zero. Finally, for n= 2,

second moment hs(( a 2 + ab + b- )a ( c + cb + c)c)/60

hs(a 2 + b + c + bc + ca + ab)(a- c)/60

volume. ((a + b + c)- + a2 + b + c2 )/20

( 4 ( a+b+c )2 a2+b2+c )volume.
4

+

Dividing by the volume, and subtracting the square of the mean, ((a+b+c)/4)2, on
both sides, we deduce

(Zvertex))2).((Z--(Z))2) ((Zvertex--

Since z, as explained, is representative of any linear function in these calcula-
tions, we may replace it by f where appropriate. For instance, we can state

(f(x, y, z)) =(Letx),

4 )2 f2(f2(x, y, Z)) (fvertex /g(vertex),

as a generalization of the corresponding equations above. Moreover, by applying
these equations separately to the real and imaginary parts of a complex function f,
and adding, one deduces:

4 2 2

6. Tetrahedral finite elements as interpolants. The next variational problem to be
attacked has multiple uses. We determine, for an arbitrary harmonic function F=
eg(tx+my+’z), what are the finite elements which interpolate this function with least
mean-square error. Not only is this an instructive exercise per se in the use of finite
elements, but from it we can get some quantitative results on the performance of our
finite elements (by studying the residual error). Most important, perhaps, is the fact
that field data are, in many applications, conveniently kept or supplied in spectral
form (we are thinking here of flow fields, gravitational fields, electric and magnetic
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fields, density distributions etc.); they have to be evaluated locally from their spectral
record by fast Fourier transformation onto a mesh and subsequent interpolation.

There are, of course, situations where certain specific types of error are more
damaging than others to the final result of a calculation which involves interpolations.
For instance, in plasma simulations, the harmonic content of the error (the "aliasses"
generated from the fundamental harmonic which is being interpolated) is rather
important--some aliasses have worse effects than others (see Langdon [5] and
Eastwood [6]). However, without knowing more about the nature of the application,
let us give all error harmonics (aliasses) equal weight and minimize the sum of the
squares of their amplitudes; by virtue of the orthonormality of Fourier harmonics, this
is exactly equivalent to minimizing the mean-square error. Particularly obnoxious
aliasses can always be de-emphasized further by introducing a filter into the physics
which is handled in the spectral domain. Section 8 will be devoted to the topic of
aliasses, and we shall at least answer the question where in wave-number space the
aliasses are to be found when one uses tetrahedral finite elements.

The best-fit tetrahedral interpolant to our harmonic function must satisfy the
variational problem

fff ei(tx +my + "z) f( x, y, z)[ 2 dx dy dz minimum,

the integration now being over a very large spatial domain. In the most common
applications, typically those involving Fast Fourier Transforms, l, m, and n are
rational multiples of r and a large enough periodicity box can be found, with sides
which are multiples of 2rr/l, 2rr/m, 2rr/n, such that the box contains an integral
number of cells. The integration is then understood to be over this box. The finite
elements which make up the piecewise linear function f(x, y, z) are defined by the
vertex values fA, fB etc., and so our task is to determine the "optimal" set of such
vertex values which satisfy the above condition. In the introduction we indicated that
the function values themselves, exp(ilxA + imyA + imzA), exp(ilxn + imy+ imz) etc.
are not necessarily the best choice.

However, without going through the details of the calculation, we can say that
the phases of the vertex values must be the same as those of the function values: if the
phases were not the same, function and approximant would get out of step sooner or
later and differ by large amounts. All that is necessary, therefore, is to determine the
real constant multiplier k by which the function values have to be adjusted to give
optimal vertex values.

Since harmonic functions always bend towards the coordinate axis, one expects
the linear approximant to have to be raised somewhat from a piecewise linear
function connecting function values. One wants the approximant to be somewhere
between the "chord" and the "tangent". We therefore anticipate that ? > 1. Of course,
the actual value depends on the harmonic numbers l, m, n. If fo(x, y, z) is the
piecewise linear function through the vertex values, so that f=kfo, the variational
condition above results in

ffffei(tx+my+n) dx dy dz

fff fo Z dx dyd
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The integrations should be over all the tetrahedra within the large box described
above. Let us divide by the volume of this box both in the numerator and in the
denominator. The volume of the box is 4 times the number of vertices in it (since the
volume associated with each vertex is half that of the basic cube). In the numerator, f0
can be treated as a superposition of tent functions with vertex values exp i(lx + my, +
nZv), where xv, Yv, Z are the vertex coordinates. These are also the displacements of
the vertices, so that each vertex contributes the same amount to the integral in the
numerator, and after division by the volume, the contribution is just that of a single
vertex at the origin with function-value . Thus the numerator (after division by the
large volume), is exactly the Fourier transform N calculated at the end of 3.

In the denominator, after division by the volume, we have the mean square
(I fol 2 ) for all the tetrahedra. Any two tetrahedra in the same orientation contain the
same distribution of If0 I, since f0 differs only by a complex phase factor between the
two. Hence we only need to calculate (1 f0] 2) once for each orientation, then average
over the six orientations. For the prototype, oriented as shown in Fig. 4, one finds

(fo) i(l+’
5e m)(cosl+cosn)cos1/2m+i(cosn--cosl)sinim,

by averaging the vertex values (each of which has unit absolute value). The formula at
the end of 5 then yields

(if01
cos2 + cos2 n + 2cos lcos m cos n +

for this prototype in the "x-y-z" orientation. Averaging over the six orientations, i.e.
over the permutations of l, m, n, then results in a denominator given by

2D= + (cos2 l+cos2 m+cos2 n)+ -coslcosmcosn.

By way of the trigonometric identity cos fl-cos a= 2 sin((a + fl)/2)sin((a-fl)/2), one

can express D in terms of the angles (+_l+_m+_n)/2, which are used in N:

D=I 3 sin2l+m+n
2

+sin2m+n-I n+l-m l+m-n )+ sin2
2

+ sin2
2

sin15

l+m+n, m+n-I, n+l-m, l+m-n
sin sin sin

2 2 2 2

For small wave numbers, one now readily checks that ?t=N/D,I +(lZ+m2+n)/6,
which exceeds unity, as expected.

These explicit formulas for ;k provide the solution to the problem of finding the
best-fit tetrahedral linear finite elements for the interpolation of harmonic functions.
The main use of these ;k will be in the interpolation of spectral data. If the X-boosts
are applied separately to each harmonic in a composite spectrum and the resulting
spectrum is then FFT’ed onto our cubic-centered mesh, one generates exactly the
table of corner values for our tetrahedral splines which guarantee optimal (least
mean-square error) fit to the nonharmonic function represented by the composite
spectrum.
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7. The mean-square error. Approximating harmonic functions by tetrahedral
linear finite elements allows one to measure the performance of these elements in a
precise manner. It is intuitively clear that linear approximation will give "good"
results for "smooth" functions and "poor" results for "rapidly varying" functions.

The epithets "smooth" and "rapidly varying" are made precise by specifying
harmonic content; the harmonic number gives a numerical measure of smoothness.
The epithets "good" and "poor," on the other hand, are made precise by the
calculation of the mean-square error.

In this section, we calculate the mean-square error, in the first place, as a
function of the three components l, m, n. Then we examine its dependence on the

harmonic number k=/([2+ mE+n2) i.e., the magnitude of the wave vector, but we
also study the effects of the direction of the wave vector on the error. This will give us
a precise measure of the isotropy of interpolation.

The mean-square error is

fff lei(’x+mY+"z)-X(x, y, z)l 2 dx dy dz.
volume

This can be interpreted as a "percentage error" since the integral of ]ei(lx+my+nz)] 2

itself is the volume of integration. This volume is, of course, the same as in the
optimizing procedure of 4. The integrations needed for determining the error have
already been performed in the process of determining the optimal , and one finds
directly,

Mean-Square Error NZ/D,

with N and D as given at the ends of 3 and 6. A coarse record of the MSE is given
in Table 1, over l, m, and n running independently in steps of r/16. The table is
restricted to the range n <=m<=l, and to positive arguments. The MSE is sign- and
permutation-insensitive, so Table is sufficient as regards the directions of the
wave-vector. The motivation for a cutoff at rn < r-1 will be given in the section on
aliassing. The table shows in numbers how "poorly" a "very tippled" function is
interpolated" the mean-square error reaches 0.5 on a radius of approximately 3r/4.
The mean-square error remains below 0.09 for wave numbers k less than r/2.

In the domain of "smoother," low-k, harmonics one might be interested in a finer
tabulation of the error, but it is more instructive, in this range, to use small-argument
expansion of the trigonometric functions in the expressions for N and D. After some
effort, one encounters the happy cancelation of quadratic terms, and one is left with a
fourth-order MSE given by

MSE N2/D 3(/,4 "k- m4 d- n4 ) "k- 2(rn2 n + n2 2 + l2 rn2 )
360

To see how this expression depends on the magnitude of the wave number, and
how sensitive it is to direction in wave-vector space, we make up the numerator from
the two symmetric fourth-order functions

k 4 (l 2 + m2 + n2)2 and P4 14 + m4 + n4-- 3m2 n2 3n212- 3/2 n2.
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TABLE 1.
Mean square errors

L. 2 I... 3 L. 4 L 5 L 6 I... ::::7 I... 8 L. 9 I... 10 L 11 L 2 L 13 t.. 14 L 15 I... 16

M=0 .000 0001 .004 o009 .020 .041 .075 .:128 ,205 ,307 ,429 ,559 ,681 ,785 .865
M ,000 ,001 004 o010 022 ,043 ,078 ,134 ,213 ,317 ,440 ,569 ,690 ,792

M::::2 .001 .002 005 ,.012 .C,26 050 .089
=3 004 .308 017’ 03.el .064 .111 o18"’2 78 396 5’:5 650
d::::4 .>01.el 002’.7’ .050 08,i! .14"7 ,232.! .34:1. .4d,7 .’,".59

M::::5 .0.el6 o077 0128 .204 .305 .42’.?.5 .555
/’5::::6 ,122 ,190 284 0400 ,5:28

7 N 0 ,2. 77 388 05 "’2
M 8 ,507

M ,00,3 00()1 0004 ,0..0 ,023 ,045

::::’2 .001 .002 .005 .013 .027 .0’,:.5:2 .093 .1’,5’,5 .2.el3 .354 .481 .609 .’2’25
M::’-3 004 ,008 ,018 .()35 ,065 .:1.14 .186 .283 .40,.3 .532 .657
M::::4 .015 027 .051 .089 .149 .23,5 ,346 .472.! ,601

M:::’,"."; .046 078 129 .205 .30"2 .429 .559
M::::6 .123 191 0285
M=7 N 278 389 .514
M 8 0508

M::::2 .,0.3:1. ,003 ,006 ,0:1.5 0030 ,,058

M::::3 ,005 ,009 ,019 ,038 ,071 ,1;23 ,199 ,302 ,42.!’.5 ,555 ,678

360 49 61M.-.::4 ,016 .0.,..? .053 .09
M=’,5 .048 .0!30 0133 .21]. 0316 .441 .572
M::::6 ,125 ,14 ,290 ,409 ,539

M::.’:7 N=2 ,’281 ,393 ,519
M 8

M 3 .00"7 01 04 ’,".5 ,00 4 14
M 4 .019 .033 .060 o:1.04 .173 .269 ,’,,7..89 521 ,649

M=5 .05..3 .086 .142 0"224 .;534 .463 595
M:::,6 .13"2 o202 301 .423 .555
M=7 N:::::. .’290 403 530
M 8

M::::4 027 ,044 .074 .:1.24 .201 .306 ,434 .568 ,692

M=5 .064 .100 160 .249 .3"65 .495’ .632
M ::=,<5 ...el 7 , :. o 3 ::,’.! 4 4 t.-; . 2.!
M z N::--__/t :.0
M 8 540

M::::5 .086 .1:28 .195 292 .4.1.6 .’,553 .682
M=6 .176 ,253 .360 .490 .6’24
M=7 N=5 .340 .455 .584
M 8 .570

M=6 228 .310 .422 .552 .68_1.
M=7 .397 .510 .634
M 8 .61 "7

M:=7 N::"7 ,481 .588 .70’2
M=8 .682

M 8 N i_.__2 760

Relation between L,, and g,m,n

The significance of P4 is that its spherical average is zero (one checks that 4 has
average on the unit sphere and m2 n2 has average ). P4 is, in fact, a fourth-order
spherical harmonic. The resulting representation,

MSE lk4+4P4
1800

now displays the isotropic part as lk4/1800, along with the anisotropic modulation
of it, P4/450.
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Another way of measuring the MSE and its anisotropy is to select the three most
interesting directions in wave-number space, and to record the MSE as a function of k
along them. One finds that

along an axis (e.g. l= k, rn =0, n =0),

along a face diagonal (e.g. l= m=k/’/, n=0),

along a space diagonal (l=m=n=k//-),

MSE= k4/120,
MSE k4/180,
MSE= k4/216,

For the root mean-square error, one finds 0.091k 2, 0.075k 2, and 0.068k 2 along the
three directions.

It is interesting to compare these results concerning the error and its isotropy
with those for conventional tri-linear interpolation over a cubic mesh. Such conven-
tional interpolation is rarely done with best-fit piecewise linear functions; the inter-
polant is usually pegged to function values at the meshpoints. If we followed the latter
practice, the resulting mean-square error would come out second order, rather than
fourth order in k. For a fair comparison, we shall therefore optimize the approximant
in tri-linear interpolation over a cubic mesh in the same way as we did for the
tetrahedral mesh. In some plasma simulations, this type of optimization is actually
practiced; see, for instance Eastwood [6].

This task is very easy compared with what had to be done in 4 above, since the
best-fit calculation can be done in each dimension separately. Taking the mesh
interval as two units, and placing the x-origin in the middle of any such interval, one
has to minimize

f_+ 11 e ilx l+ ix sin l 2),(cos dx,

and one finds

)2 2=N1/D with N - sin l D 5 sin2 l;

(see also Eastwood, [6], for this numerator and denominator). This gives a mean-square
error for one dimension

MSEI_= 1- NIE/Dl,14/45.

The mean-square errors for the three dimensions are additive in this case, so that

MSE
14 + m4 + n4 3k4+2P4

45 225

by way of the principle of decomposition into an isotropic component and its
modulation as above. We observe immediately that there is less isotropy than before;
the ratio between the isotropic component and the modulation is 6:4 in place of 11:4
for the tetrahedral mesh.

Before comparing the magnitudes of the mean-square errors, however, we must
make an adjustment to the scale of k. The tetrahedral mesh introduces information at
the cube centers into the interpolation process; the data base is twice as large as for
the "conventional" tri-linear cubic interpolation. Let us, therefore, shrink the mesh
size by a factor 21/3= 1.26 in the calculation for the tri-linear cubic case so that the
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number of data per periodicity box (or per large volume) is the same for the two cases.
This means that the scale of k is changed by the factor 21/3, and our formula for
MSE3 has to be divided by 24/3--- 2.52.

While this does not affect the comparison of the degree of isotropy we get the
following comparison for the magnitudes of the isotropic parts of the MSE’s, i.e., the
spherically averaged MSE’s.

llk4 9.5k 4

(MSE)tet 1800’ (MSEcube(with rescaling))
1800

or, for the rms errors after spherical averaging,

RMSEte 0.078k 2, RMSEcube(Scaled) + 0.073k 2.

The error for the tetrahedral mesh, while more isotropic, is slightly (7%) worse on
average.

We can also compare the errors for the three important directions: along an axis,
along a face diagonal, and along a space diagonal. For tri-linear interpolation over the
scaled cubic mesh one finds (k/21/3)4/45, (k/21/3)4/90 and (k/21/3)4/135 respec-
tively for these MSE3’s. For the root mean-square errors this yields 0.094k 2, 0.066k 2,
and 0.054k respectively. We see that in going from the conventional to the tetrahedral
mesh we have reduced the worst error (along the axes) a little, but we have lost some
of the good performance along the diagonals. However, these changes in magnitude
are not dramatic and, apart from the issue of isotropy (when this becomes an issue),
there is little to choose between tetrahedral and tri-linear cubic interpolation perfor-
mance. What must be remembered, though, is that tetrahedral interpolation requires
only four data references instead of eight, and also, as will be shown in the last
section, that the weights are simpler.

$. Aliassing. In our original cubic mesh of side 2 (without cube centers) wave-
vector components 1, m, n larger than r/2 in magnitude would be aliassed into the
range I__< rr/2, [ml<=er/2, nl<=r/2, since the sampling interval in each dimension is
2. Outside a cube of side rr in wave-number space (volume rr3), the discrete Fourier
transform, applied to meshpoint data, would give periodic repeats. If we were to
shrink the mesh size of the grid in x, y, z-space by the factor 21/3, as in the last
section, the domain of unrepeated harmonic information would grow to a cube of side
21/3r, and of volume 2r3.

The introduction of cube-center information in our original x-y-z grid should
similarly double the volume of nontrivial harmonic information. However, the shape
of the volume in 1, m, n-space which holds this information is not cubical. Proceeding
parallel to the x-axis, one crosses planes parallel to the x, y-plane which contain
function information at unit intervals. One therefore expects no aliassing along the
/-axis until one reaches l= +__ r. In other words, in each axial direction (l, m, or n) the
"fundamental Brillouin zone" is pushed out by a factor 2.

To find the aliassing limit in other directions, consider our cubic-centered lattice
in Cartesian axes x, (z -y)/V, (z +y)//. Looking now along x, one sees function

information over a square mesh of side X/. The corresponding transform space is

that of l, (n rn)//-, (n + m)//, and the alias-free domain in planes normal to the
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/-axis is the square

<(-m) <_E_,

<(n+m) < ____.
v v v

Outside this square, In_+ m[ < r, one gets repeats.
The same argument can be applied after cyclic permutations of l,m,n, and one

concludes that only the domain

In---ml < r, Im-+/l<r, I/---nl <r

can be alias-free. This domain, bounded by 12 planes, is a rhombic do-
decahedron, shaped just like the "domain of influence" of 3 and Figs. 8 and 9. This
is the "fundamental Brillouin zone" whose volume is 2r3 (note the construction from
pyramids taken out of the cube of side r, Fig. 8), as predicted on grounds of
information content. Again we observe here some progress toward isotropy, from a
cube in wave-vector space to a rhombic dodecahedron.

The aliassing limits established here account for why the table of errors was not
extended further than shown in 7. Note that the errors do become rather large as one
approaches the aliassing boundary.

By making up models of several rhombic dodecahedra all alike, one can convince
oneself that these can be stacked into a close packing. All of l, m, n-space can thus be
filled from repeats of the "central" rhombic dodecahedron (the one which is placed
symmetrically around the origin).

9. Linking discrete spectra to tetrahedral mesh records. Since numerical spectra
are necessarily discrete, the use of tetrahedral interpolation on functions represented
by such spectra requires some prior discrete Fourier transforming of the spectral data
on to our tetrahedral mesh, i.e., the combined mesh of cube corners and centers. One
would want to do this transforming efficiently; for instance, it would be wasteful to
generate records over a cubic mesh twice as fine as the original and then only use one

quarter of the data so generated (discarding both the values at the edge centers and
those at the face centers of the original cubes).

In order to achieve the desired economy, we first address the inverse problem of
generating discrete spectra from the tetrahedral mesh record. The outer boundary of
the domain to be covered by this mesh will be taken as a cube of side 2N, and
periodicity will be used as the boundary condition there. This causes the spectrum to
become discrete: l, m, and n occur only in integral multiples of r/N. The total
number of harmonics in the fundamental Brillouin zone of l, m, n-space is 2N3, the
same as the number of data points on our combined (corner and center) mesh within
the large periodicity cube.

Before transforming the mesh data into the discrete spectrum, we introduce
"skew" coordinates

,= x-z y+z z-y
2’ rt= 2 ’= 2

which invert to

x=2+rt+’, y =/-’, z=+rt.
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These variables were chosen with the following in mind: the mean, or the semidif-
ference of any two Cartesian coordinates (such as (z +y)/2 or (x-z)/2) will always
be an integer on the combined (cubic corner plus cubic center) grid. Three choices of
such means or differences are to be made, which are independent, so that they can
replace the original Cartesian coordinates ((x-z)/2, (z-y)/2, (y-x)/2 will not do;
they add up to zero). Unfortunately, there is no way of making a choice so that the
new system is fully orthogonal. However, two of the new axes can be made mutually
orthogonal; with our choice, the - and the ’-axes are orthogonal. The lack of
symmetry thus introduced into the process of calculation does not produce any
asymmetry in the final results. Variables , /, " generated from those given above by
permutations of x, y, z or by reflections (x--x etc.) will yield the same results
eventually.

The periodicity in x, y, z manifests itself in , /, " as follows:

f( l + N,n, "-f(l,q, ),
f( t, l +U,-U) f( l,’q, ),

f(-U,/+ U,"+ N)=f(j, 1, ’).
Combining the first and last gives

f(,/+ U,’+ N) =f(,/,’).
Combining this with the second gives

f(,l+2U,)=f(,,).
The periodicities in and /call for FFT-ing in these two variables over N points

and 2N points respectively. This leads to the representation:

f(,/,’)= ] e:’i(It/N+Un/2N)fl,U(),
I M

where I runs through N contiguous integers, and M through 2N contiguous integers.
The periodicity condition f(, + N,’- N) =f(/j, /, ’) manifests itself in f,u(’) as
follows:

f,(+N) =L,(), i even,

f/,u(" +N)= --f/,u(’), M odd.

One therefore defines two functions of ’,

flffn(.) =f/,:s(.)(the case M=even),
oddf/,J ( ) JI,2j+ (’) (the case M-- odd),

both of which are now periodic in " with period N. After transforming them in " over
N points, one gets the following representation of f(,rl,’):

f(,a,’)= Zfle,vje,nK e2*ri(l+dn+K)
1 J K

odd 2ri(I+(J+1/2)+(K--1/2))
JI,J,K e

where I, J and K run through N contiguous integers each. We note that it takes two
N-point FFT’s plus one 2N-point FFT, and the intermediate multiplication by
exp(ri/N), to complete the transformation over the variables ,,’.
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By substituting for ,,/," in terms of x, y,z one can now compare the result with
the direct triple Fourier transform

f( X, y,z ) ,,’,’ fl,m,nei(lx +my+ nz),
where l,m,n run through multiples of /N. One establishes the following identifi-
cation of the harmonics:

__/’even withf/, m, --./1, J, K’

l+m+n
2 =Jr/N

l-m+n
2 =K’n’/N

when l+m+n=even times r/N;

or
m:(J-K)’rr/N
n=(K+J-I)’n’/N

__/’odd withfl, m, --JI, J, K, =Ir/N
l+m+n

2 =(J+-5)r/N
l-m+n

2 =(K--5)r/N
when + rn + n odd times r/N.

or
m=(J-K+ 1)r/N
n=(K+J-I)r/N

In l, m, n-space the cubic lattice characterizing the harmonics has two classes of
points which must be dealt with differently, according to the parity of (l+m
+ n)N/r. These classes of points are positioned, respectively, like the sodium and
chloride atoms in a common salt crystal (see Fig. 5a). I, J, K are useful indices for
labeling and recording discrete harmonics. Note that the arguments of the sine-s in
the boost-factor formula (X, 4) are Jr/U, Kr/U, (J-I)/N and (I-K)qr/U for
"even" harmonics, with obvious changes for "odd" harmonics.

The domain in l, m, n-space which is filled when I, J, K each run through a range
of N contiguous integers is a parallelepiped. Making the range go from -N/2 to

+ N/2 will place this solid symmetrically around the origin. It is bounded in l by the
two parallel planes l= +_ rr/2. Any constant -l cross section is a square, bounded by
re+n= +_r-I and n-m= +_r-l. This solid has the volume 2rr 3 and contains 2N3

points, but it is not identical with the rhombic dodecahedron described in the previous
section. The parallelepiped just described extends into adjacent Brillouin zones in
places, and has bits missing from the fundamental Brillouin zone elsewhere.

By constructing models of the solids in question, removing from each the parts
projecting beyond their union, and moving these excesses around in accordance with
the periodicity rules, one convinces oneself that both solids describe the same
harmonics, and that the nonoverlapping parts are aliasses of each other. The situation
is analogous to that encountered in one-dimensional Fourier transforming where one
would often like to let the harmonic index run from -N/2 to +N/2 (the latter,
perhaps, not inclusive); since programming languages require positive, or at least
nonnegative indices, one lets the index run from 0 through N-1, say. This one-
sidedness does not imply any lack of symmetry of the transformation process.
Likewise, we emphasize again that the lack of symmetry in the definition of , rt and ’,
or the lack of symmetry of the parallelepiped in l, rn, n-space, does not imply any lack
of symmetry in the final result when each harmonic has been properly identified.
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We have described the passage from the tetrahedral mesh data to harmonic data.
The reversal of each step in this procedure is unambiguous and straightforward, so
that mesh records can be generated from discrete spectra as necessary.

10. The algorithm for indexing and weight calculations. As a last task, we address
the problem of generating both the indices of the corners of the appropriate tetra-
hedron, and the corresponding weights from the coordinates x, y, z of the position to
be interpolated.

A set of skew coordinates , 7, " has already been introduced which identifies all
the points of the combined mesh as the points with integer coordinates. Fourier
transforms were performed over integers ,/, and " as indices, and we shall assume
that "boosted" corner values of the function to be interpolated have been tabulated
over these three indices. Obviously a first step is to generate , /, " from x, y, z, and to
obtain the integer triplet [],[/],[’], from them by an IFIX or INT routine.

As we shall see, the four relevant index triplets do not necessarily include this
particular triplet, but they will be among the eight triplets

[] +l,[/] +l,[’] + 1.

We also generate the fractional parts of #, 7, " (FRAC, or -IFIX(), etc.). Under
mass-production conditions, one should rescale x, y, z, so that the multiplications by
0.5 are eliminated in the formation of , 7, ’.

When #,, and " increase independently and continuously through the ranges
([ ], + 1), ([ I ], /] + 1), ([" ], [" + 1) respectively, the interpolating point in x, y, z-

space describes the interior of a parallelepiped like that shown in Fig. 14. There we
have illustrated the prototype parallelepiped, near the origin, which has [], [1], and
[’] all zero. In what follows, translation to similar parallelepipeds elsewhere is trivial
and we shall explain the remainder of the index/weight algorithm in terms of the
prototype. Henceforth, therefore, #, 7, " are the fractional parts of , 7, ’, and the eight
corners of the parallelepiped in which the interpolating point lies are indexed 0, 0, 0;
1,0,0; 0, 1,0; 1, 1,0; 0,0, 1; 1,0, 1; 0, 1, 1; 1, 1, 1.

The parallelepiped contains six tetrahedra (designated by roman numerals I- VI),
in all the six possible orientations, as seen in Fig. 14. In Table 2, the orientations (in

FiG 14. Unit parallelepiped, divided into six tetrahedra.
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accordance with the definition given in 2) are listed; the four corners for each
tetrahedron are also in the table.

We must decide, from the values of x, y, z or j, rt, ’, which is the relevant
tetrahedron among the six. There are four planes separating the tetrahedra, namely

z+x=2; z+x=4; :+y=2; x-y=2.

We therefore introduce four "discriminators""

z+x z+x
c=

2
’+r+( 1; 2

2

x-y =,+’- 1" 6=
y+x =’q+-’= 2 2

whose signs indicate on which side of the planes the interpolating point is located.
From Fig. 14 one reads off the appropriate sign combination for each of the six
tetrahedra. These combinations are listed in Table 2. Where no sign is entered, the
corresponding discriminator becomes irrelevant. For instance, after diagnosing a
negative c, no further decision is needed; the relevant tetrahedron is number I.
However, for tetrahedron II, we must make sure that c is positive and that 1-c is
positive and that is negative, and that 6 is negative. The aggregate of the decisions in
each column selects the corresponding tetrahedron uniquely.

Now the remarkable feature of tetrahedral interpolation is that no further work is
needed for determining the weights associated with the corners of the selected
tetrahedron. Consider, for example, tetrahedron III, which is oriented just like the
prototype tetrahedron used in 3-6 above. The corners are indexed as follows:

A:001 B: 101 C: 100 D:011.

Let f now denote the linear approximant pegged at these corners. Then the gradients
are as given in {}4, and the corner A, where f must be f00, has the Cartesian
coordinates x0 1, Y0 1, z0 1. Hence

f=foo + fo-foo2 (x-1)+(f+f2 -f+f2 )(y + 1)

+
2

(z-l)

-foo,6 +fl00( ’) -I--fl01 --f011T.

The four weights -6, 1- ’, ,, rt have been recorded in Table 2, under their respective
corners in the column for tetrahedron III. The weights recorded in the other columns
were obtained in similar manner.

We note that the weights are absolute values of discriminators used in the
identification of the appropriate tetrahedron, unless they are coordinates (, /, ’, or
complements of coordinates, -/j, 1-7, 1- ’. With suitable scaling of x, y, z, the
algorithm for determining corners and weights involves only additions or subtractions
and logical operations. When using the table for the purpose of identifying tetrahedra,
corners and weights, one must remember that it was written for the prototype
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TABLE 2
Decisions, corners and weights.

Tetrahedron
Orientations

Discriminators

1st Comer
Weight

2nd Comer
Weight

3rd Comer
Weight

4th Comer
Weight

II III IV v vI
xzy yxz xyz zyx zxy yzx

+ + +
+ + + q-

+ .4-

+ .4-

000 001 00 010 011 011

001 100 100 011 110 110

" 1-K K I1 -"
lO0 OlO lO1 llO 100 lll
6 I1 I1 I1 I1-al I1

010 011 011 100 101 101

n I1 n l-r/ Irl l-r/

parallelepiped. In general, " ,/" and "’" must be interpreted as -[], /-[,/],
’-[’], both in the table and in the expressions for a, /and 8. Also, a corner, such as
"001", must be interpreted as the point with the index triplet [], [/], [’] + 1, and
similarly for the other seven corners.

The logic of tri-linear interpolation in a cubic mesh is trivial and familiar. So is
the arithmetic of calculating the eight weights. One therefore naturally hesitates before
embarking on the novel and, at first sight, more complicated procedures for a
tetrahedral mesh. However, the effort has been rewarded; not only is the logic of
locating the relevant tetrahedron and obtaining the indices of the four corners quite
simple, but the arithmetic of calculating the four weights has virtually disappeared!

11. Summary. Driven by the need to minimize table look-ups in three-dimensional
interpolation, we have found a space-filling array of tetrahedral finite elements with a
number of favorable features. The tetrahedral mesh is generated by a cubic mesh plus
the mesh connecting the cube centers plus the space diagonals. Used for Laplace’s
equation (as an example of a PDE), the linear tetrahedral finite elements yield the
result that cube-center values must be averages of the eight nearest corner values and
vice versa. Used as optimal interpolants, specifically for spectral data, these elements
yield mean-square errors which are comparable in magnitude, but more isotropic
than, those for tri-linear interpolation over a cubic mesh with the same information
density. The "fundamental Brillouin zone" in wave-number space, outside of which
aliassing occurs, is a rhombic dodecahedron rather than a cube. With suitable
indexing of the grid points and the harmonics, one can employ FFT’s economically
for passing between discrete spectra and mesh data. The same grid-point indexing
leads to a compact algorithm for indentifying the four corners of the tetrahedron
which encloses the interpolating point (x, y, z), and for obtaining the four weights to
be applied at these corners. Thus it seems that a 2:1 saving in interpolation and
look-up effort (over tri-linear interpolation in a simple cubic mesh) is achieved at no
loss in quality of interpolation.
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AUTOMATIC COMPUTER CODE GENERATION FOR
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DIFFERENTIAL EQUATIONS*
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Abstract. A program system which generates computer code for the numerical solution of systems of
hyperbolic and parabolic differential equations is described. The input to the program is a mathematical
formulation of a hyperbolic or parabolic initial boundary value problem in one space dimension. The
differential equations and boundary conditions are analyzed by the program system, and a finite difference
algorithm is designed for the given problem. The output is an executable FORTRAN program.

Key words, mathematical software, difference approximations, symbolic analysis, preprocessing

1. Introduction. In many areas of mathematical software such as linear algebra,
optimization and ordinary differential equations there exist general and widely used
programs and subroutine libraries. However, general software for partial differential
equations (PDE) is in a less developed stage.

The most important reason for this is the great variety of mathematical properties
of PDE. There is no single algorithm which can handle all problems. The numerical
techniques must often be highly problem dependent, and the existing algorithms are
developed for narrow classes of problems. Furthermore, the numerical computations
are often very time-consuming. Special properties of a problem such as linearities and
constant coefficients must be utilized in order to decrease the cost of the calculation.
Consequently, general software for PDE must incorporate several algorithms .and
should be able to adapt such algorithms to a specific problem. This is very difficult to
achieve in a general program package of conventional type which consists of a
number of ready-made subroutines.

The aim of the work described in this paper is to develop methods for increasing
the flexibility of program packages so that the requirements on PDE software can be
met. Our main tools to achieve these goals are combinations of symbolic analysis and
automatic code generation. We have developed software for general systems of
hyperbolic and parabolic initial boundary value problems in one space variable. The
program package is here called DCG (Differential equation and Code Generator). It
is primarily intended as an academic experimental system, but has also been used in a
number of practical applications.

Let us summarize some of the advantages in the analyzer and code generation
technique for general PDE software.

In PDE software it is common that the user specifies his problem by means of
parameters and subroutines. For example, the user may be asked to write a FOR-
TRAN function F(X, T, U, UX, UXX) representing the right-hand side in the general
equation

Ut’-f(x,t,U, Ux,Uxx ).
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This method has, however, several drawbacks. The most important one is that the
structure of the problem is hidden for the solver. It is harder to check well-posedness
and to choose algorithm.

Consider the example

(1.2) ut=f(x, t, u, ux, Uxx ) =a(x)u + b(t)

in the area 0 <x < 1, > 0 where the user has given a boundary condition at the left
boundary. The problem is well-posed if a(0) < 0. This is, of course, very simple to
check. If the right-hand side of (1.2) is given as a general function f(x, t, u, ux, Uxx ),
we have to approximate numerically the derivative of f with respect to u for each
time interval, and check if it is nonpositive. This calculation is less exact and more
time consuming. The problem is even more serious for systems of equations, because
the corresponding check involves eigenvalue and eigenvector computations.

The efficiency of the numerical integration is also affected by the common

approach with given FORTRAN functions. With m points in the space direction and
n points in the time direction the function f in (1.2) needs to be evaluated at least mn
times. Every evaluation of f will evaluate a(x) and b(t). However, since a(x) is
independent of and b(t) independent of x, m and n evaluations, respectively, are
sufficient.

When the structure of a problem is available, the efficiency of implicit methods
can be increased substantially, since linearities and constant coefficients can be
discovered and the algorithms adjusted accordingly.

There are also nonnumerical advantages with the analyzer and code generator
approach:
--Since the problem specification is done in a notation close to the mathematical
formulation, the risk for errors is much less than when the user translates his problem
into FORTRAN routines.
--The generated program is small and easy to handle, since it only contains code
which is needed in a particular application.
--The code generation technique makes it possible to tailor a program not only to a
certain problem but also to a particular computer configuration. It is thus easy to
support versions for single and double precision, time sharing and batch environ-
ments, graphic equipment, etc.
--It is easy to extend the system with new algorithms.

We have decided to separate the system into two different programs, the analyzer
and the synthesizer. The analyzer handles the user communication and the syntax and
semantic analysis of the problem. An output file is generated with instructions to the
synthesizer. This file contains patches of code to be used in the final FORTRAN
program, and flags indicating the characteristics of a particular problem. The syn-
thesizer, which is a general FORTRAN preprocessor, generates a program from a
"preprogram" in a code library according to instructions from the analyzer (Fig. 1.1).

The analyzer is written in SIMULA 67 [3], and the synthesizer in
FORTRAN.

In 2 we define the mathematical problem to be approximated and describe the
numerical methods. Section 3 contains a brief presentation of the problem description
language, and in 4 the structure and function of the software system is outlined. An
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PROBLEM
DESCRIPTION

ANALYZER

SYNTHESIZER

FORTRAN
PROGRAM

FIG. 1.1. The overall structure of the system.

CODE LIBRARY

example is presented in 5 where DCG is applied to a nonlinear system of hyperbolic
differential equations describing the waterflow in a river. The necessary specifications
and the analysis in DCG are outlined.

The DCG system has also been used for a number of other applications,
including oscillations in elastic beams, radial motion in spherical shells, magnetohy-
drodynamic equations for isentropic plasmas, two phase flow, chemical convection
problems, and heat conduction.

For more details of the system and the applications, see [5] and [8]. A preliminary
version of the system was presented in [7]. The system can be used on computers with
both SIMULA and FORTRAN compilers. A new version which is based only on
FORTRAN is under development.

During the last few years successful special purpose PDE software has been
developed. Finite element packages for problems in structural mechanics belong to
this class. References to other general program packages for PDE problems are given
in the surveys [13] and [16]. Preprocessor techniques have, for example, been used in
1], [9], and [14].

2. Mathematical problem and numerical methods. We want to approximate the
solution U(x, t) of a hyperbolic or parabolic system of differential equations

(2.1a)

Ut=F(x,t,U, Ux,Uxx ), a<x<b,t>to,

U--(Ul(X t) Ud(X t)) T,
F= (f(x, t, U, U, U),..., fu(x, t, U, Ux, U))r.

("T" denotes the transpose of a vector or a matrix).
We are also given initial and boundary conditions

(2.1b)

(2.1c)

U(x, to)=Uo(x), a<x<b,

U(1)(a,t)=Gl(t,U(a,t)), u(z)(b,t)=G2(t,U(b,t)),

where G and G2 are vectors with dimensions d and d2 respectively. The vectors U()

and U(2) denote subspaces of U containing d and dE of the components uj(x, t)
respectively. We may also have periodic boundary conditions U(a, t)= U(b, t).
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The linearized equations are assumed to be strongly well-posed. Hence, for
hyperbolic problems where F in (2.1a) does not depend on Uxx, we assume the
Jacobian matrix F4 to have real eigenvalues. The matrix F4 denotes the Jacobian of F
with respect to its fourth argument Ux. It must also be possible to transform F4 to
diagonal form with smooth and bounded matrices. For parabolic problems, the
Jacobian matrix with respect to the last argument Uxx, has eigenvalues with positive
real part bounded away from zero.

We further assume that the boundary conditions are such that the linearized
problem is well-posed in L2 (see [11]). For hyperbolic problems, this implies that d
equals the number of negative eigenvalues of F4 at x =a, and d2 equals the number of
positive eigenvalues of F4 at x b. For parabolic problems d boundary conditions are
always given at both boundaries.

The problem must fulfill these conditions in order to have a solution which
depends continuously on the initial and boundary data. The eigenvalue conditions are
checked by the DCG-produced program. The QR algorithm is used in all eigenvalue
computation when d> 2. For smaller systems the eigenvalues are calculated explicitly.
Another control of well-posedness is checking the singularity of the transformation
matrix T4 in (2.9). Appropriate error messages are given.

The DCG system is based on second order finite difference methods. They are
very likely the most frequently used schemes for one-dimensional hyperbolic and
parabolic problems.

For hyperbolic problems we use the explicit leap-frog scheme (A), a semi-implicit
leap-frog scheme (B), and the implicit hyperbolic Crank-Nicolson scheme (C). For
parabolic problems we have the explicit Du Fort and Frankel scheme coupled to
leap-frog (D), the corresponding semi-implicit scheme (E), and the Crank-Nicolson
scheme (F).

By this set of methods the user can choose a more or less implicit treatment of F.
All these schemes are energy conserving when applied to symmetric hyperbolic
equations but an option for adding dissipation is provided.

We let the user specify the difference method and the amount of dissipation. The
user also determines which terms in F should be treated implicitly, and whether
variable steps should be used. See [4] for the importance of treating stiff terms
implicitly.

The system decides the extra boundary conditions that are necessary for the
calculations. It also determines the time step in order to guarantee stability and
accuracy.

The solution U(x, t) is approximated by the meshfunction U,. at the points
(xi, tn), where i=0, I and n=0, 1,...

i--1 n--1

(2.2) Xi-- a + Axe, o+ Ate.
g=O

When the solution is expected to have much larger derivatives in one region than
in another, it is a wise policy to have a finer grid in the region with the rougher
solution. We let the user specify the distribution of meshpoints by giving a transfor-
mation of the space interval,

(2.3) x=f(z), z=f-’(x).
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The mesh will be uniform in the z variable. In the present version of DCG the
function f in (2.3) must be time-independent.

Let us as an example of the difference methods give the formula for the scheme B
at interior mesh points. We will give all formulas with constant step sizes for
convenience. Assume for this scheme that the function F in (2.1a) is written

(2.4) F= F(’)(x, t, U, Ux) + F(Z)(x, t, U).

The function F(2) should contain the stiff terms for implicit differencing.

Uin+l-AtF(2)(xi, tn+l,uin+l )

Bo Ui.-’ + AtF(2)(xi, n-I Uin-l) q- 2AtF(I)(x n, Ui

i= 1,2,..., I- 1, n= 1,2,...

For nonlinear hyperbolic problems many schemes, including the linearly energy
conserving schemes A and C, can generate oscillations and nonlinear instability (see
[12]). This can often be cured by adding dissipative terms.

In the dissipative case the algorithms A, B and C are changed by adding the
following terms to the right-hand side.

(2.5a) 16 (Ui-’-4Ui--’ +6Ui"-’-4U/L-’+ U"-’) for i=2 1-2,

r (u.,n_ 2Ui,,_l+ U,.__l ) for 1, I 0<r<(2.5b) 4 i+1

where r is the dissipation coefficient. (The index is n instead of n- for scheme C.)
The explicit formulas A and B are conditionally stable (see [6]) when

(2.6) At < (1 + V’ r )’/2 Ax.

Here o(F4) denotes the spectral radius of the functional matrix F4. The time step
in the program is chosen in order to guarantee stability. The implicit scheme C and
the parabolic schemes are unconditionally stable.

There is also an option to let the local error influence the choice of time steps.
The length of the time step is determined such that a difference approximation of the
local truncation error is below a given value. This is similar to the step size control in
many codes for ordinary differential equations.

The extra initial conditions for the two step schemes A (or B), D (or E) are given
by an Euler (or semi-implicit Euler) step.

For parabolic problems all components of U are given at the boundary by (2.1 c).
Generally, this is not the case for hyperbolic problems. Extra numerical boundary
conditions are needed and it is not trivial to determine them in a stable way. Let us
exemplify by the algorithm for the schemes A and B at x= a. The right boundary is
treated analogously. Our choice of formulas is justified by the analysis in [10].
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a) If d =d, there is no need for extra boundary conditions, and (2.1c) is used to
determine U.

b) If d =0, we need d extra boundary conditions and we use oblique extrapola-
tion,

(2.7) U+ 2U(’- U .
c) When d 4:d and d 4:0, the choice of stable boundary conditions is more

delicate. We use extrapolation in the characteristic coordinates to get the necessary
number of d conditions. The formula (2.1c) gives d conditions only. Assume

(2.8) U/n=
U(2)

where U(1) is given through (2.1c) at x=a. If U does not have this form the unknowns
can be reordered to achieve this separation of U() and Uz) in U.

A matrix T(= Tn) is then determined so that it diagonales the Jacobian F4 at
x=a:

0 D+)
T=

T3 T4
where D(_) is a diagonal d by d-matrix with negative diagonal elements. e (d-d)
by (d-d)-matrix D(+) is diagonal with positive diagonal elements. Let T (in (2.9)) be
partitioned in the same way as D. There exists such a nonsingular transformation
matrix T since the initial boundary value problem for the fferential equations is
assumed to be strongly hyperbolic 11].

We extrapolate in the characteristic quantities

(2.10) T3U(1) + T4U(2),

corresponding to the positive eigenvalues of F4; the formulas for U2) at the boundary
can now be written as

(2.11) (T3U(I)-4 T4U(2)) +1 2(T3U(I) + T4U(2))l-(T3U(I).-l-T4U(2))2 1.

Equation (2.11) is coupled to the given boundary conditions (2.1c):

(2.12) U0(l)n+ 1= G,( n+ 1, u0n+ 1).

The boundary for the scheme B is treated in the same way. For Crank-Nicolson
we determine the extra boundary conditions by the box scheme instead of oblique
extrapolation 10].

The implicit or semi-implicit schemes give rise to systems of algebraic equations.
They are solved by Gaussian elimination or (for nonlinear equations) by Newton’s
method. The algorithms are adjusted to the band structure of the problem. The
boundary equations (2.11) and (2.12) are also solved by the standard Newton’s
method. If G is linear in U0+ or independent of U0+ , Gaussian elimination is used
for (2.11)-(2.12) or just (2.11), respectively.

3. Problem description language. The user specifies the problem in the problem
description language (PDL). This specification is interactively processed by the
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analyzer. The syntax of PDL is not restricted to one space dimension; however,
several space dimensions cannot yet be semantically and numerically processed. (A
primitive version for two space dimensions has now been implemented.) A formal
grammar for PDL and other details are given in [8].

The problem description is divided into sections, of which there are two different
groups. The first group describes the PDE problem itself and must always be present.
This group consists of four sections:

GEOMETRY Declares the independent variables and their
domain.

EQUATIONS Specify the partial differential equations. The
equations may contain the ordinary FOR-
TRAN operators and functions, and also
differentiation operators and user-supplied
functions.

INITIAL CONDITIONS Specify the solution at the initial time.
BOUNDARY CONDITIONS Specify boundary conditions.

The sections from the second group may be used to request different options in the
problem processing. They determine time and space discretization, numerical meth-
ods, output, etc.

METHOD
DISSIPATION
STIFF TERMS

STEP SIZES,
NUMBER OF STEPS

OUTPUT AT VALUE,
OUTPUT AT STEP

SHORTHANDS

TRANSFORMATIONS
See 5 for an example.

Specifies the numerical method to be used.
Determines the amount of dissipation.
Request implicit treatment of certain terms in the
equations.
Specify time and space discretization.

Specifies output at certain time and space
values.
Declare substitutions of expressions to be used in
the problem specification.
Determine a variable space step size.

4. System structure and function. Let us briefly describe the organization of the
system, the datastructures and the nonnumerical algorithms. As mentioned in the
introduction, the system consists of an analyzer, a synthesizer, and a code library (Fig.
1.1).

The system also includes routines for basic numerical and utility functions like
linear and nonlinear equation solvers, eigenvalue routines, IO-routines, etc. These
routines need not be preprocessed, and thus can be compiled and stored in a separate
library. Moreover, an interactive graphical postprocessor has been developed to
facilitate the study of the produced solution [5].

The analyzer processes the problem symbolically. The principal parts of this
program are the internal structure, the editor, the parser, the semantic analyzer, and
the output generator.

The internal structure plays a fundamental role in the analyzer. We use a general
list Structure almost identical to the list structure in LISP [2]. The elements in this
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structure are atoms and lists. Atoms are used to represent identifiers, constants,
operators, keywords, etc. Lists are used to put atoms together to expressions, state-
ments, and sections. Expressions are stored in prefix notation. For example, the
equation

(4.1) vt=CUx+V,

which in PDL is written

(4.2) V.T=C*U.X+ V,

is represented by

(4.3) (= (. vv)(+ (*c(.vx))v))
in the internal structure. (The dot denotes differentiation in PDL.) This internal
structure is simple, general, and suitable for the operations we want to perform.

The editor enables the user to specify and edit interactively a problem description
on disc storage. The parser performs the syntactical analysis of PDL, and builds an
internal representation of the problem description. The parsing is done by recursive
descent with semantic routines for building the internal structure.

The semantic analyzer classifies the problem, computes various functional
matrices, investigates linearities, etc. Expressions to be used in the numerical algo-
rithms are constructed. Typical operations involved are symbolic differentiation and
evaluation.

The output generator writes a file with instructions to the synthesizer. This file
contains code to be used in the final FORTRAN program, and different flags
indicating the characteristics of the particular problem.

The purpose of the synthesizer and the code library is to compose a complete
FORTRAN program for the numerical treatment of the problem. There are essen-
tially two things that have to be done. The synthesizer has to select code from the
library according to instructions from the analyzer, and expressions generated by the
analyzer have to be inserted in the code. We have developed a general FORTRAN
preprocessor for this task [15]. The input to the preprocessor is a file containing a
combination of preprocessor and FORTRAN statements.

5. Example: streaming water. In this application, a program is constructed for
calculating the water level in a river. The flow is controlled at the upper (x=0) and
the lower (x=A) end points of a particular section. The shallow water equations (see,
e.g., [12]) are used, and the unknowns are the water velocity v(x, t) and the water
level h(x, t). When v >0, as we expect in this application, the differential equations
can be written

v =vv -9.81h +s(x)-f(x)v2,
(5.1a) 0<x<A, t>0 (A=200000),

h -hv -vhx,

with the initial and boundary conditions

(5.1b) v(x,O)=a(x), h(x,O)=b(x),

v(O,t)h(O,t)=qz(t), v(A, t)h(A, t)=ql(t).
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Here s(x), f(x), a(x), b(x), qL(t) and qR(t) are given as FORTRAN functions by the
user. In this application, they usually are interpolations from a table of measured
data. The function s(x) in (5.1 a) contains the effect of the slope of the river. The term
f(x)v2 represents the friction, and qL and qR are the flow at the upper and lower end
points respectively.

The input to DCG, of course, must contain the differential equations, the space
and time intervals, and the initial and boundary conditions. We further give the
number of space steps to be used and output control statements. In this case we want
the unknowns to be printed at each half hour (1800 sec), and at the first ten time
steps. We also specify that we want to treat the friction term implicitly, and hence
declaref(x)v2 as a stiff term. Since the functions q/ and qg change rather abruptly in
our application, we have requested some dissipation. Fig. 5.1 shows the complete
problem definition in PDL. The specification is given via a dialogue between the user
and the system. From the problem specification, DCG constructs FORTRAN code
which together with the user supplied functions gives an executable program.

In the first step of this process the parser reads the input, checks the syntax, and
builds an internal representation. The analyzer then extracts, among other things, the
following information from the specification.

1. The problem is quasilinear. Hence the eigenvalues of the functional matrix,
which are used when controlling the time step, must be checked throughout the time
interval. Similarly, the eigenvectors for the boundary conditions must regularly be
recalculated. The functional matrix can be determined analytically.

2. The stiff term f(x)v2 has an especially simple structure. In general, this term
introduces a system of nonlinear algebraic equations for each meshpoint. The sizes of

EUATIONS
V.T -V*V.X S.81*H.X S(X) FR;
H.T -H*V.X V*H.X;

METHOD
LEAP FROG;

STIFF TERMS
FR F(X)*V*V;

GEOMETRY
SPACE
TIME

BOUNDARY CONDITIONS
X 0 V L(T)/H;

X 2E5 V R(T)IH;

INITIAL CONDITIONS
V A(X);

H B(X);

NUMBER OF STEPS
X MAX 150;

DISSIPATION
0.5;

OUTPUT AT VALUE
T 1800(1800);

OUTPUT AT STEP
T i(I)10;

FIG 5.1. Specification of the problem (5.1). User written FORTRAN routines for the functions S, F, QL, QR,
A, and B are added to the DCG-producedprogram.
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DIFFERENCE APPROXIMATIONS FOR SPACE DERIVATIUES

DO i0 I= I, NEGU
DUDX(I) (UPRES(I,J+I) UPRES(I,J-I)) DX2

10 CONTINUE

EVALUATE ESUATION EXPRESSIONS

F(1) (<(-(UPRES(I,J)*DUD>((1)))-(.81*DUDX(2)>)+S(X<J)))
F(2) ((-(UPRES(2,J)*DUDX(1)))-(UPRES(I,J)*DUDX(2)))

LEAP FROG STEP

DO 20 i, NEgU
UFUTU(I,d) UPAST(I,J) DT2*F(I)

20 CONTINUE

ADD DISSIPATION

IF J.ES.LX .OR. J.ES.R>( GOTO 40
DO 30 I= I, NEGU

IF( J.GT.L>(PI .AND. d.LT.R>(MI

$ UFUTU(I,J) UFUTU(,J) O.O25*DISSIP
$ UPAST(I,J+2) 4.*UPAST(I,J+I)

$ G.*UPAST(I,d)

$ UPAST(I,J-2) 4.*UPAST(I,J-I)

IF J.ES.LXPI .OR. J.ES.R>(MI
$ UFUTU(i,J) UFUTU(I,J) 0.25*DiSSIP
$

30 CONTINUE
40 CONTINUE

(UPAST(I,J+I) 2.*UPAST(I,J) UPAST(I,J-I))

FIG 5.2. Generated FORTRAN codefor the leap-frog step. The arrays UFUTU, UPRES and UPAST contain

the solution. The indices LX and RX for the endpoints of the x-interval are and 150 respectively.

V AS A FUNCTION OF T AT X 2.OBOE5

1.0

2.0 wIE5

FIG 5.3. The water velocity as a function of time. In this calculation qc and qR are stepfunctions and the number

of space steps is 150.
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these systems are equal to the number of unknowns. Here each local system is simply
one scalar quadratic equation.

The semi-implicit leap-frog type scheme is chosen, and preprocessor code is
generated by the analyzer. This code then interacts in the preprocessor with code from
the library, and results in a FORTRAN program. Fig. 5.2 shows the generated code
for the leap-frog step.

The FORTRAN program of course also contains routines for output, and for the
calculation of necessary eigenvalues and eigenvectors which are used to determine the
time step and the numerical boundary conditions. In Fig. 5.3 the solution is presented
using an interactive graphics system developed for this project.
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COLLOCATION WITH POLYNOMIAL AND TENSION SPLINES FOR
SINGULARLY-PERTURBED BOUNDARY VALUE PROBLEMS*

JOSEPH E. FLAHERTY AND WILLIAM MATHON*

Abstract. Collocation methods using both cubic polynomials and splines in tension are developed for
second-order linear singularly-perturbed two-point boundary value problems. Rules are developed for
selecting tension parameters and collocation points. The methods converge outside of boundary layer
regions without the necessity of using a fine discretization. Numerical examples comparing the methods are
presented.

Key words. Collocation methods, splines under tension, two-point boundary value problems, singular
perturbations, boundary layers

1. Introduction. We consider the numerical solution by collocation methods of
the singularly-perturbed second-order linear boundary value problem

(1.1) Ly--ey" +p(x)y’ +q(x)y=f(x), a<=x<=b,

al,Y(a e)+otlzy’(a, e)=A, azlY(b, e)+az2y’(b, e)=B,

where e is a small positive parameter. The functions p, q, and f are assumed to be
smooth functions of x on [a, b] which, along with c%., i,j 1, 2, A, and B, may depend
on e provided they are bounded as e--->0. We further assume that (1.1, 2) has a unique
solution on [a, b] for all e, sufficiently small.

The problem (1.1, 2) has been intensively studied analytically (cf. Cole [6],
Eckhaus [11], or O’Malley [18]) and it is known that its solution generally has a
multiscale character; i.e., it features regions called. "boundary layers" where the
solution varies rapidly. Away from the boundary layers, the solution is approximately
determined by neglecting the e,y" term in (1.1) and perhaps one or both of the
boundary conditions (1.2).

The problem has also been extensively studied numerically, and it is known that
most classical methods fail when e, is small relative to the mesh width h that is used for
the discretization of the operator L. There are, however, several finite difference
methods (cf. Abrahamson, Keller, and Kreiss [1], Berger, et al. [4], II’in [16], Kreiss

[17], and Pearson [19], [20]), Galerkin finite element methods (cf. Hemker [15], de
Groen and Hemker [10], and Heinrich, et al. [13], [14]), and methods based on

singular perturbation theory (cf. Flaherty and O’Malley [12] and Steele [29]) that do
not require h/e, to be small.

Our aim in this paper is to show that collocation methods with either piecewise
polynomials or splines in tension can furnish accurate numerical approximations of
(1.1, 2) when hie. is either small or large. Splines in tension were first used by
Schweikert [27] as a means of eliminating spurious oscillations in curve fitting with
cubic splines. They have been subsequently studied by Cline [5], Pruess [22], Spith

*Received by the editors November 29, 1979, and in final revised form April 21, 1980. This work was

supported by the U.S. Air Force Office of Scientific Research, under Grant AFOSR-75-2818.
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York 12181.
*IBM Federal Systems Division, Gaithersburg, Maryland 20760.
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[28], and de Boor [9, Chap. 16]. Between knot points a spline in tension is an L-spline
satisfying the differential equation

(.3) (" 0)" 0,

subject to appropriate continuity conditions at the knots. The quantity p is called the
tension parameter. When O=0, z is a cubic polynomial spline; however, when p>0,
the solution of (1.3) is a linear combination of the four functions 1, x, ex, e-’‘. The
exponential functions should be better suited than polynomials at following the rapid
variations that are typically found in singular perturbation problems. Indeed, ex-
ponentials have been used in the Galerkin methods of Hemker [15] and de Groen and
Hemker [10], II’in’s difference method [16], and the singular perturbation methods of
Flaherty and O’Malley [12] and Steele [29].

Equation (1.3) is the same as that for the transverse deflection of a classical
Euler-Bernoulli elastic beam that is subjected to a tensile force proportional to
hence, the name spline in tension.

In 2 of this paper, we construct a basis for the tension splines and use it to
obtain the collocation equations. In 3, we obtain asymptotic approximations to the
solution of (1.1, 2) in the two special cases when ]p(x)[ _>_/7>0 and when p(x)=--O on
[a, b], and use these to select tension parameters. In 4, we discuss the selection of
collocation points that are in some sense optimal and present some formal error
estimates in regions not containing boundary layers. This section is somewhat techni-
cal and may be skipped by readers who are primarily interested in the algorithm. In
5, we apply our methods to some examples; and in 6, we discuss the results.

Not surprisingly, the results indicate that tension splines provide better approxi-
mations within boundary layers and polynomials provide better approximations
elsewhere. This suggests the possibility of applying tension only within boundary
layers. This would require either an a priori knowledge of the location of the
boundary layers, or an automatic procedure for finding them. A tentative procedure
for automatically locating boundary layers is presented in 5.

We anticipate that our methods would be useful on other problems, such as
initial-boundary value problems for parabolic partial differential equations involving
diffusion, convection and/or reaction.

2. Collocation equations and the tension spline basis. In the usual method of
collocation (cf. Ascher, Christiansen, and Russell [2], de Boor and Swartz [8], Russell
[24], or Russell and Shampine [26]), one introduces a partition

(2.1) AN=_{a=Xo<X < <XN=b)

of [a, b] into N subintervals, and approximates the solution of (1.1, 2) by piecewise
polynomials Yh(X M(AN, k, rn ), where

(2.2) m(AN, k,m)(wCm[a,b][wrestr, tol,Pk(Ii); i= 1,2,..., N}.

Here

(2.3) Ii:(Xi_ xi )

and Pk(E) denotes the class of polynomials having at most degree k on E. The
dimension of M(An, k, m) is N(k-m)+ rn + 1, and one determines Yh(X) by collocat-
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ing at N(k-m)+m-1 points zi[a,b], i.e., by enforcing

(2.4) Zyh(2i)=f(2i), 1,2,..., N(k-m)+m- 1,

and by requiring Yh to satisfy the boundary conditions (1.2). Convergence and the
order of accuracy of these methods depend on m, k, As, and the choice of z and are
discussed in, e.g., [8]. However, Lyh should exist, and necessary continuity conditions
on M(AN, k, m) are k=> 2 and m=> 1. In addition, de Boor and Swartz [8] show that
the maximal order of convergence in the largest subinterval length is achieved by
selecting the collocation points as an appropriate number of Gauss-Legendre points
on each subinterval.

Unfortunately, collocation at the Gauss-Legendre points with piecewise poly-
nomials is known to behave rather poorly on singularly-perturbed problems for any
partition where e is much smaller than the minimum subinterval length (cf. Hemker
[15] and our Example in 5). It would be overly restrictive and in most cases
impractical to require a partition with subinterval lengths of order e, and we seek to
avoid this situation by changing the locations of the collocation points and/or adding
exponential functions to M(AN, k, m). Thus, we also consider approximations Yh(X)
E(Au, k, m, 0), where

E( Au k, m, p)--(WCm[ a, b Wrestr. to ,; span( e,( Ii),e’x/h’ e-C"x/h’),
(2.5) i=1,2,..., N)

and

(2.6) hi--xi-xi_l, i= 1,2,..., N.

The quantities Pi, i= 1,2,-.., N, are called tension parameters and will subsequently
be selected to approximate the rapidly varying part of the exact solution of (1.1, 2).

In this paper, we have confined our attention to collocation with piecewise cubic
polynomials belonging to M(AN,3, 1) and splines in tension belonging to E(AN, 1, 1, p),
which are both spaces of dimension 2(N+ 1). For reasons of computational conveni-
ence and efficiency, it is usual to construct a basis for M(Av,3, 1) that satisfies the
Cl[a,b] continuity requirement, and where each element has support extending over
only two subintervals. We proceed similarly for E(Av, 1, 1, p); thus, we write Yh(X) in
the form

N

(2.7) yh(x)= , Ii’ri(x,l)+dioi(x,l)],
i=0

where the basis z,.(x, p), Oi(X p), i=0, 1,..., N, is defined in terms of the "canonical
basis elements" 70 and /l as follows:

(2.8) zi(x, O)

xix
rio hi

’)i X[Xi--I’Xi]

’110 hi+l ’li+l x[xi,xi+l],

0, otherwise;
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and

XiX )hiril hi Pi

(x-xi )(2.9) i(x P)-
hi+lri1 hi+l ,Pi+I

0, otherwise.

The functions rio(S, t9) and ril(S, 19) are defined on 0<s__< as

(2.10) rio(S, 19)= -s+Ko 2s-l-

XEXi-l,Xi],

X[Xi,Xi+l

(2.11) ri,(s, 19) -Ko

sinh 19/2(2s-1)
sinh 19/2

sinh p/2(2s- 1)
2s-l- -n -/-J

cosh 19/2(2s- l)
cosh 19/2

where

(2.12) K0= 1/19a)(19/2), Kl=(1/19)coth 19/2, oo(z)=coth z-- 1/z.

Observe that rio and ril each satisfy the differential equation

"-- )" <--s <(2.13) (ri, 192rik 0, 0 1, k=0,

subject to the boundary conditions

(2.14) rh,(0, O)=8Ok, r/k(1,19)=0, ri(0, 19)=--1k, ri,(1,19)=0, k=0, 1,

where 6i denotes the Kronecker delta and, in this context, (.)’ denotes differentiation
with respect to s. Using (2.14) and (2.7-9), we see that ci=yh(xi) and d =dyh(xi)/dx
i=0, 1,. , N.

As 19 tends to zero rio and rii approach the usual canonical basis elements for
M(AN,3, 1), i.e., that of a cubic Hermite interpolating polynomial on 0<__s < 1. Thus,

rio(S, 19)=(1--s)2(1 + 2s)+ 0(192), ril(S, io)=s(1 --s)2 + 0(192).

For large values of 19, rio and ri1 become

(2.16)
rio( S,19 ) s [2s-l+e-*-e-(l-s)] +O(e-/19)19-2

ril(S, 19)._ 19--1 [1--s--e-]
0(0-2) 19(19-2)

s-- e-o(l-s) + O(e-O/19 )"

Thus, in the interior of (0, 1), rio and ri1 are asymptotically given by the linear
functions

rio(S, 19),-.,(1-s)- (2s- 1)/(19- 2), ril(S, 19)’--’(1--S)/19--(2S-- 1)/19(0-2).

Both rio and ri1 converge uniformly on 0__<s < as 19--+m to 1-s and 0, respectively;
however, their derivatives exhibit boundary layer behavior at s= 0 and 1. Since z and
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o (via. (2.8, 9)) behave similarly at the knots xi_ 1, xi, xi+ 1, the numerical approxima-
tion Yh may have internal boundary layer jumps of height O(1/O) even when the exact
solution is smooth. We demonstrate this phenomena in Example of 5. The
functions T0 and /1 are plotted for a small and a large value of O in Fig. 1.

A discrete system for determining ci, di, i=O, 1,..-, N is obtained for a given set
of tension parameters oi, i= 1,2,..., N by collocating at 2N points zi, i= 1,2,.-., N
on [a, b] and by satisfying the boundary conditions (1.2). For simplicity we place two
collocation points symmetrically disposed on each subinterval, i.e.,

(2.17) z2i_l--Xi_ + tihi, Z2i--’Xi_ +(1 -ti)hi, i= 1,2,-.-, N,

for an appropriate choice of tiC[0, 1/2). Then using (2.17), (2.7-9), and (1.1) in (2.4),
we find the discrete system on I to be

(2.18) [il(ti) li2(ti) li3(ti) li4(ti)
lil(1--ti) li2(1--ti) li3(1--ti) li4(1-ti)

ci-

Ci .(1 --/’i
di

i= 1,2,...,N,

-.5

FIG 1. Canonical basis functions rlo(S,O) and (s,o) on -s- for p--0.01 (top) and p= 10 (bottom).
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where

lil ( ) ( E/h 2 ) ( t, Di ) -[- 13i ( /h )3qto( t, )i ) 31- i ( ) ?qo( t, )i ),

li2( ) ( e/h )l) ( t, )i ) -li( )tl( t, )i ) 3t- i( )h l( t, )i ),

(2.19) li3(t)=(e/hZi )l(1-t, )i)-(li(t)/hi)to(1-t, )i)-[-i(t)?qo(1-t, )i),

li4(t ) (E/hi)7’(1 t, J9i) --/i(t)tl(1 t, J9i) " i(t)/l(1 t, JOi) ],

and (t)f(xi_ + thi) etc. Substituting (2.7-9) into (1.2) gives the boundary condi-
tions

(2.20) llCo+Otl2do=A, 21CN+22dN--B.

Thus, the 2(N+ 1)-dimensional discrete system (2.18-20) has the following structural
form"

X X

x x

x x

x x

cO

(2.21)

X x C

x x x x d
X X x X

X X X X

x x X X CN

X X dN

A

]l(1--tl)

L(1
B

where each x denotes a nonzero entry. We solve (2.18-20) for prescribed values of Pi
and i, i= 1,2,-.., N, by an alternating row and column pivoting algorithm due to
Varah [30]. This procedure is numerically stable and requires no storage additional to
that needed for the nonzero entries in (2.21).

3. Asymptotic solutions, Green’s functions, and the selection of tension parameters.
In this section, we present asymptotic approximations of the solution of (1.1, 2) and of
its Green’s function. They will be used to select the tension parameters, and in 4 to
select collocation points. We shall not attempt to do this in all generality, but rather
by considering two special cases of the problem

(3.1) Ly=--ey" +p(x)y’ +q(x)y=f(x), a<=x<=b,

(3.2) y(a, e) =A, y(b, e) B,

when (Problem 1)Ip(x)lff>0 and (Problem 2) when p(x)=--O, q(x)<<0 for
x [a, b]. In either case, any boundary layers are at the ends of [a, b]; thus, there are
no turning points and no interior nonuniformities. We consider such problems among
the examples of 5.
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The Green’s function G(x,) associated with the operator L and homogeneous
boundary conditions (3.2) on the interval [a, b] satisfies

(3.3) L*G(x,)----eG-(p(’ii)G)+q(’)G=O,(a,x)t.J(x,b),

(3.4a) G(x,a)=G(x,b)=O,

(3.4b) G(x, x+)-G(x, x-)-- 0,

(3.4c) G(x, x+)-G(x, x-)= l/e,

where the subscript denotes partial differentiation.
We use the WKB method to construct our asymptotic approximations of the

solutions of (3.1, 2) and (3.3, 4). Since the details of this method are well known (cf.
Wasow [31]), we only present the results and omit their development.

3.1. Problem 1: p(x)l__>t>0 for x[a,b]. We consider the case whenp(x)>0
on [a, b ]. The case whenp(x)< 0 is handled in an analogous manner. Using the WKB
method, we find the following O(e) approximations to the two fundamental solutions
of (3.1) (cf. Hemker [15]):

(3.5a) Y(x, l)=exp{ fx’q(z)/p(z)dz }
(3.5b) II((, x)=exp (p(z)/e-q(z)/p(z))dz

The solution of (3.1) satisfying the boundary conditions (3.2) is given by

y(x, e)- (x) + - (a)In(a, x)+ o(e),(3.6a)

where

(3.6b) YR(X)=BY(x, b)- fxb(f(z)/p(z))Y(x, z)dz.

The term [A-YR(a)]H(a,x) is exponentially small outside of a boundary layer of
width O(e) near x=a. For a<x<=by(x, e),YR(X ), where YR(X) is the solution of the
reduced problem

(3.7a) p(x)Y(x)+q(x)YR(x)=f(x), a<x<=b,

(3.7b) Y,c( b B,

obtained by neglecting the ey" term in (3.1) and the boundary condition (3.2) at x a.
The problem with p(x)<0 has a solution with a boundary layer near x=b and a
reduced solution satisfying (3.7a) subject to the initial condition Yn(a)=A.

In a similar manner, an O(e) approximation to G(x, ) satisfying (3.3, 4) is found
as

G(x, )=c(x)(H(, b)Y*(a, b)[ H(a, x)- Y*(x, a)]

(3.8a) I-I(, x), a<=li<=x
-II(a,x)Y*(a, li)+

y,(x, li),x<=li<__b
}+O(e),
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where

(3.8b)

(3.8c)

a(x)= -p(x)/I p:(x)-2eq(x)+ep’(x)],

Y*(x,. )= exp { (q(z)-p’(z))/p(z)dz ),
and 1-I(, x) is as in (3.5b). As a function of , G(x, l) has boundary layers at l=b-
and x-.

3.2. Problem 2: p(x)=0, q(x)=<<0 for x[a,b]. In this case, the WKB
method gives the following O(Ve approximations to the two fundamental solutions
of (3.1) (cf. Hernker 15]).

I-[l(X )=q(x)-l/4I-[(X, ),(3.9a)

(3.9b)
where for this problem

Hz(x, l ) =q(x )- l/4II( l, x),

(3.9c) H(, x)=exp{-fXl-q(z)/e dz}.
The character of the solution depends critically on the sign of q(x). When q(x)< O,
the solution is exponential; and when q(x)>0, the solution oscillates rapidly with

period 2rle/q(x ) We would not expect tension spline approximations to be useful
in the oscillatory case and, thus, we confine our attention to problems with q(x)<0
on [a, b]. The use of "splines under compression" for oscillatory problems is currently
under investigation by Coyle and Flaherty [7].

Using (3.9), the solution of (3.1, 2) is given as

y(x, e)= A -f(a)/q(a) q(a)/q(x) 1/41-I(a, x)
(3.10)

+ B-f(b)/q(b)][ q(b)/q(x)]l/41-I(x, b)+f(x)/q(x)+O(k/e ).

Outside of the boundary layers, which extend over O(Ve ) neighborhoods of x=a and
b, the solution y(x, e)YR(X), where YR(x) is the solution of the reduced problem

q(x)YR(x)=f(x),

obtained by neglecting the ey" term in (3.1) and both boundary conditions (3.2).
Problem 2 is self-adjoint, so the WKB approximations (3.9) can also be used to

construct the following O(1) approximation to G(x, l) satisfying (3.3, 4):

(3.11)

-1/4G(x,)=-[e2q(x)q()] (H(a,x)H(a,l)+H(x,b)H(l,b)

( II(t,x),a<=t<= x
II(x,),x<<=b

As a function of , G(x,) has boundary layers on both sides of =x, and is

unbounded as O(1 /Ve ) as e---0.

3.3. Selection of tension parameters. We want the tension parameters to ap-
proximate the rapidly decaying solutions (3.5b) or (3.9) of Problems or 2, respec-
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tively, and so we choose Pi on the subinterval I as

(3.12a)

Ip(x,)/e-q(x,)/p(x,)[
--h

/-- q(xi-)+q(xi)]/2e

if [P(Xi_l)+P(Xi)[/e>= [q(xi_)+q(xi)[,

if [p(xi_)+P(Xi)[/e<lq(xi_)+q(xi)[,

i= 1,2,.-.,N,
where

(3.12b) k= { i- if[ P(Xi_l)+P(Xi)]/e>O,
if[ P(Xi_l)+P(Xi)]/e<O.

Thus, for Problem with p(x) > 0 on [a, b]

(3.13a) pi=hilp(xi 1)/e-q(xi 1)/p(xi 1)1,
and for Problem 2

(3.13b) pi-’hi/-[q(xi_l)+q(xi)]/2e,
However, we use (3.12) computationally even when the conditions of Problem or 2
are not satisfied, e.g., when there are turning points.

The solution of the collocation equations (2.18-20) with the tension parameters
specified by (3.12) will give the exact solution of (1.1, 2), for any choice of [0,
1/2), whenever f(x) is a linear polynomial and either 1)p(x)=fi and q(x)=O, or
2) p(x)=O and q(x)=<0. This is because the solutions of these problems are
elements of the approximating space E(AN, 1, 1,p).

We close this section by applying the method of collocation with splines under
tension to the example

(3.14) Ly--ey"+p(x)y’=f(x), a<=x<=b, y(a)=A, y(b)=B,

with p(x)>0 on [a, b]. Using (3.5, 6) the solution of this problem is

(3.15a)

where

(3.15b)

y(x, e)= YR(x)+ A- YR(a)]exp (p(z)/e)dz +O(e),

fxt’( f(z)/p(zr.(x)=B- )),/z.

For the present, we choose t,.= 0, and then use (2.10-12) and (2.19) in (2.18) to obtain
the discrete system

(3.16)
) _1(

2 ld co Oil2)+ - Vd coth Oil2 +P(Xi_l)di_l---f(xi_l)

) -,(
2 Idi co Pi/2)-- - vdi coth Pi/2 +P(xi)di=f(xi),

i=1,2,--.,N, c0=A, cN=B,
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where

(3.17) 7(.)i(.)i-(.)i_l, (.)i(.)i-Jl-(.)i_l
and (z) is defined by (2.12). Using (3.13a) we select pi-’-hiP(Xi_l)/e, and assume
that the partition has been chosen so that pi>> 1, i= 1,2,..., N. In fact, suppose that Pi
is large enough to approximate 0(p//2) and coth pi/2 by (1-2/pi) and 1, respec-
tively. Then (3.16) become

(3.18) ( e/hi )(2Vci/hi- I’tdi) +p(xi- ) Vci/hi=f( xi- 1),
(IxP(Xi))di--p,f(xi), i= 1,2,.--, N, co=A, CN=B.

Thus, the solution is approximately determined as the solution of

(3.19a) CN=B,

(3.19b) P(Xi_l)Ci/hi=f(xi_l)’k’O(e/hi), i=N, N-1,. ,2,

(3.19c) (tp(xi))d= pf(xi), i= N, N- 1,..., 1,

(3.19d) co=A,
(3.19e) do= -(p(a)/e)[Co-C + hl f(a)/p(a)+ O(e/h)].

Equations (3.19a, b, c) can be recognized as O(h) (where h is the maximum
subinterval length) "upwind" difference approximations to the reduced problem,
while (3.19e) gives the initial slope of the solution in the boundary layer correct to
O(h/).

4. Selection of collocation points. Our aim in this section is to suggest some
special choices of collocation points that may be used to reduce the errors in methods
for Problems and 2. We confine our attention to the two limiting cases of zero
tension (pi=_O) and large tension (pi>>l), for i=l,2,.-.,N. For simplicity, we
consider uniform partitions with h=hi, i= 1,2,.--, N, and assume that hp(x)/e>>
for Problem and h/-q(x)/e >> for Problem 2. No detailed rigorous error analysis
will be given; however, some formal error estimates are obtained on subintervals not
containing boundary layers.

4.1. Error formulas. It is well known (cf. [8], [24], or [25]) that the pointwise error
in collocation methods for (1.1, 2) satisfies an equation of the form

(4.1) e(k)(X)=_y(k)(x)--yh’)(X) fab O--- G(x )r()d c=0,
)xk

where the residual

(4.2) r( ) Ly( ) LYh( l ) =f( ) Lyh(l ).

It is convenient to introduce the local transformation

(4.3) --xi_ +hs, O<s< 1,

on the subinterval I and, as in 2, let(s)=--f(xi_l +hs), etc. Then (4.1) becomes

N Ok
(4.4a) e<k)(x)=h ( G(x xi_ + hs)fi(s)ds k=0,

=l "tO )xk
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where

(4.4b) (s) =(s) ,,h,(s).
Let P(s) be the linear interpolant

(4.5) P.(s)= (1- ti-s)( ti) + (s- ti)(1- ti) /(1- 2ti)
to (s) at the two collocation points s=t and s= 1-t onIi. Since the collocation
equations (2.4, 17) imply ih,= at s=ti, 1-ti, we have PLih,=P., and (4.4a) may
be written as

N )k
(4.6) e(k)(x)=h folG(x Xi_l+hS)(1-P)Pi(s)ds, k=0,1

i= Oxk
The interpolation error

(4.7) (1-P)i(s)=(s-ti)(s-l-ti)fi[ti, l-ti,s

where .[s0, sl,.-. ,Sk] denotes the k th divided difference of Pi at the points
So, SI,O..,Sk This form of (1-P)fi(s) suffices when p/----0; however, when pi>>l a
more detailed form is needed. In this case, we assume that Pi is large enough to
neglect terms of O(e-p’/2) relative to unity and use the large tension approximations
(2.16) as well as (2.7-9), (4.4b), and (4.5) to get

(4.8)

(1- P)i(s) (s- ti)(s- + ti) ([ i, 1-t s] -liki(s)E ti, 1-ti, s] )
Pi (fliti(slg(s, til_Yi6i(slg(l_s ti)+(s_ti)(s_ +ti)

Pi -2

where

(4.9)

e --piti e --pi(1 --ti)

--2t flii[1-- ti, S] ""iiE 1-- ti, s])--(s-- ti)

(s-- + ti)(e-piti[iiE ti, 1--ti, s] +e-m(l-t’)Yii[ ti, l--ti, s]) },
fli Vci/h-d,_ -(Vdi)/pi, [i Vi/h-did-(Vdi)/Pi,

(4.10)

(4.11) g(s, ti)=[(1--2ti)e-mS+(s-- +ti)e-’t’--(s--ti)e-’(’-t’)]/(1--2ti),
and #i(s) is the linear polynomial part of fh,(s).

The choice of Oi given by (3.12) makes fii(s)=O(h) when fii(s)>O on Ii,
6i(s)=O(h) when fii(s)<O on Ii, and fii(s)=6i(s)=O(h2/pi) when fii(s):--O on Ii.

The assumption that terms of O(e-’/2) are negligible will specifically allow us to
drop all terms in (4.8, 11) involving the factor e o,(1-t,) since < 3- This will be done
in all further uses of (4.8, 11) except where noted.

It remains to use the formulas (4.7) or (4.8) for (1-P)i(s) together with the
approximations (3.8) or (3.11) for the Green’s functions in (4.6), and to find ap-
propriate choices for collocation points. One problem is that the errors given by (4.6)
depend on the unknown numerical solution Yh. This would not be a serious difficulty
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if Yh andy were bounded as e-->0 for fixed h. We have shown by example in 3 that c
and d (hence, Yh and y) are bounded away from the boundary layer region for
e/h<<l when =0 and Pi is selected according to (3.12). It is reasonable to assume
that this remains so when is sufficiently small; however, it is also relatively easy to
show that d can be unbounded at every knot point as e/h-O when Pi =0 and are
the Gauss-Legendre points. Little is known about the behavior of the numerical
solution for other choices of and Pi. In this paper, we shall not attempt to find
conditions for Yh to be bounded as e-->0, but rather we shall make some suggestions
for collocation points that should generally reduce the error in methods for Problems
and 2. We note in passing that if Yh andy were bounded, arguments similar to those

used by Pruess [21] or Russell and Christiansen [25] on related non singularly-perturbed
problems could be used to remove the dependence on Yh from the leading order terms
in e(x).

4.2. Collocation points for Problem 1. We again consider the case whenp(x) >__if>
0 for x [a, b]. Let x be a knot point, say x, so that there are no discontinuities in
derivatives of the Green’s function on any subinterval, and apply the transformation
(4.3) to (3.5b) and (3.8c) to get

(4.12a) H(x/_ +hs, xj)=H(xi, Xj)’li(S)=ij’li(S), i<-,

(4.12b) Y*(xj, xi_ +hs)= Y*(xj, xi_l)i(s), i>j,

where

(4.12c) ri(s)=exp{ -hfss [ ji(z)/g--4i(z)/i(z ) ]dz },
(4.12d) i(s) exp h (i(z)-pi(z))/i(z)]dz.

The last form of (4.12a) follows from our assumption that terms of O(e-’/2) are
negligible; hence, the boundary layer in II(xi, xj) at xj is well within subinterval Ij.

Using (3.8a) and (4.12) in (4.6) we have

(4.13a)

N

e(xj)=h[ "*(a,b)Sjo- ’*(xj, b)]Sv-hSjo ., f*(a, xi_l)R
i----1

N

+hot(xj)Sj+h . f*(xj, Xi_l)R
i---j+

(4.13b)

e’(xj) -h{ IT*(a, b)[ plh-a’(x.i)la(x.i ) ]8ao + ITx* (x.j b)}S,v
N

+h[ pf/h-ot’(xj)/a(xj)]t3jo . f*(a, xi-,)Ri
i--1

N

-ha(xj)[ p/h-a’(xj)/ot(xj)]Sj+h E
i----j+

x(Xj, xi-1)Ri,
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where

(4.14)

(4.15)

and

(4.16a)

(4.16b)

p;=--h[ p(xj)/e- q( xj)/p(xj)

Y*(xj, xi)=--(xj)Y*(xj, xi),

Si= "(s)(1-P)fi(s)ds,

R,= i(s)(1-P)i(s)ds.

We call p* the adjoint tension parameter, and note that p* =j+l when the tension
parameters are selected according to (3.13a). Observe that p* is large whenever
hp(x)/e is large, and this can induce large errors in e’(x) (cf. (4.13b)). These large
errors can be confined to the boundary layer near x=a if S is sufficiently small.
However, in order for e’(xj) to be small within the boundary layer, Ri, 1,2,..., N,
must also be sufficiently small. In this paper, we have concentrated on producing
good approximations outside of boundary layer subintervals.

We first consider the tension spline approximation where (1-P)i(s) is given by
(4.8). Expanding f(x), p(x), and g(x) in Taylor’s series about a suitable point on I
would reveal that [li, l--ti, S and fli[ti, l--li, S are O(h2) while i[1--ti, S] and
ti[1-ti, s are O(h). As previously noted, the choice of Oi given by (3.13a) makes ui(s )
of O(h) and

(4.17) ) (o) + o( h/o, ).

If we further assume that Ci, di/Pi and Vci/h are bounded, then Lii[ti, 1-ti, s is
O(h2), and to leading order (4.8) becomes

(4.18) (l P)i(s ).gi,(s )g(1 -s, ti ).

This is not surprising since this term is due to the presence of the e -pAl-s) functions in
the tension spline approximation and these functions are not present in the exact
solution of Problem 1.

Substituting (4.18) into (4.16) gives

(4.19a) Si,i qi(s)g(1-s, ti)i(s)ds

(4.19b) Ri.Ti i(s)g(1--S, ti)li(s)d.

Si may be further approximated by using Laplace’s method (cf. Bender and Orszag [3,
Chapt. 6]). The essential idea is that i(s) is exponentially small outside of a small
neighborhood of s= when hfii(s)/e is large; hence, the integrand in (4.12c) may be
replaced by its value at s= 1. Using (4.14) this gives

(4.20) le- o,.*(1S,ri -*)g(1--S, ti)i(,)d.

Now, we see that S may be reduced in magnitude by selecting such that e-7(1-s) is
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orthogonal to g(1-s, ti); i.e., using (4.11) we require

(4.21) e-P(1-S)g(1-s, ti)ds= p l_Fpi/p

If terms of O(1/p) are neglected, this implies

(4.22) ti= (1/p)ln(1 + Pi/P*, ),

1/p
--2t

i= 1,2,..., N.

e pill 0

We refer to this choice of as Method 1. It can only be used when Pi and O’ are such
that ti(-. When Pi and Pi* are large, ti=O(1/Pi) and collocation is performed near
the ends of each subinterval. Using (4.11), (4.17), and (4.22) in (4.19b) implies

Ri,’Yii (1) t3i (1)e-pt’,.yifii( 1)ffi(1).(4.23)
If both c and d were bounded outside of the boundary layer, then "/i would be O(h)
(cf. (4.9)). Thus, from (4.13) the best that we could expect from Method is for e(xj)
and e’(xj) to be O(h). The computation evidence in 5 indicates that this is the case.

A second possibility is to select SO that R given by (4.19b) is reduced in
magnitude. This can be done by requiring

folg(1-s, ti)ds=O.

Using (4.11) this leads to

(4.24) ti=
pi 7 sinh- 

and we refer to this choice of as Method 2. We retained the O(e -i(1-ti)) term in
(4.11) when obtaining (4.24), in order that approach the Gauss-Legendre point
(cf. (4.30)) as 0i---0. When Pi is large, ti.(l/pi)ln(pi/2) and in this case (3.12), (4.15),
and (4.20) imply that

(4.25)
The computational evidence in 5 indicates that S is not small enough to insure an
accurate approximation of e’(xi) at any knot point. In fact, the indications are that

2 il 2e(x)O(h wh e e (x) O(h /e) when Pi is large. Method 2 may still be used in
this case if one is not interested in predicting the slope of the solution as long as Pi is
not so large that it causes the discrete system (2.18-20) to be ill-conditioned. When Pi
is small, approaches the Gauss-Legendre point and e(x) and e’(x) will approach
O(h4) (cf. de Boor and Swartz [8]).

For polynomial approximations, we use (4.7) in (4.16) to get

(4.26a) Si. fole-p?(1-S)(s-ti)(s- + li)i[ ti, l-li,s] ds,

fo(4.26b) Ri--- i(s)(s-ti)(s-l+ti)i[ti,l-ti,s]ds,

where, once again, Laplace’s method was used to approximate the singular integral Si.

Either S or R may be reduced in magnitude by selecting such that either
e-r(-s) or is orthogonal to (s-ti)(s-1 + ti) respectively, i.e., by requiring either

(4.27a) fole-P(1-S)(s--li)(S + ti)ds=O
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or

(4.27b) fol(S-- ti)(S -’ti)ds’-’O.

The option (4.27a) gives

(4.28)
2

ti P"* + 1-4e(pi*/2)/t9:

where w(z) was defined in (2.12). This method is referred to as Method 3. Once again,
approaches the Gauss-Legendre point as pi--0 and til/p when Pi is large.

Assuming that Yh and y are bounded outside of the boundary layer region and using
(4.4b) and Taylor’s series expansions of f(x) and Lyh(x ) about x in (4.26b) leads to

(4.29)
h2

Ri, _i_ i(l) f(xi)_LYh(Xi ) ]tt.

This in turn via (4.13) would imply that e(xj) and e’(xj) are O(h2) at knot points
outside of the boundary layer. However, it is typically possible to replace (LYh(Xj))"
by (Ly(x))"+ O(h) (cf. Pruess [21] or Russell and Christiansen [25]). If this were so,
this Ri, e(x), and e’(x) would all be O(h3) at knots away from the boundary layer.
This is in accord with the computational results of 5.

The final possibility is to select SO that (4.27b) is zero, and this gives as the
Gauss-Legendre point on the interval [0, 1], i.e.,

(4.30) ti=(1 1/’X/ )/2.
This choice of is known to give poor results when hp(x)/e>>l; however, in 5, we
show that it may be used outside of subintervals containing boundary layers provided
that Yh andy are computed accurately enough at the ends of subintervals containing
boundary layers.

4.3. Collocation points for Problem 2. Again, let x be a knot point, say x/, and use
(3.9) and (4.3) to write

(4.3 la) I-[(xi_ "’hs, xj)--I-I(xi, xj)qi(s)=ij(s), i<=j,

(4.31b) I-[(Xj, Xid-hs)=X-[(Xj, Xi)i(S)’-iji(S), i>___j,

where now

(4.31c)

(4.31d) Ji+l(s) =exp{-hfoS-i+l(S)/e ds).
The last forms of (4.31) again follow from our assumption that terms of O(e-P’/2) are
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negligible. Using (3.11) and (4.31) in (4.6), we have

h
(4.32a) e( Xj ) "- ( Ojl -I- NjSN-- Sj- +1 ),

(4.32b)

where

(4.33a)

h
e’(xj.) - -(o/h+ q6/qo)6og +(Pv/h--q’u/qN)6vjSN

+ (otlh + ],

qj=q(xj),

(4.33b)
and

(4.34a)

C=hl-q(xj)/e

Sj.= j(s) e-q(xj)j(s)] 1/4(1- P)(s)ds,

(4.34b) +1 kj+l(S)[e2q(xj)j(S)]-l/4(1--P)+l(S)ds.

Thus, in this problem, there are no regular integrals to consider.
It suffices to find collocation points for Sj, since analogous results for .+ will

follow by replacing s by 1-s and making the appropriate sign changes in (4.34b).
Thus, using Laplace’s method we approximate (4.34a) by

(4.35) Sj -oJ’(1->[e2q(xj)Oj(s)] /4(l_p)(s)ds.

For tension spline approximations, the choice of Oj given by (3.13b) reduces both

fi(s) and t3(s) (cf. (4.10)) to O(h-/Og) and it is still reasonable to select tj accordhag
to (4.22), i.e., so that (4.21) is satisfied with O and O* give by (3.13b) and (4.33b),
respectively. We continue to refer to this choice of tj as Method 1. Likewise, for
polynomial approximations, we select t according to (4.28), i.e., so that (4..27a) is
satisfied, and still refer to this as Method 3. Both methods reduce Sj. (hence, Sj+ ) to
at least O(htg). Since tj is O(1/O) or O(1/O*) for Method or 3, respectively, and

h/p9 and h/p are both O(/-e ) (cf. (3.13b) and (4.33b)), we would expect (cf. (4.23a))
e(x) to be at most O(h Ve ) at knots away from boundary layers. The computational
results of [}5 support this conclusion.

5. Numerical results. In this section, we apply Methods 1, 2, and 3 of [}4 to three
examples having known exact solutions. Our calculations are performed on a uniform
partition with spacing h, and the adjoint tension parameters 0* are approximated as

Ip(x)/e- q(x)/p(x)l, IIP(X)/e[ >= IIq(xj) I,
(5.1a) p;=h

i_lq(x)/2e [lp(x)/e[<llq(x)l,J=l,2,’",N’
where

k= / j- if ttp(xj)/e<O,
(5.1b)

j if lP(Xj)/e>O.
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The tension parameters pj and collocation points tj on I2 are chosen as follows.
Method 1: Select pj. according to (3.12) and

(5.2a) t2= min{ (1/02)In(1 +pj/p),(1-1/V )/2).
Method 2: Select Oj according to (3.12) and

(5.2b) t= -Method 3: Select pj=0 and

1-2 cosh-’( 2

 sinh 

tj=
+/1-4o(0*/2)/0*

We also consider "partial tension" methods, where the above rules for selecting Oj
and t are only applied on subintervals containing boundary layers and collocation is
performed at the Gauss-Legendre point with 09=0 on all other subintervals. These
methods can potentially converge as O(h4) outside of boundary layer subintervals
provided that the numerical solution and its derivative have been computed accu-
rately enough at the ends of subintervals containing boundary layers. Thus, we would
not expect partial tension to be useful with Method 2, since there can be large errors
in the derivative of the computed solution at the knots. We denote the partial tension
methods that use either Method or 3 within boundary layer subintervals as either
Method 1P or 3P, respectively. In order to automatically locate subintervals contain-
ing boundary layers we first compute a preliminary solution, c, d, j=0, 1,.-., N
using either Method or 3 on all subintervals. Using this solution we calculate

(5.3) )if’ l/x[ f(xj)-p(xj)dj.-q(xj)cy]/2e[, j= 1,2,-.., N,

and set O=0 and tj.=(1- 1//--)/2 on any subinterval having

(5.4) ):’< 6 min{ 1, f’, y-’ ,--., y- },

where 6 is a threshold constant which we normally take as 50. The problem is then
re-solved using the new values of O and t. This procedure is somewhat ad hoc and
has not been totally effective, especially when h is relatively large and c and d are
inaccurate. This can cause errors in )if’ which can lead to the erroneous conclusion
that a subinterval contains a boundary layer when in fact it does not, and vice versa.

Each example was solved for various values of e and h=(b-a)/N with N=2’,
k= 2,3,-.., 7. The error in the solution and its derivative on a partition with spacing h
are measured by

(5.5) Ile(i)llh,ao max ly(i)(xj)-y(hi)(xj)l, i=0, 1,
xAo

where Ao is a fixed uniform partition that is specified with each example. The order of
convergence r is computed as

(5.6) ri=ln(lle(i) l[h,Ao/lle(i)llh/2, Ao)/ln2, i=0, 1.

All calculations were performed in double precision on an IBM 3033 computer.
Errors that are less than 5 10-15 are recorded as zero in the tables.
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Example 1.

ey" +((1 +x)2y)’=e-X/2[(1 +x)(3-x)+e/2]/2,
(5.7)

y(0) 0, y(1)=e-l/2-e-7/3

0<x<l,

The exact solution of this problem is

y(x) exp( x/2) exp[ x(x 2 + 3x + 3)/3e ].
There is a boundary layer of width O(e) near x =0.

In order to demonstrate how poorly collocation at the Gauss-Legendre points
with cubic polynomials can behave on singularly-perturbed problems, we solved (5.7)
with e= 10-4 and h= by this method and plotted the computed solution in Fig. 2. It
bears little resemblance to the exact solution, which is essentially e-x/2 for x > 10-3.
Pointwise the numerical solution approximately lies on the straight line joining the
two boundary values y(0) and y(1).

We solved (5.7) for e= 10 -i, 2, 4, 6, 8, using Methods 1, 2, 3, and 1P. The errors

Ilellh, a0 and Ile’llh, a0 on the partition A0={, z, ,..., g} are presented in Tables
and 2, respectively, for e= 10-2, 10-4, and 10-8. (The results for e= 10-6 were

Method

2

3

1P

TABLE
Error and order of convergencefor Example measured on Ao ,..., }.

N e= 10.2 e= 10-4 e--- 10.8

Ilellh, ao ro Ilellh, Ao ro Ilellh, ao ro
4 3.87E-2 4.63E-2
8 1.95E-2 1.0 2.44E-2
16 7.06E-3 1.5 1.09E-2
32 2.02E-3 1.8 5.15E-3
64 2.50E-4 3.0 2.49E-3
128 5.69E-6 5.5 1.21E-3

4 2.34E-2 2.09E-3
8 1.28E-2 0.9 1.13E-3
16 1.07E-4 6.9 9.59E-5
32 3.34E-5 1.7 2.14E-5
64 4.83E-6 2.8 4.41E-6
128 4.37E-7 3.5 7.39E-7

4 4.37E-3 3.57E-5
8 3.70E-3 0.2 5.56E-5
16 5.79E-7 12.6 2.76E-7
32 5.92E-8 3.3 3.37E-8
64 1.93E-9 4.9 4.19E-9
128 6.43E-11 4.9 5.19E-10
4 2.76E-6 3.69E-7
8 1.06E-6 1.3 3.38E-8
16 4.64E-6 2.1 1.86E-9
32 2.12E-6 1.1 2.64E-11
64 9.11E-8 4.5 5.89E- 11
128 4.68E-9 4.3 1.78E-11

0.8
1.2
1.1
1.0
1.0

0.9
3.6
2.2
2.3
2.6

-0.6
7.7
3.0
3.0
3.0

3.4
4.2
6.1
1.2
1.7

4.37E-2
2.44E-2
1.09E-2
5.15E-3
2.53E-3
1.25E-3

1.28E-3
4.40E-4
1.07E-4
2.63E-5
6.50E-6
1.62E-6

1.34E-5
1.77E-6
1.99E-7
3.38E-8
4.23E-9
5.37E-10
1.10E-2
3.29E-8
2.05E-9
1.33E-10
8.68E-12
6.24E-13

0.8
1.2
1.1
1.0
1.0

1.5
2.0
2.0
2.0
2.0

2.9
3.2
2.6
3.0
3.0

18.4
4.0
6.0
3.9
3.8
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2O

lO-

Y

0-

-I0-

-2O

FIO 2. Solution of Example using cubic polynomials and collocation at the Gauss-Legendre points.

Method

2

3

1P

TABLE 2
Error and order convergence in the derivative of the solution ofExample

measured on Ao-- , , ,’", ).

e= 10-2 e-- 10-4 e-- 10-8

Ile’llh,ao rl Ile’llh, Ao rl Ile’llh,Ao rl

4 6.38E-2
8 3.54E-2
16 1.22E-2
32 3.14E-3
64 1.15E-4
128 8.09E-5

4 4.14E 0
8 1.75E 0
16 3.84E-2
32 6.64E-3
64 8.24E-4
128 7.10E-5

4 3.05E-3
8 1.99E-2
16 8.65E-5
32 1.92E-5
64 1.37E-6
128 9.56E-8

4 9.18E-4
8 1.41E-4
16 5.86E-4
32 2.68E-4
64 1.15E-5
128 5.93E-7

0.8
0.3
2.0
4.8
0.5

1.2
2.2
2.5
3.0
3.5

-2.7
7.8
5.2
3.8
3.8

2.7
1.3
1.1
4.5
4.3

6.97E-2
4.34E-2
1.93E-2
9.15E-3
4.43E-3
2.15E-3

1.01E-2
2.43E-1
5.58E 0
1.37E 0
3.38E-1
8.24E-2

5.68E-5
9.62E-5
4.90E-7
6.00E-8
7.44E-9
9.23E-10
6.08E-5
2.41E-5
6.46E-6
7.33E-7
8.11E-7
2.18E-7

0.7
1.2
1.1
1.0
1.0

2.1
2.1
2.0
2.0
2.0

-0.8
7.6
3.0
3.0
3.0

1.3

6.99E-2
4.35E-2
1.94E-2
9.22E-3
4.50E-3
2.22E-3

1.01E 6
2.45E 5
6.02E 4
1.49E 4
3.72E 3
9.27E 2

2.14E-5
3.14E-6
3.18E-7
6.01E-8
7.53E-9
9.54E-10
1.76E-2
2.19E-5

1.9 5.48E-6
3.1 1.52E-6
0.1 4.25E-7
1.9 1.46E-7

0.7
1.2
1.1
1.0
1.0

2.0
2.0
2.0
2.0
2.0

2.8
3.3
2.4
3.0
3.0

9.7
2.0
1.9
1.8
1.5
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essentially the same as those for 10-8.) Ilellh, A is also plotted as a function of 1/h in
Fig. 3 for Methods 1, 2, and 3, and e= 10 -i, i=2,4, 6,8. Tables and 2 indicate that
when e/h<<l, Methods 1, 2, and 3 are converging as O(h), O(h2), and O(h3),
respectively, and that Ile’llh,Xo is converging as O(h2/e) for Method 2. For larger
values of e, e.g. e= 10 -2, the order of convergence can be seen to increase as h
decreases (e/h increases) and the collocation points move closer to the Gauss-Legendre
points. Partial tension with Method 1P yields a dramatic improvement in the results
obtained by Method 1.

In order to provide some indication of how Methods 1, 2, and 3 behave on
subintervals containing boundary layers and between knot points, we plotted their
computed solutions Yh(X) on 0<=x=< 2h (Fig. 4) and their errors e(x) and e’(x) on
0 < x < (Figs. 5, 6, 7) for e 10-4 and h 1/8. The error in the Method 2 solution

,o-.\ \. ’,,

i0

METHOD
I0"=- METHOD

I0"
4 8 32 64 12816

N I/h

Fo 3. Error Ilelih, ao for Example using Methods 1, 2, and 3 and measured on the partition

Ao={l,,, ,}.
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1.2

METHOD

METHOD 2

METHOD 3

0
0 I/8 I/4

FIG 4. Solutions of Example using Methods 1, 2, and 3 on 0 <_x < for e-- 10-4 and h-

shown in Fig. 4 is less than 3.2 10-3 for all xIIUI2. Method yields poor
accuracy for xI1, but it does predict the correct width of the boundary layer.
Method 3 dissipates the boundary layer; however, the dissipation is largely confined
to the subinterval I containing the boundary layer. Figs. 5-7 show that all three
methods have spurious internal boundary layer jumps in y,(x) at the ends of each
subinterval and that Method 2, because of the singular behavior ofy in e at the knots,
has spurious jumps in yh(x) itself. The jumps in Yh(X) are small, and one is not
normally interested in the solution at points other than the knot points; however, the
results indicate that some caution is needed when using (2.7-12) to interpolate the
solution between knot points.

Figs. 5-7 further indicate that the pointwise error is largest at x =h, and
decreases at knots that are farther from the boundary layer. This is generally true for
other values of h as well and, thus, we have tabulated e(h)l for Methods 1, 2, and 3
with e= 10 -i, i=2,4,6,8 and N=2i, i=2,3,... ,7, in Table 3. The results for Methods
2 and 3 indicate that ]e(h)[ cannot be reduced below O(e) until e/hE and e/h3,
respectively, are sufficiently small.

Example 2.

e2y "- (x 2 + e)y (x 2 + e)( + sin rrx ) e2r 2 sin rrx,

y(O) =y(1) =0.

O<x<l,
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0.06

(x)

0.04

0.02

-0.05

I/4 I/2 3/4

FIG 5. Error e(x) and its derivative e’(x) in the solution of Example by Method for e= 10-4 and h-.
(Note: e’(0)- 5.76 103.)

The exact solution of this example is

y(x)= +sin rx-

erf(V )

where

{(1-e-’/2")W(x//-e )e-x2/2

+ 1- e-’/:’-’w(V’- )]e-(’-x2)/2},

W(z ) e" erfc(z).

(Note that y" is multiplied by e2 instead of e for notational simplicity.) The exact
solution of (5.8) has a boundary layer of width O(Ve ) near x=0 and one of width
O(e) near x= 1. This problem does not satisfy the assumptions of Problem 2 since
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0 I/4 112 514

-;)0t
0

FZG 6. Error e(x) and its derivative e’(x) in the solution of Example by Method 2 for e= 10-’ and h- .

q(x)= -(x2+e) cannot be bounded away from zero at x=O as e--O; thus, x=O is a
turning point.

We computed solutions by Methods and 3 for e= 10 -i, i=2,4,6,8. Solutions
were also calculated using the collocation points of Method 3 (cf. (5.2c)), but
with splines under tension instead of polynomial splines, and these are denoted as
Method 3T. The errors Ilellh,0 and Ile’llh, Ao are presented in Tables 4 and 5,

7respectively, for the partition A0 {, , , }. Partial tension solutions using
Method and 3T were also calculated, and the results were marginally more accurate
than those of Method 1.

Tables 4 and 5 indicate that when e/h<<l, Ilellh, a0 and Ile’llh,o are O(eh) and
O(h2), respectively, for Method and O(eh3) and O(h2), respectively, for Method
3T. The small errors in Method 3 make it difficult to estimate the order of conver-
gence.
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0.5

2xlO

5 x I0"s

0 I/4 I/2 5/4

5xlO

-5 x I0 "

-I0

-20
0 I/4 I/2 5/4

FIG 7. Error e(x) and its derivative e’(x) in the solution of Example by Method 3 for e--- 10-4 and h-
(Note: e’(O) 1.0 104.)

The largest error on the partition A= (0, h,2h,. , Nh= 1) used for the computa-
tion was once again at the end of a subinterval containing a boundary layer, i.e.,
either at x=h or xv_ =(N-1)h. To indicate how this error behaves, we present
results for ][ellh, A in Table 6. For small values of e/h we see that the polynomial
solution (Method 3) is not converging in h, and that this situation is remedied by
using tension splines (Method 3T). Although we have not done so, we suspect that it
would have been sufficient to apply tension only within subintervals containing
boundary layers. Furthermore, Methods and 3 do not appear to be uniformly
convergent in h for all e. All methods are converging as O(e), which accounts for the
remarkable accuracy when e is small.
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Method

TABLE 3
Error at the knotpoint x for Exarrle 1.

10-2 e-’- 10-4 e= 10-6

)l r e(h)l r e(h)l r

effil0-8

le(h)l r

4 3.87E-2 4.36E-2 4.37E-2 4.37E-2
8 1.95E-2 1.0 2.44E-2 0.8 2.45E-2 0.8 2.44E-2 0.8

16 7.89E-3 1.3 1.28E-2 0.9 1.29E-2 0.9 1.29E-2 0.9
32 2.25E-3 1.8 6.57E-3 1.0 6.62E-3 1.0 6.62E-3 1.0
64 3.08E-4 2.9 3.30E-3 1.0 3.35E-3 1.0 3.35E-3 1.0
128 6.23E-6 5.6 1.63E-3 1.0 1.69E-3 1.0 1.69E-3 1.0

2 4 2.34E-2 2.09E-3 1.30E-3 1.28E-3
8 1.28E-2 0.9 1.13E-3 0.9 4.52E-4 1.5 4.40E-4 1.5
16 4.19E-3 1.6 7.15E-4 0.7 1.36E-4 1.3 1.26E-4 1.8
32 2.47E-4 4.1 5.39E-4 0.4 4.32E-5 1.7 3.35E-5 1.9
64 4.45E-5 2.5 4.36E-4 0.3 1.76E-5 1.3 8.72E-6 1.9
128 5.48E-6 3.0 3.51E-4 0.3 1.05E-5 0.7 2.31E-6 1.5

3 4 4.37E-3 3.57E-5 1.28E-5 1.34E-5
8 3.70E-3 0.2 5.56E-5 -0.6 1.62E-6 3.0 1.77E-6 2.9
16 1.38E-3 1.4 6.16E-5 -0.2 3.35E-7 2.3 3.04E-7 2.5
32 7.65E-4 0.9 6.34E-5 -0.0 8.50E-7 -1.3 2.99E-8 1.1
64 8.48E-5 3.2 6.29E-5 0.0 7.13E-7 0.3 2.99E-8 0.0
128 4.39E-6 4.3 6.05E-5 0.1 6.79E-7 0.1 3.61E-7 -3.6

Method

3

3T

TABLE 4
Error and order of convergence for Example 2 measured on A o - ,..., - ).

N e= 10-2 e’-- 10-4 e’- 10-6 e 10-s

Ilellh,ao ro Ilellh,ao

4 7.35E-3 1.54E-4
8 3.83E-3 0.9 8.75E-5
16 3.99E-4 3.3 3.05E-5
32 4.67E-5 3.1 1.30E-5
64 3.20E-6 3.9 5.84E-6
128 2.05E-7 4.0 2.50E-6

4 3.13E-2 4.66E-4
8 2.93E-2 0.1 5.92E-4
16 3.42E-4 6.4 9.92E-7
32 4.58E-6 6.2 5.97E-10
64 2.87E-7 4.0 1.57E-10
128 1.80E-8 4.0 2.37E-11

4 4.93E-3 8.55E-5
8 1.05E-3 2.2 4.85E-5
16 8.70E-5 3.6 3.84E-6
32 5.76E-6 3.9 4.73E-7
64 3.66E-7 4.0 5.74E-8
128 2.29E-8 4.0 6.66E-9

0.8
1.5
1.8
1.2
1.2

-0.3
9.2
10.7
1.9
2.7

0.8
3.7
3.0
3.0
3.1

Ilelln,ao ro Ilellh,ao

1.57E-6 1.57E-8
9.19E-7 0.8 9.21E-9
3.24E-7 1.5 3.24E-9
1.49E-7 1.1 1.49E-9
7.28E-8 1.0 7.30E-10
3.61E-8 1.0 3.63E-10

4.67E-6 4.67E-8
5.95E-6 -0.3 5.96E-8
1.02E-10 15.8 1.04E-14
1.00E-13 10.0 0.0
2.46E-14 2.0 0.0
6.00E- 15 2.0 0.0

8.65E-7 8.65E-9
5.06E-7 0.8 5.06E-9
3.94E-8 3.7 3.94E-10
4.88E-9 3.0 4.88E-11
6.08E-10 3.0 6.09E-11
7.60E-11 3.0 7.61E-13

0.8
1.5
1.1
1.0
1.0

-0.4
22.5

0.8
3.7
3.0
3.0
3.0
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TABLE 5
Error and order of convergence in the derivative of the solution of Example 2 measured on Ao , , ,. --, }.

Method N e= 10 -2 e= 10 -4 e= 10 -6 e-- 10 -8

4
8
16
32
64
128

3 4
8
16
32
64
128

3T 4
8
16
32
64
128

Ile’llh,o rl

1.36E-1
2.68E-2 2.3
4.46E-3 2.6
1.43E-4 5.0
8.35E-6 4.1
5.10E-7 4.0

2.04E 0
2.37E 0 0.2
2.87E-2 6.4
4.12E-5 9.4
2.13E-5 1.0
1.34E-6 4.0

1.10E-1
1.45E-2 2.9
5.18E-4 4.8
1.25E-4 2.1
1.15E-5 3.4
7.98E-7 3.8

Ile’llh,o rl

2.81E-1
8.65E-2 1.7
2.37E-2 1.9
5.88E-3 2.0
1.36E-3 2.1
3.02E-4 2.2

2.97E 0
4.82E 0 0.7
8.37E-3 9.2
6.34E-7 10.4
3.78E-8 4.1
3.48E-9 3.4

2.01E-I
7.31E-2 1.5
1.89E-2 2.0
4.63E-3 2.0
1.07E-3 2.1
2.28E-4 2.2

Ile’llh,o rl Ile’llh,o rl

2.79E-1 2.78E-1
8.76E-2 1.7 8.76E-2
2.49E-2 1.8 2.49E-2
6.45E-3 1.9 6.46E-3
.63E-3 2.0 1.64E-3

4.07E-4 2.0 4.09E-4

2.97E 0
4.85E 0 0.7
3.93E-8 26.9
4.09E-9 3.3
4.86E-10 3.1
9.52E- 11 2.4

2.98E 0
4.85E 0
8.40E-7
2.72E-8
2.74E-8
2.59E-8

1.7
1.8
1.9
2.0
2.0

-0.7

2.02E- 2.02E-
7.45E-2 1.4 7.45E-2
2.04E-2 1.9 2.04E-2
5.33E-3 1.9 5.33E-3
1.35E-3 2.0 1.35E-3
3.36E-4 2.0 3.39E-4

22.5
4.9
0.0
0.1

1.4
1.9
1.9
2.0
2.0

TABLE 6
Error and order of convergencefor Example 2 measured on A {0, h, 2h,. , Nh }.
Method N e= 10- e-" 10-4 e 10-6 e-- 10-8

Ilellh,a r Ilellh,A r Ilellh, r Ilellh, r

4 7.35E-3 1.54E-4 1.57E-6 1.57E-8
8 3.83E-3 0.9 8.75E-5 0.8 9.19E-7 0.8 9.21E-9 0.8
16 3.99E-4 3.3 4.61E-5 0.9 4.76E-7 0.9 4.78E-9 0.9
32 4.74E-5 3.1 1.35E-3 -4.9 2.38E-7 1.0 2.41E-9 1.0
64 1.63E-5 1.5 2.81E-3 -1.1 8.28E-8 1.5 1.21E-9 1.0
128 1.42E-6 3.5 6.32E-4 2.2 9.01E-7 -3.4 6.01E-10 1.0

3 4 3.13E-2 4.66E-4 4.67E-6 4.67E-8
8 2.93E-2 0.1 5.92E-4 -0.3 5.95E-6 -0.3 5.96E-8 -0.4
16 2.21E-2 0.4 9.59E-4 -0.7 9.70E-6 -0.7 9.70E-8 -0.7
32 7.52E-3 1.6 1.72E-3 -0.8 1.76E-5 -0.9 1.76E-7 -0.9
64 9.96E-4 2.9 3.20E-3 -0.9 3.35E-5 -0.9 3.35E-7 -0.9
128 6.75E-5 3.9 5.98E-3 -0.9 6.55E-5 -1.0 6.55E-7 -1.0

3T 4 4.93E-3 8.55E-5 8.65E-7 8.65E-9
8 1.05E-3 2.2 4.85E-5 0.8 5.06E-7 0.8 5.06E-9 0.8
16 1.43E-4 2.9 2.86E-5 0.8 2.63E-7 0.9 2.63E-9 0.9
32 6.88E-6 4.4 1.28E-3 -5.5 1.32E-7 1.0 1.32E-9 1.0
64 2.15E-5 1.6 8.97E-4 0.5 9.07E-8 0.5 6.65E-10 1.0
128 2.00E-6 3.4 3.48E-4 1.4 8.80E-7 -3.3 3.35E-10 1.0



286 JOSEPH E. FLAHERTY AND WILLIAM MATHON

Example 3. (cf. Hemker [15])
ey" +xy’ --e2 COS 71"x--x sin rx,

y(-1)=-2, y(1)=0.

-l<x<l,

The exact solution of this example is

y(x) =cos rx+erf(x/-e )/erf(1/X/e ).
The problem has a turning point at x =0, and the exact solution features an interior or
"shock" layer there.

Solutions wer calculated by Methods 1, 2, 3, and 1P for e= 10 -i, i=2,4, 6, 8. The
errors Ilellh,o and Ile’llh, ao on the partition A0 =( 4’ 2’ ’a’’) are presented
in Tables 7 and 8, respectively for e= 10 -2, 10 -4, and 10 -8. (The results for e= 10 -6

were essentially the same as those for e= 10-8.) The results for ]lel]h, ao are indicating
the same orders of convergence as found in Example 1; however, for Methods and
3, e’ll h,A is much more accurate than the corresponding values for Example 1.

In order to include the behavior of the solution in the turning point region, we
have tabulated e h, a on the partition A (- 1, + h,.--,- + Nh ) used for
the calculation in Table 9. Note that e h, o---- e h, a for Method 1, so the maximum
error is not in the turning point region. Methods 2 and 3 are both exhibiting regions of
nonuniform convergence in h.

TABLE 7
Error and order ofconvergencefor Example 3 measured on A o

Method N e= 10-4

Ilellh,ao ro Ilellh,ZXo ro
4 5.26E- 5 ’.70E-
8 2.57E-1 1.0 3.40E-1 0.7
16 9.60E-2 1.4 1.83E-1 0.9
32 1.79E-2 2.4 9.40E-2 1.0
64 1.88E-4 6.6 4.73E-2 1.0
128 1.20E-5 4.0 2.33E-2 1.0

2 "4 3.16E,1 6.06E-1
8 1.00E- 1.7 4.24E- 0.5
16 1.45E-2 2.8 3.58E-2 3.6
32 1.97E-3 2.9 9.78E-3 1.9
64 1.76E-4 3.5 2.51E-3 2.0
128 1.25E-5 3.8 6.09E-4 2.0

3 4" 5.34E2 2.84E-2
8 2.12E-2 1.3 6.52E-3 2.1
16 2.45E-3 3.1 8.09E-4 3.0
32 1.45E-4 4.1 1.03E-4 3.0
64 8.46E-6 4.1 1.29E-5 3.0
128 5.00E-7 4.1 1.61E-6 3.0

1P 4 2.74E"2 5.70E-1"
8 1.49E-2 0.9 1.51E-1 1.9
16 7.80E-4 4.3 8.41E-6 17.5
32 6.76E-5 3.5 2.09E-7 5.3
64 4.34E-6 4.0 3.29E-7 -0.7
128 2.72E-7 4.0 2.56E-8 3.7

llellh,Ao

5.71E-1
3.41E-1
1.83E-1
9.50E-2
4.83E-2
2.43E-2

6.30E-1
4.53E-1
3.43E-2
1.02E-2
2.66E-3
6.76E-4

2.77E-2
6.26E-3
8.10E-4
1.03E-4
1.30E-5
1.63E-6

5.71E-1
1.52E-1
9.44E-6
5.88E-7
3.67E-8
2.29E-9

0.7
0.9
0.9
1.0
1.0

0.5
3.7
1.7
1.9
2.0

2.1
3.0
3.0
3.0
3.0

1.9
14.0
4.0
4.0
4.0
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TAaLE 8

Error and the order of convergence in the derivative of the solution of Exanle 3 measured on

m0=( 1113

Method

1P

4
8

16
32
64
128

4
8
16
32
64
128

4
8
16
32
64
128

4
8
16
32
64
128

e--- 10-2

{e’ h,Ao

1.42E 0
1.36E 0
3.10E-2
2.78E-2
2.00E-2
1.39E-3

1.90E
7.18E 0
1.48E 0
1.97E-1
1.76E-2
1.26E-3

8.01E-2
2.31E-1
9.31E-3
8.58E-4
6.02E-5
3.96E-6

0.1
5.5
0.2
0.5
3.8

1.4
2.3
2.9
3.5
3.8

1.5
4.6
3.4
3.8
3.9

2.5
6.6
1.2
4.1
3.9

e---- 10 -4

1.71E 0
2.07E 0
2.38E-4
4.73E-4
6.71E-4
7.68E-4

2.79E 3
1.18E3
3.45E 2
9.03E
2.26E
5.49E

5.45E-4
6.04E-4
3.75E-6
8.72E-8
4.88E-8
2.45E-8

-0.3
13.1
-1.0
-0.5
-0.2

1.2
1.8
1.9
2.0
2.0

-0.1
7.3
5.4
0.8
1.0

-0.3
7.8
2.3
1.3
3.1

e=10

le’llh,ao

1.71E 0
2.07E 0
5.07E-7
1.25E-7
6.00E-8
5.23E-8

2.91E 7
1.19E 7
3.51E 6
9.26E 5
2.37E 5
5.97E 4

5.39E-8
3.69E-8
0.0
0.0
0.0
0.0

2.31E 0
4.16E-1
4.43E-3
1.87E-3
1.12E-4
7.52E-6

1.71E0
2.07E 0
9.57E-3
2.00E-3
8.03E-4
9.36E-5

1.71E0
2.07E 0
9.55E-3
2.08E-3
6.77E-4
1.90E-4

-0.3
22.0
2.0
1.1
0.2

1.3
1.8
1.9
2.0
2.0

0.5

-0.3
7.8
2.2
1.6
1.8

6. Discussion and conclusion. Based on the results of 4 and 5, we conclude that
splines under tension are most suitable in regions containing boundary and/or
interior layers and that collocation with piecewise polynomials is superior elsewhere.
In particular, when e/h<<l Method 3 provides an approximation that converges
outside of boundary layer subintervals as O(h3) when p(x)4=O and at least O(k/-eh )
when p(x)=O on [a, b]. Hemker [15] and de Groen and Hemker [10] reached similar
conclusions with their exponentially fitted Galerkin methods.

Partial tension can converge as O(ha) outside of boundary layer subintervals, but
either requires a knowledge of boundary layer locations or a preliminary solution to
automatically locate them. The latter procedure may be useful for nonlinear problems
where it is necessary to solve a sequence of linear problems to find the solution;
however, for linear problems it does not seem to warrant the extra computational
effort merely to obtain one order of accuracy more than that available by Method 3.

The use of "one-sided splines under tension," i.e., the selection of basis functions
that satisfy

(6.1) (n’ + O/)’" O, O<s< 1,

instead of (2.14) would undoubtably improve the results on subintervals where
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TABLE 9
Error and order of convergencefor Exanle 3 measured on A 1, + h, + 2h ,..., + Nh-- }.

Method N e= 10-2 e-- 10-4 e--- 10-6 e--- 10-8

1P

Ilellh,a r lellh,a r Ilellh,a r Ilellh, a r

4 5.26E-1 5.70E-1 5.70E-1 5.71E-1
8 2.57E-1 1.0 3.40E-1 0.7 3.41E-1 0.7 3.41E-1

16 9.60E-2 1.4 1.83E-1 0.9 1.83E-1 0.9 1.83E-1
32 1.81E-2 2.4 9.40E-2 1.0 9.50E-2 0.9 9.50E-2
64 1.91E-4 6.6 4.73E-2 1.0 4.83E-2 1.0 4.83E-2
128 1.22E-5 4.0 2.33E-2 1.0 2.43E-2 1.0 2.43E-2

4 3.16E-1 6.06E-1 6125E-1 6.30E-1
8 1.00E-1 1.7 4.24E-1 0.5 4.51E-1 0.5 4.53E-1
16 1.77E-2 2.5 2.99E-1 0.5 3.66E-1 0.3 3.68E-1
32 2.11E-3 3.1 1.82E-1 0.7 3.38E-1 0.1 3.42E-1
64 1.84E-4 3.5 6.09E-2 1.6 3.20E-1 0.1 3.35E-1
128 1.31E-5 3.8 9.39E-3 2.7 2.88E-1 0.2 3.33E-1

4 5.34E-2 9.22E-2 9.29E-2 9.29E-2
8 2.12E-2 1.3 7.25E-3 3.7 7.48E-3 3.6 7.48E-3
16 5.68E-3 1.9 1.52E-2 1.1 8.10E-4 3.2 8.10E-4
32 3.02E-4 4.2 4.19E-2 1.5 6.90E-4 0.2 o03E-4
64 1.89E-5 4.0 1.89E-2 1.1 2.68E-3 2.0 2.80E-5
128 1.19E-6 4.0 1.49E-2 0.3 1.00E-2 1.9 1.09E-4

4 2.74E-2 5.70E-1 5.71E-1 5.71E-1
8 1.49E-2 0.9 4.37E-1 0.4 4.45E-1 0.4 4.45E-1
16 3.27E-3 2.3 1.34E- 1.7 1.43E- 1.6 1.43E-
32 1.93E-4 4.1 2.94E-2 2.2 3.77E-2 1.9 3.78E-2
64 1.33E-5 3.9 2.89E-2 0.0 9.50E-3 2.0 9.59E-3
128 8.28E-7 4.0 8.06E-3 1.8 2.32E-3 2.0 2.41E-3

0.7
0.9
0.9
1.0
1.0

0.5
0.3
0.1
0.0
0.0

3.6
3.2
3.0
1.9

0.4
1.6
1.9
2.0
2.0

p(x)=/=O. A basis for these approximations would contain either the exponential
exp(-Os) when O > 0, or exp(-101(1-s)) when O < 0, and not both as in the current
case. This would more accurately represent the exact solution of problems where
p(x)vO on [a, b]. The results could possibly be further improved by not restricting
the collocation points to be placed symmetrically on each subinterval and by using
nonuniform partitions. Another interesting approach would be to try the polynomial
taut splines and rational splines of de Boor [9, Chapt. 16] and Pruess [23] as
alternatives to the exponential splines in tension. Each of these potential improve-
ments is currently under investigation. Extensions of our methods to higher order
scalar and vector systems of two-point boundary value problems as well as second
order parabolic partial differential equations are also being studied.
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Heitker for his assistance with some of the programming.

REFERENCES

1] L. R. ABrtAHAMSON, H. B. KELLER, AND H. O. KREISS, Difference approximations for singular perturba-
tions of systems of ordinary differential equations, Numer. Math., 22 (1974), pp. 367-391.

[2] U. Ascnt, J. CHSTIANS.q, AND R. D. RUSSELL, Collocation software for boundary value ODE’s,
preprint, 1979.



COLLOCATION WITH POLYNOMIAL AND TENSION SPLINES 289

[3] C. M. BENDER AND S. A. ORSZAG, Advanced Mathematical Methods for Scientists and Engineers,
McGraw Hill, New York, 1978.

[4] A. E. BERGER, J. M. SOLOMON, AND M. CIMENT, Higher order accurate tridiagonal difference methods for
diffusion convection equations, Proceedings of the Third IMACS Conference on Computer Methods
for Partial Differential Equations, Lehigh University, 1979.

[5] A. CLINE, Curve fitting in one and two dimensions using splines under tension, Comm. ACM, 17 (1974),
pp. 218-223.

[6] J. COLE, Perturbation Methods in Applied Mathematics, Blaisdell, Waltham MA, 1968.
[7] J. M. COYLE AND J. E. FLAHERTY, The solution of boundary value problems having rapidly oscillating

solutions, in preparation.
[8] C. DE BOOR AND I. SWARTZ, Collocation at Gaussian points, SIAM J. Numer. Anal., l0 (1973), pp.

582-607.
[9] C. DE BOOR, A Practical Guide to Splines, Applied Mathematical Sciences 27, Springer-Verlag, New

York, 1978.
[10] P. P. N. DE GROEN AND P. W. HEMKER, Error bounds for exponentially fitted Galerkin methods applied to

stiff two-point boundary value problems, in Numerical Analysis of Singular Perturbation Problems,
P. W. Hemker and J. J. H. Miller, eds., Academic Press, London, 1979.

[1 l] W. ECKHAUS, Matched Asymptotic Expansions and Singular Perturbations, North-Holland Mathematics
Studies 6, North-Holland, Amsterdam, 1973.

[12] J. E. FLARTY AND R. E. O’MALLEY, JR., The numerical solution of boundary value problems for stiff
differential equations, Math. Comp., 31 (1977), pp. 66- 93.

[13] J. C. HEINCH, P. S. HUYAKORN, O. C. ZIENKIEWICZ, AND A. R. MITCHELL, An upwind finite element
scheme for two-dimensional convective transport equations, Internat. J. Numer. Methods. Engrg., 11
(1977), pp. 131-143.

[14] J. C. HEINRICH, AND O. C. ZIENKIEWICZ, Quadratic finite element schemes for two dimensional
convective-transport problems, Internat. J. Numer. Methods. Engrg., 11 (1977), pp. 1831-1844.

[15] P. W. HEMKER, A Numerical Study of Stiff Two-point Boundary Problems, Ph.D. dissertation, Mathema-
tisch Centrum, Amsterdam, 1977.

[16] A. i. IL’IN, Differencing scheme for a differential equation with a small parameter affecting the highest
derivative, Math. Notes, 6 (1969), pp. 596-602.

[17] H. O. KRESS, Difference approximations for singular perturbation problems, in Numerical Solutions of
Boundary Value Problems for Ordinary Differential Equations, A. K. Aziz, ed., Academic Press,
New York, 1975, pp. 199-212.

[18] R. E. O’MALLEY, JR., Introduction to Singular Perturbation, Academic Press, New York, 1979.
[19] C. E. PEARSON, On a differential equation of the boundary layer type, J. Math. Physics, 47 (1968), pp.

134-154.
[20] On nonlinear ordinary differential equations of boundary layer type, J. Math. Phys., 47 (1968),

pp. 351-358.
[21] S. PRUESS, Solving linear boundary value problems by approximating the coefficients, Math. Comp., 27

(1973), pp. 551-561.
[22] Properties of splines in tension, J. Approx. Theory, 17 (1976), pp. 86-96.
[23] Alternatives to the exponential spline in tension, Math. Comp., 33 (1979), pp. 1273-1281.
[24] R. D. RUSSELL, Collocation for systems of boundary value problems, Numer. Math., 23 (1974), pp.

119-133.
[25] R.. D. RUSSELL AND J. CHRISTIANSEN, Adaptive mesh selection strategies for solving boundary value

problems, SIAM J. Numer. Anal., 15 (1978), pp. 59-80.
[26] R. D. RUSSELL AND L. F. SHAMPINE, A collocation methodfor boundary value problems, Numer. Math.,

19 (1972), pp. 1-28.
[27] D. SCrIWIrd3RT, An interpolation curve using splines in tension, J. Math. Phys., 45 (1966), pp. 312-317.
[28] H. SPTH, Spline-Algorithmen zur Konstruktion glatter Kurven und Fliichen, R. Oldenbourg Verlag,

Miinchen, 1973; English translation by W. D. Hoskins and H. W. Sager, Spline Algorithms for
Curves and Surfaces, Utilitas Mathematica, Winnipeg, 1974.

[29] C. R. STEELE, Application of the lZe’KB method in solid mechanics, Mechanics Today, 3 (1976), pp.
243-295.

[30] J. M. VARAn, Alternate row and column elimination for solving certain linear systems, SIAM J. Numer.
Anal., 13 (1976), pp. 71-75.

[31] W. WAsow, Asymptotic Expansions for Ordinary Differential Equations, Wiley-Interscience, New York,
1965.



SIAM J. Scl. STAT. COMPUT.
Vol. 1, No. 2, June 1980

(C) 1980 Society for Industrial and Applied Mathematics

0196-5204/80/0102-0010 $1.00/0

LEAST ABSOLUTE DEVIATIONS CURVE-FITtING*

PETER BLOOMFIELD AND WILLIAM STEIGER

Abstract. A method is proposed for least absolute deviations curve fitting. It may be used to obtain
least absolute deviations fits of general linear regressions. As a special case it includes a minor variant of a
method for fitting straight lines by least absolute deviations that was previously thought to possess no
generalization. The method has been tested on a computer and was found on a range of problems to
execute in as little as 1/3 the CPU time required by a published algorithm based on linear programming.
More important, this advantage appears to increase indefinitely with the number of data points

Key words, least absolute deviations, linear programming

1. Introduction. The least absolute deviations method of curve-fitting consists of
fitting the model

k

(1) Yi’- E xij+ei,
j----1

i=l,...,n

to data (xi,...,xi,,yi, i=l,...,n) by choosing the parameters O--(Ol,...,Ok) to
minimize the sum of absolute deviations,

(2) s( o E y,- E
i-I j=l

According to Eisenhart (1961), the minimization of a quantity like (2) was

suggested by Boscovitch in the mid-eighteenth century for fitting lines well before the
introduction of the method of least squares. Boscovitch added the condition that
the sum of the signed residuals be zero, which constrains the line to pass through the
centroid of the (xi, Yi) points. He also described an algorithm for finding the slope of
the minimizing line, which can of course be used in conjunction with different
constraints such as that of a zero intercept.

More than one hundred years later, Edgeworth dropped the constraint and
proposed the fitting of lines and of more complicated models by unconstrained
minimization of (2). However, the computations are inherently more complex than the
solution of the linear equations that arise in the method of least squares, and
Edgeworth’s method does not seem to have been used widely.

A new method was introduced by Rhodes (1930) and discussed by Singleton
(1940), who also proposed an alternative. The development of linear programming
and the observation of Harris (1950) that the least absolute deviations fitting problem
could be turned into a linear programming problem was the next major advance. This
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of this author was supported in part by the Rutgers University Research Council. Computing facilities were
provided by the Rutgers University PDP 20 devoted to computer science research.

290



LEAST ABSOLUTE DEVIATIONS CURVE-FITTING 291

line was pursued by Wagner (1959) and many others, including Barrodale and
Roberts (1973, 1974) and Narula and Wellington (1977). We comment on these
algorithms in 4 and 5.

The current resurgence of interest in least absolute deviations methods is associa-
ted with the development of robust and resistant methods (see Huber, 1973 or
Andrews, 1974). That a least absolute deviations fit is less sensitive to extreme errors
than is a least squares fit was noted by Bowditch in an English translation of a work
by Laplace (see Eisenhart, 1961). Similar remarks have been made by Edgeworth and
by Rhodes (1930), who exhibited an example to support the point. While there are
techniques that are at the same time statistically more efficient in reasonable circum-
stances and even less affected by extreme errors, the conceptual simplicity of least
absolute deviations estimates and their competitive computational cost makes them
well worth considering. We note that these estimates are maximum likelihood and
hence asymptotically efficient in the (perhaps uncommon) situation when the errors
follow the double exponential Laplace distribution.

in addition to their use for robust estimation of regression equations, least
absolute deviations estimates could also be used as starting points for iterative
estimation schemes. Although this would be computationally more expensive than the
use of least squares estimates as starting points, the resistance of the procedure to
outliers would be improved.

Schlossmacher (1973) described a different relationship between iterative and
least absolute deviations methods. He pointed out that least absolute deviations
estimates could be found by iteratively reweighted least squares. However, numerical
tests have shown that this is a computationally expensive way to find an approximate
solution to a problem that admits exact solution. Abdelmalek (1971) suggested a
different approximate solution, namely minimization of the /p-norm with p approach-
ing from above. This approach was found by Barrodale and Roberts (1973) to be
inefficient.

2. Minimizing the sum of absolute deviations. When there is only one degree of
freedom in the fit, such as when k= or when constraints are imposed as by
Boscovitch, the solution is straightforward. For

n

ly,-Ox, I- E Ixil lyi/xi-Ol,
i--1 i=l

and the minimizing value of 0 is thus the weighted median of the ratios yi/xi, with
respect to weights Ix [. This weighted median may be defined as any value 0 such that

Yi/Xi 0 Yi/Xi ( 0 Yi/Xi ) 19

It may be found by ordering the ratios, and then summing the weights from one end
until the partial sum first exceeds or equals one half the total of the weights. The
corresponding ratio is the weighted median.

This shows that when k 1, 0 may always be taken to be one of the ratios yi/xi,
and that at least one of the residuals yi-Oxi vanishes. In the general case there is a
solution 19 for which at least r of the residuals vanish, r being the rank of X=(xij).
This is easily seen by a linear programming formulation of (2) (e.g. Wagner (1959)) or
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via a simple direct argument: Suppose O<=m<r residuals, Yi--a=lXijj, vanish, say
for i= m. Since m <r, there is a row, say the pth, not in the space spanned by
rows il,..., i,, and a vector orthogonal to rows 1, i, but not row p. Thus the
function f(t)=Zi llyi Z=ixij(O + trj) is a sum with zero terms when i=i im,

kand S(O))=f(O). Finally, write f(t)-Y.i__lwi-tvil, where Wi=Yi--j=lXijOj and
v =Y,=xij6. From the k= case, f is minimized for t=f =yq/Xq, and the qtn term
of the sum is zero. Now S(O+ ’) has m+ zero residuals at i=i,..., or i=q, and
S(O + td) =f(f) -<_f(0) S(0), an argument that holds as long as m < r.

The problem of minimizing (2) is thus a discrete search problem. One need only
search the (r) combinations of r zero residuals, find an appropriate 0 for each, and
evaluate S(O).

This observation motivates a simple method for solving the two-parameter
problem of fitting a straight line y=O +02x. The method, described by Rhodes (1930)
and Karst (1958), is the basis of a computer algorithm published by Sadovski (1974).
First, a line is fitted to the data while constrained to pass through some arbitrary
point, such as the origin. As noted above, the fitted line must pass through at least one
data point. Next, a line is fitted while constrained to pass through the data point thus
identified (an arbitrary one in the case of multiplicity). This identifies a new point to
replace the previous one, and the algorithm continues. It terminates when the fitted
line does not change.

It is easily seen that the sum of absolute deviations goes down at each step, and
that no more than n-1 steps can be taken before termination. At some stages the
problem may be degenerate in the sense that more than two residuals are zero. Some
care must be taken so the algorithm does not cycle endlessly (see Sposito, 1976), or
terminate prematurely. Karst (1958) recognized the difficulties introduced by degener-
acy. The optimal line through P may pass through P2 and vice versa, and yet still not
be the overall optimum.

Narula and Wellington (1977) described a method based on linear programming
(in which, surprisingly, they readopted Boscovitch’s constraint that the fit should pass
through the centroid). They commented that the Karst/Sadovski technique does not
lend itself to regression problems with more parameters. There is, however, a very
natural extension that not only leads to an efficient numerical solution of the
problem, but also sheds light on the relationship of the least absolute deviations
problem to linear programming. This extension, based on the foregoing argument and
related to the descent method of Usow (1967), is described in the next section.

3. The method. Assume that n > k, and that X is of full rank. The basis of the
method is to search for a set of k data points such that the fit, when constrained to
make the corresponding residuals vanish, is optimal. As in the method described
above for k=2, this set of data points is found iteratively, by successive improve-
ments. In each iteration one point from the current set is identified as a good prospect
for deletion. This point is then replaced by the best alternative. This clearly gener-
alizes the 2-parameter technique. It is also related to the descent technique of Usow
(1967). The novel features of our method are

an efficient method for finding optimal replacement, and
a heuristic method for identifying the point to be deleted.
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(i) Replacement. Suppose that the rows of X =(xij ) that correspond to the current
set of points are x x, and that x has been identified for replacement. There is a
one-dimensional set of parameter values 0 that satisfy the remaining constraints

(3) Yi xO, i= 1,..., k- 1,

which we may parametrize as

0=00 +t,
where 00 is any arbitrary member of the set, and d satisfies

(4) x/rd= 0, i=1 ,k-1.

Within this set, the optimum may be found by minimizing

(5) E lYi--xTi(o0 +td)l
i=1

with respect to the scalar t. Rewriting this objective function as

[(Yi--xTiOo)--t(xTid)I,
i=l

one can minimize (5) by solving the one-dimensional problem of regressing Yi-x/r00
on xd. As was remarked earlier, this minimizing value of is the weighted median of

(Yi--xTiOo)/(xTi6), i=1 n,

with respect to the weights

Ix  l, i----1 ,n.

Thus the minimizing value of may be found efficiently by using a weighted
version of the partial quick-sort procedure (see Chambers, (1971)). The next set of
parameter values may then be computed as Oo+td. Finally, the data point that
replaces x, is the point corresponding to the weighted median.

For 00, we use the parameter values associated with x ,x,, for these satisfy (3)
and the additional equation with i=k. The vector 6 is determined up to scalar
multiples by (4).

(ii) Deletion. A reasonable goal when deleting a point at some intermediate stage
would be to select that point which, when optimally replaced, leads to the largest
reduction in the objective function. However, we have found no reliable way to
identify this point short of trying all deletions. In tests, this "look ahead" approach
was more expensive than the heuristic method described below, and often did not lead
to fewer steps before termination.

Our heuristic method is based on gradients. The quantity (5) is a convex,
piecewise linear function of t. We examine the larger of its left-hand derivative at 0
and the negative of its right-hand derivative, which may be expressed as

(6) ,
Wi-- E wil- Y, Wi,

i" ri<O i: ri:> 0 i" ri-O

where

ri=( i-x ,Oo)lx ia
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and

If (6) is negative, then the unique minimum of (5) is at t---0, and thus if x, were
deleted, the same point would immediately reenter (or possibly a different point, but
still leading to no improvement in the objective function nor any change in the
parameter values). If (6) is zero, t=0 is still a minimum, but there is an interval of
values all of which also minimize (5). Thus the objective function still cannot be
improved, although there are other sets of parameter values that give the same value.

We therefore avoid nonpositive values of (6). To convert the gradient into an
estimate of the amount by which (5) may be reduced, we multiply by a rough estimate
of the scale of the ratios r,.. Since the numerators are the same in all the possible cases
at a given stage, we use the reciprocal of the sum of the denominators as this rough
estimate. Thus we use the quantity

<0 r >0 ----0
(7) t)

to measure the merit of deleting the given point, and we delete the point for which O is
largest.

We note that max (O,0) has some of the properties of an absolute correlation
coefficient between the residuals Yi-x00 and the linear compound x/J:

it lies between 0 and 1,
it is 0 iff the (least absolute deviations) regression of the residuals on the

compound is null,
it is iff the signs of the residuals and the compound are all the same or all

opposite.

We make the calculation of (7) for each candidate for deletion economical by the
choice of 00. For this is the same for each candidate, and hence the residuals need
only be computed once. For 6 we use the appropriate column of the inverse of the
k k submatrix

(8) z=

Thus, in evaluating the merit of deleting xj from the current set, we compute (7) using
the j th column of Z-l for d. Clearly this choice satisfies the requirement embodied in
(4).

In addition, the partitioning of the residuals into negative, zero, and positive
values can be used as the first of the partitioning steps involved in the weighted
median calculation. This reduces the series length on the average by almost one half,
and leads to a further useful economy.
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To start the iteration, any set of k independent rows of X may be chosen, with
the appropriate 00. However the following procedure is usually more efficient. Take
0=0, which corresponds to an empty set of data points. We then add variables in a
stepwise fashion, until we have a fit 00 and a corresponding set of k data points. At
each intermediate stage, the fit involves rn variables, 0<m <k, and a corresponding
set of m data points with zero residuals. We then have the option of including another
variable, thus increasing m to m + 1, or improving the fit with m variables, using the
principles described earlier. Both of these alternatives may be carried out by regress-
ing the current residuals on some appropriate linear compound of the variables in the
problem.

Suppose variables v,..., v are in the model corresponding to points im.
Thus the current m variable model has residuals Yi- jm XivjOj equal to zero when
i=i m. If the criterion (7) is largest at variable pvi i,,, p may be added to
the model as follows. Choose =(6 6,,,, 6,,/ l) orthogonal to (Xiv Xivm, xip ) for
i= i im, which, since there are only m of them, can clearly be done. The function

f(t)=,lyi--jm=lXiv(Oj +trj)--tXiprm+l] is a sum with zero terms when i--i ,im,
andf(0) is the sum of absolute deviations at the current fit. If we writef(t)=Ylw tuil
where w., =y., __,,]rj=l X.tvjOij and u., ]m..,=l.Xivjr.j " Xiprm+ 1’ it is clear that f is minimized at
a value of t= t=Wq/Uq and that the qm term of the sum is then equal to zero. Hence
we have an m+ variable model (0,0)+ td based on variables Vl,..., v,,,, p and points
1,..., m, q corresponding to zero residuals.

On the other hand if (7) is largest for variable vp, say, the corresponding point ip
is deleted and replaced in the manner already described; an improved m variable
model results. In any case it is the criterion (7) that determines whether we step up to
a larger model or improve the current one without stepping up.

The mechanism described above for identifying a point to be dropped may give
false indications of convergence in the presence of degeneracy. Degeneracy occurs
when k’> k residuals vanish at a given stage. In this case, there are (’) sets of points
that all give the same fit. However, it is possible that not all of them can be improved
by replacing a single point. To guard against the possibility of arriving at such a set of
points and incorrectly concluding that the minimum has been reached, we examine all
the sets before allowing the procedure to terminate.

4. Relationship to linear programming. From a computational standpoint two sets
of quantities are required for the deletion phase, the residuals Yi-x0 and the weights
Ix/rl,i= n. There are k different sets of weights, one for the value of
associated with the point in the current set being tested for deletion. Further, the k
different 6 values are the columns of Z - in (8). The needed weights are thus the
inner products of the rows of X with the columns of Z- 1, the inverse of the submatrix
of X corresponding to the data points in the current set. These quantities may be
computed and updated easily by using th.e pivot operation of linear programming.

We begin with the bordered matrix (X: y). By pivoting on an entry in the X
portion of this array, we mean first scaling the column in which that entry appears to
make its value one, and then subtracting multiples of that column from each other
column, to make the remaining entries in that row vanish. If we pivot on one entry in
each row of the desired submatrix, with one entry also in each column, we obtain an
array in which X has been replaced by the necessary inner products, and y has been
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replaced by the residuals from the corresponding fit. For X has effectively been
post-multiplied by a matrix that has reduced the relevant submatrix to the identity
matrix, which must therefore be the desired inverse. Also, y has had multiples of the
columns of X subtracted from it to make certain entries vanish, and hence has been
replaced by the residuals from the corresponding fit.

When one point is replaced by another, we can adjust the array by a single
additional pivot. If we pivot on that entry in the new row that falls in the same
column as the unit entry in the old row, then the rows corresponding to the other
points in the current set are unaffected, and hence the resulting array again contains
all the values needed in the next step of the solution.

This pivoting operation is, of course, precisely the operation used in updating
bases in the simplex method of linear programming. The question arises as to how
well one can do using linear programming techniques. Initially, solutions by linear
programming required the introduction of additional variables and constraints, as in
the formulation:

minimize

subject to
k

ei>---- Yi-- XijOj,
j=l

k

el>= --Yi ar E xijOj,
j=l

i-- 1,..., n.

Such solutions must inevitably operate with larger arrays than our method, and are
not of comparable efficiency.

Another algorithm by Barrodale and Roberts (1973) seems to have been the
best available method for solving (2). It appears to be closely related to linear pro-
gramming but avoids the extra variables and constraints necessary in the direct
formulation, above. However, as the next section strongly suggests, the present
algorithm is much more efficient. It seems to be faster than the Barrodale-Roberts
algorithm, and the relative advantage increases indefinitely with the size of the
problem (2).

5. Computational aspects. In assessing the computational cost of the proposed
least absolute deviations algorithm, it will be useful to compare it to ordinary least
squares. For this purpose, we take the number of multiplication or division operations
as a measure of complexity.

To find 0 in (1) with ordinary least squares, the k normal equations can be
obtained at a cost of (k-1)(k + 2)n/2 operations and solved in k3/3+O(k2) opera-
tions. By way of comparison, the computations involved in a single step of our
algorithm are

2n(k- 1) comparisons and n(k- 1) additions, to find the pivot column,
finding the weighted median of the n ratios, which takes a number of compari-

sons and exchanges of the order of n log n and not more than n additions, and
n(k + 1) multiplications and nk additions in the updating operation.
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TABLE
An illustrative set of datafrom Karst (1958).

2 3 4 5 6 7

x 12 18 24 30 36 42 48
y 5.27 5.68 6.25 7.21 8.02 8.71 8.42

If the least absolute deviations algorithm terminates at step N, the computational cost

would be roughly

(9) N(nk + effort for weighted median),

while ordinary least squares would require

(10) n(k-1)(k+2)/2+k3/3+O(k2).
It is difficult to carry out the comparison further because we do not know how N

depends on n, k, and X. However, it is clear that as long as N is comparable to k/2
and k2/(2 log n), the costs of ordinary least squares and our least absolute deviations
algorithm will be comparable.

The remainder of this section is devoted to the question of how (9) might grow
with n,k for certain specific or randomly presented curve fitting problems X.
However, instead of counting operations as in (9), we will measure complexity by the
CPU time for executing the algorithm and compare this with other procedures for
computing or approximating least absolute deviations fits.

To compare our "exact" procedure with that of Schlossmacher, consider the
problems of obtaining a k 2 dimensional fit for the data of Table 1. In this problem
the iterated least squares technique converged to a good approximation in 7 steps,
while our least absolute deviations algorithm required 2. Although each of our
iterations may be more work than a single step of the iterated least squares procedure,
in view of (9) and (10) one expects our algorithm to find the exact fit in less time than
that needed for convergence of the iterated least squares approximation.

Finally we performed Monte-Carlo experiments to compare our algorithm with
the best available competition, that of Barrodale and Roberts (1974). The results are
interesting and bear careful study.

For the model Y=Oo+OXl+... --OkXkd--U, Oi=Wr]l, a sample X of size n was
generated in the following way. For each i= 1,..., n, successive random numbers
Xi, Xi2 Xik, Ui were generated.and Yi=Oo+O1Xi +,..., +OkXik + U formed. From
this sample X, LAD estimators 0 were computed with the Barrodale-Roberts algo-
rithm and the present one, and the CPU times and numbers of iterations recorded.
Since the Barrodale-Roberts iteration also exchanges one set of k zero residuals for
another, it is sensible to compare iteration counts. In addition it may help to explain
differences in the CPU times.

The above process was repeated for a total of 10 samples of size n. So that the
comparisons do not depend too strongly on a particular sequence produced by the
random number generator, the total CPU times and total iteration counts are
compared.

The FORTRAN function RAN of the DEC system 20 was used in this task.
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Finally to explore the effect of the distribution of the point cloud X on the
complexity of obtaining the LAD fits, three distributions for the X’s and U were used.
The first two are from the family of Pareto densities f(t)=l/(1 +t)l+% t>= 0, c>0.
For c> the mean exists and equals c/(c- 1), and thus the density

f(t)=/[l+(t-c)] +, t>=c=a/(t-- l),

is Pareto and centered at the mean.
We generated X’s and U using this density, first when a--1.2, and second when

a=2.2. In the former case the variance is infinite, while in the latter, though the
density is long-tailed, the variance is finite. Finally, in a third set of experiments we
used X’s and U from the unit normal distribution.

The results are in Tables 2, 3, and 4. In each table, each cell, (n, k) has the total
CPU time for the 10 samples and the total iteration count used by both the present
algorithm, labeled LAD, and the Barrodale-Roberts algorithm, labeled BAR. Inciden-
tally, the experiment reported in each cell of each table employed a different seed for
the random number generator.

The results are rather striking. As the size n of the point cloud increases, our
algorithm gains relative advantage over the Barrodale-Roberts method, for each k and
with all underlying distributions. More specifically, the tables suggest that LAD(n),
the CPU time of our algorithm, grows linearly with n, while BAR(n), the CPU time
for Barrodale-Roberts grows faster than linearly, perhaps like n log n or n 2. The three
tables would support

LAD(n)=C(U).n,

BAR(n)=d(U).nlogn or dk(U).n2,

TABLE 2
Total CPU time and iteration counts for 10 sets of LAD estimates, Pareto distribution, a 1.2.

k

100

300

n 600

1200

1800

BAR LAD

.76 .79

34 42

3.08 2.34

38 45

8.42 4.51

44 40

24.33 10.18

45 52

47.22 14.34

41 48

BAR LAD

1.20 1.10

58 34

4.74 4.10

68 60

12.04

65 49

34.89 16.27

71 61

72.00 22.91

77 53

BAR LAD

2.77 3.19

119 71

11.20 10.79

148 83

25.10 20.07

136 78

71.72 44.69

167 109

136.14 68.57

163 108
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TABLE 3
Total CPU time and iteration countsfor 10 sets of LAD estimates, Pareto distribution, a 2.2.

k

100

300

n 600

1200

1800

BAR LAD

.81 .83

43 51

2.83 2.51

43 54

7.35 5.64

43 66

22.57

52

40.41

38

3
BAR LAD

1.21 1.31

63 51

4.53 ’4115

71 64

1i.18 8.08’

67 61

11.07 3’3.47’ 18.17

60 87 78

17.41 63.99 24.87

69 80 65

BAR LAD

2.91 3.41

140 84

10.41 11.33

141 112

25.91 23.87

159 125

’79189 56.05

231 165

139.81’ ’89.77

214 183

TABLE 4
Total CPU time and iteration counts for 10 sets of LAD estimates, Gaussian distribution.

100

300

1200

BAR

.75

29

LAD

.98

57

2.59 3.17

33 67

6.62 6.50

1800

42 70

17.33 13.05

47

29.63

46

67

19.52

71

BAR LAD

1.40 1.55

75 61

5.21 5.61

85 96

12.65 10.89

93 92

37.06 23.62

121 104

68.93 34.66

120 102

6
BAR LAD

3.83 4.41

185 124

15.28 16.04

245 184

41.49 ’35.i5

341

182.80

328

219

121.88’

274
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where Ck(f), dk(f) are constants that both increase with k and each depends on f,
the distribution of the X’s and U (but in different ways to be mentioned presently). In
fact, it seems reasonable to assert that

BAR(n)
LAD(n)

=a(f) times an increasing function of n,

where a(f) is a constant depending only on the point cloud’s density, f; thus, both
C,(f) and d,(f) increase with k in the same way.

Finally, it is interesting to observe that f affects the algorithms in different ways:
(1) LAD is best for "spread out" point clouds, a= 1.2, and worst for the normal

data;
(2) BAR is best for finite variance but long-tailed point clouds, a-2.2, and worst,

sometimes in the normal case, sometimes in the infinite variance case, a= 1.2. In any
event, the relative advantage of LAD is greatest when a- 1.2, when the data are most
heavy-tailed.

These observations are tentative, as there is little evidence to base such exact
assertions upon. Nevertheless, it seems safe to claim that our algorithm has an
increasing asymptotic advantage over Barrodale and Roberts as n, the number of
points being fit, increases. More strongly,

BAR(n)
LAD(n)

as n---o. It would be interesting to study the ratio for more values of k and other
types of distributions.
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THE NUMERICAL STABILITY OF THE LEVINSON-DURBIN
ALGORITHM FOR TOEPLITZ SYSTEMS OF EQUATIONS*

GEORGE CYBENKO*

Abstract. The numerical stability of the Levinson-Durbin algorithm for solving the Yule-Walker
equations with a positive-definite symmetric Toeplitz matrix is studied. Arguments based on the analytic
results of an error analysis for fixed-point and floating-point arithmetics show that the algorithm is stable
and in fact comparable to the Cholesky algorithm. Conflicting evidence on the accuracy performance of the
algorithm is explained by demonstrating that the underlying Toeplitz matrix is typically ill-conditioned in
most applications.

Key words. Toeplitz matrix, Levinson-Durbin algorithm, error analysis

1. Introduction. Suppose the real sequence

(1.1) p0 1,Pl,. ,pp
defines a sequence of positive-definite symmetric Toeplitz matrices

PO Pl P2
Pl

Op_ Pl Po

The Yule-Walker equations of order p are then defined to be

(1.3) Teap= -(Ol, 02,""" ,Op)’= -rp.
In 1947, N. Levinson [17] presented an algorithm for solving (1.3) using only O(p2)
arithmetic operations and O(p) storage as opposed to the O(p3) operations and
O(p2) storage required by general methods such as Gaussian elimination or Cholesky
triangularization. Levinson’s algorithm was in fact for solving the more general
Toeplitz system

(1.4) T,x=y,
but this involved the explicit computation of the solutions to the Yule-Walker
equations of all orders strictly less than p. Durbin [12] subsequently streamlined
Levinson’s algorithm to solve only (1.3), and his name has been associated with the
algorithm in much of the statistical and engineering literature where the Yule-Walker
equations are most often encountered. The basic algorithm has been independently
discovered, generalized, and modified more recently by a number of authors [1], [10],
[16], [26], [27], [29], [35]. In 2, this basic algorithm will be presented and will
henceforth be called the Levinson-Durbin algorithm.

Toeplitz systems such as (1.3) arise in a variety of engineering, statistical, and
mathematical areas: signal processing and detection, time series analysis and predic-
tion and the theory of orthogonal polynomials to name but a few [4], [13], [14], [18],
[21], [24], [25], [27], [30], [33]. The efficiency of the Levinson-Durbin algorithm makes

*Received by the editors July 16, 1979, and in revised form June 20, 1980.
*Department of Mathematics, Tufts University, Medford, Massachusetts, 02155.
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it an obvious candidate for solving the Yule-Walker equations, and the method is
routinely described in most situations where the system (1.3) arises. Recently, a library
of Fortran subroutines named TOEPLITZ, which is fashioned after LINPACK [7],
has been developed by a joint US-USSR effort [2]. The library includes routines based
on the Levinson-Durbin algorithm for solving (1.4) and inverting positive-definite
symmetric Toeplitz matrices.

In spite of the algorithm’s importance and relative ubiquity, its stability proper-
ties have been a subject of some controversy. Some authors claim the algorithm has
poor accuracy performance [4], [13], [22], [30], while others find it to perform well [6],
[8], [19]. A full spectrum of opinions may be found in the literature; a popular text [4]
on time series analysis cautions that the algorithm is "numerically unstable" and
therefore should be avoided in practice, while speech researchers have found the
accuracy of computed solutions quite acceptable and have gone so far as to design
and build dedicated hardware implementing the algorithm [19]. All points of view are
apparently supported by the results of numerical testing. Unfortunately, the results of
computational experiments cannot be offered as evidence towards deciding whether
an algorithm is numerically stable or not unless the condition of the underlying
problem itself is taken into account. It is quite possible for an extremely stable
algorithm to produce answers with large relative errors if the problem is ill-conditioned
(see [28] for a discussion of numerical stability and conditioning).

In light of these observations, it is important to separate conditioning and
stability; these are two distinct issues. To this end, a posteriori upper and lower
bounds on the condition numbers of the matrices (1.2) are derived in 3. In particular,
it is seen that the circumstances which give rise to ill-conditioned systems (1.3) are
precisely the circumstances which are most appropriately modeled by those very
systems. This statement will be made precise in 2 and 3 by examining the
application in which the Yule-Walker equations are most often encountered; that is,
the linear prediction of stationary time series. Thus computational experiments based
on "real world" problems are useless in discussions of stability unless the condition of
the underlying problem has been taken into account. This has apparently not been the
case. To this author’s knowledge, there have been no published comparisons between
the accuracy performance of the Levinson-Durbin algorithm and known stable
algorithms such as the Cholesky method.

The results of a backward-type error analysis [32] are presented and discussed in
4. The analysis shows that residual vectors associated with solutions to (1.3) com-
puted by the Levinson-Durbin algorithm can be bounded by an expression which is
comparable to the best analytic bound possible for the residual associated with
solutions computed by the stable Cholesky factorization method. The bounds on the
Levinson-Durbin and Cholesky residuals are in fact virtually identical for a large class
of problems. Thus, it is possible to conclude, on the basis of analytic evidence, that
the Levinson-Durbin algorithm is at least as stable as the Cholesky method when
attention is restricted to a subclass of problems of the type (1.3). In the general case,
the analytic results derived suggest that the residual vector should be of the same
order of magnitude as the residual for the Cholesky method. Consequently, it is
concluded that the Levinson-Durbin algorithm is numerically stable. It seems that the
controversy over the algorithm’s stability and the conflicting evidence can be recon-
ciled once the conditioning of the underlying system is taken into account.

Proofs of the results stated in 4 are presented in 5, while 6 contains a
summary with concluding remarks.
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2. Linear prediction, Yule-Walker equations, and the Levinson-Durbin algorithm.
Toeplitz matrices arise naturally in situations where some sort of "shift invariance"
occurs. Historically, the Toeplitz system (1.3) was first explicitly used by Yule [34] in
the analysis of sunspot data (Walker [31] later encountered the system in his study of
periodicity properties of time series). In the context of time series analysis, this shift
invariance is manifested as statistical stationarity. Since this context is important for
interpreting the main results, a brief development of the relevant ideas is appropriate.

Let
(2. ...,
be a doubly infinite real sequence such that

(2.2) 0< ]sZ(n)< oo.
n

The "prediction" or "autoregression" coefficients ap,1, ap,2,... ,ap,p are determined
by the minimization of the "prediction error"

(2.3) Ep= ’, [s(n)+a,,,,s(n-1)+. +al,.1,s(n--p)] 9-,
n

where summations over n are understood to be from -o to + o. Taking the partial
derivatives of (2.3) with respect to each of the ap, j and setting them equal to zero gives
us the normal equations

(2.4) Tap T(ap,,,. ,ap,p)’= -rp,
where in this case the entries of Te,

(2.5) Ok=s(n)s(n-k),

are guaranteed finite by (2.2) and the Cauchy-Schwarz inequality. This system is
identical to (1.3) once we normalize 00 and observe that the resulting T is always
positive definite. The quantities t, are the normalized autocorrelations of the underly-
ing time series, while Ep is the mean square prediction error. Upon using (2.4) to
expand (2.3) it is seen that

(2.6) Ep 4- Plap,1 "+’’’" "+" ppap,p,
in which case it follows that

(2.7)

and so

(2.8)

(1)T+1 ap =(E,0,...,0)’,

1)a (1, ap,1, ", ap, p

is the first column (and transpose of the first row by symmetry) of Tp+
Thus apart from being important in the prediction of time series the Yule-Walker

equations and their solutions are intricately related to the inverses of positive-definite
symmetric Toeplitz matrices. These relations can be exploited to solve the general
Toeplitz system (1.4) and compute Toeplitz inverses efficiently [17], [29].

Since the Toeplitz matrix Tp is determined by p parameters, it is reasonable to
expect that there are algorithms for solving (1.3) which would use fewer than the
O(p3) operations required by methods not taking advantage of the Toeplitz structure.
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The Levinson-Durbin algorithm is only one such efficient algorithm, but it is without
doubt the most important in practice.

The Levinson-Durbin algorithm computes quantities Es, Ks, and vectors as
according to the initialization

(2.9) Eo 1,

followed by the recursive computations forj= 1,2,. ,p,

--(Oj +aj-l,lDj-i +’’" +aj-I,j-lPl)/Ej-1

aj-I Ej_

aj-1 + Kjlj-1)(2.11) as= Ks
(2.12) Es =(1-Kf)Es_
Here as (a, l, aj,2, ,a, Rs, and
(2.13) aj=(aj,s, aj,j_ ,
is the symmetric reflection of as. It is a simple exercise to verify, by induction, that at
the jth stage of the recursive computation aj solves the jth order Yule-Walker
equations.

This is one of the most attractive aspects of the algorithm: all principal leading
subsystems of (1.3) are solved during the intermediate computations. It is useful in
applications where a priori knowledge of the appropriate orderp is not available. The
quantities E. in (2.12) are precisely the same as in (2.6) (with p=j), which may be
easily verified by induction on j. Thus (2.6) could be used in place of (2.12) in the
algorithm, but the latter clearly uses fewer computations.

it can be shown [14] under the assumptions on T that

(2.14) I=Eo >=E, > E, >0

and

(2.15) <Kj <1 for -_.]’_<-p.

The quantities Ks have important physical and statistical interpretations in many
applications. For instance, in the study of wave propagation through concatenated
lossless tubes they play a central role as "reflection coefficients," while statistically
they are known as "partial correlation coefficients" [23], [25]. Following the current
standard nomenclature, they will be referred to as partial correlation coefficients.

Although the partial correlation coefficients are guaranteed to be less than in
absolute value, their closeness to reflects very important physical characteristics of
the underlying problem being solved. Statistically, if [Ks].I the underlying time
series (2.1) is close to nonstationarity [4], while in the context of linear filtering theory,
the polynomial

P

Zp-k(2.16)
k--0

has roots inside, but close to the boundary, of the unit circle z[--1, and so the filter
whose transfer function is the reciprocal of (2.16) is close to "instability" in the
filtering sense [21]. Thus in applications the condition [K[,I often represents the
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fact that the underlying problem which is being modeled by (1.3) is close to some sort
of anomalous behavior. It will be seen that the nearness of the partial correlation
coefficients to __. also measures the conditioning of the system (1.3) or more
generally (1.4).

In any case the Levinson-Durbin algorithm goes beyond being merely an
efficient method of solving (1.3); it computes important and significant quantities
during the intermediate computations. The algorithm requires O(p2) arithmetic
operations and O(p) storage allocations to solve the system (1.3).

Asymptotically faster methods of solving the general system have been developed
recently [3], [5], [20], but these algorithms do not recursively solve increasingly larger
subsystems of (1.3), do not have simple control structures, and are faster than the
Levinson-Durbin algorithm only for large values of p. Their practical significance has
yet to be determined.

3. Condition numbers of Toeplitz matrices. In this section, it will be seen that the
closeness of the partial correlation coefficients to +_ plays a significant role in
determining the conditioning of the Toeplitz systems (1.3) and (1.4). Although the
bounds on the condition numbers of the Toeplitz matrix (1.2) are given in terms of a
posteriori quantities, namely the partial correlation coefficients, as has been seen
those quantities have physical interpretations in the most common applications.
Consequently, there is usually empirical evidence for anticipating their relative sizes.
The linear condition number of the Toeplitz matrix Tp is defined to be

(3.1) (Tp)--II Tp II(Tp)- Ill,
where I1" is some matrix norm. In this paper only the 1-norm will be considered. This
quantity measures the sensitivity of solutions to linear systems involving T with
respect to perturbations in both Tp and the fight side of (1.4). Large values of x(T)
indicate high sensitivity to rounding errors, and so corresponding computed solutions
are expected to have large relative errors.

Since P0 and Tp is positive definite, [kl< 1. Thus

(3.2) T p,

so that the size of II(Tp)-ll will essentially determine the ill-conditioned situations.
Attention will therefore be focused on bounding II(Tp)-ll As already seen in (2.7),
the solution aj to the jth order Yule-Walker equations determines the first column of

(T/ 1)-1, and this fact can be used to obtain a triangular factorization of (Tp)-1.
Define

0 0
a,_, 0

a,_ ,2 a,_ 2,

ap_l,p_ ap_E,p_ 2

TpCp is upper triangular,so that by (2.7) the product with diagonal entries
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Ep_ l’ Ep-2,"" ,El, E0. Then the product Cp’TCp is upper triangular and symmetric,
and hence diagonal. It follows that

and so

Eo

--1 --1(3.3) (Tp) =Cp(Dp) Cp.

This equation has a striking interpretation: the LevinsonoDurbin algorithm explicitly
computes a triangular "square-root" factorization of (T)-. This contrasts with the
Cholesky method which computes a similar factorization for T.

The factorization (3.3) shows that the sizes of the solutions a will play a role in
determining an upper bound of the condition number of Tp. Recursions of the type
(2.11) are central to this goal and to the error analysis itself. That direction will now
be explored.

LEMMA 3.1. If aj and Kj are as in (2.11) then
j J

(3.4) , aj., IX (1 +K,)-1.
i---1 i--1

Proof. Use (2.11) and induction on j.
Let [Ixll represent the standard vector/-norm for xR", >__ 1.

< r. For >j, xi Ri is defined recursivelyLEMMA 3.2. Suppose xj _R
j with ]lxj II

Xi_ "Jr-KiWi_ )(3.5) X
KiYi

where Yil < s. Then

<(r+s) H (l+[gl)-s(3.6) IIx, ll
m----j+

Proof. Put

Bi=(r+s) II (l+lKml),
m----j+l

< B S. Thenand suppose, ]iX/_ Ill bt --1

Ilxill < Ilxi- II +lgilllxi-ll +lgillYil

=<(1 +lgil)(Bi_l-s)+igils
(1 +lKi I)Bi-I S

=B --S.

Since B=r+ s, the result follows by induction.
Lemmas 3.1 and 3.2 give simple upper and lower bounds on aj in terms of the

partial correlation coefficients K for i_.
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LEMMA 3.3. For <= I define the conjugate exponent v by 1/l+ 1/v= 1. Then

< (1 /IKjl)- 1.(3.7) n -t/ 1-[ (1 +K)- < I1%11
j=l

Proof. The lower bound follows from Lemma 3.1 and Holder’s inequality, while
the upper bound follows from Lemma 3.2 with r= gl and s= 1.

Notice that if Ki 0 for all and = 1, the bounds are tight. Since the partial
correlation coefficients K are less than one in absolute value, it is easy to verify that
each entry ai, j of a is bounded by the binomial coefficient ?. A titer bound in
tes of the partial correlation coefficients is necessa for the remaing results. It is
evident from (2.11) that each ai, j is a multinomial function of the K for mi. The
exact form of this multinoal is described in the next lemma.
LM 3.4.

(3.8) ai,j= Km,

where the summation is over all l-tuples i =(m,m,... ,mr) for which li and
im >mz >..- >m 1, m-mz +m3 +(- 1)t+mt=j.

Proof. Induction on holdingj fed. Trivially, a, K is the ifialafion.
These relations were first obseed by the author in [9] and have subsequently

proved to be useful in the detection of Gaussian autoregressive processes 11].
The factorafion (3.3) can now be used to find upper and lower bounds on

I1()-11 .
Tao 3.1. With the quantities E, K as before,

[1() 11110.9)

Proof. Since (1,a_)/E_ is the first column of () , it is seen that

+
E_

by Lemma 3.3. Clearly,

and so

p-1

Et,-l= H (1-Kj2),
j----1

P-I(1 +IIg-_ Kj )
p-IEt, ]-[j--1 (1-Kg)

while clearly

1/Ep ( 1+ [at, j[ lEt, < (rp) -1
j--1

These results give the lower bound.
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On the other hand, by (3.3),
p--1

 llc ll II( p - lll 1--,= IIG’ll <
j--1

where Leman 3.3 has been used to bound IICII, and (2.14)shows that
/G-,. To bound IIG’II ,, Lena 3.4 is used. The jth colu sum of G’ satisfies

j--1 j--1

k= k= M?: m

j--1

k m 1
p--1

k Mf- mM-
ml

Putting this all together gives

so that

p-1

IIq’lll <= ]-[ (1 +
j’-I

]-IjP._I1 (1 .-[.-Igj I)2

E-l
Theorem 3.1 shows that the condition of the Toeplitz system is guaranteed large

if E is small. In turn, En is small if any of the partial correlation coefficients is large;
that is, close to in absolute value. Now E, is a measure of how well the prediction
scheme (2.3) works, so that a "desirable" situation is for E, to be very small. Box and
Jenkins [4] discourage the use of the Levinson-Durbin algorithm in the cases where E,
becomes small. The rationale is that the algorithm requires division by E,, thereby
allowing for the possibility of significant rounding error magnification. By examining
the steps in the algorithm, we see that there is a real possibility that a rounding error
committed at thejth stage becomes magnified by a factor of 1/(Ej_IEj... E,,_l) by
the n th stage.

Now if errors did indeed propagate as described above, the E would not have to
be very small for this phenomenon to be noticed. For instance, if E2 were on the order
of 0.1 (which is common in speech applications [25]) rounding errors committed in the
first two stages could be magnified by at least 10l by the twelfth stage. This sort of
behavior has never been observed in practice, and we shall see in the analysis of the
next sections that propagated rounding errors cancel to an extent that such a potential
geometric error growth is avoided.

On the other hand, if the values of the Ej do become very small, the underlying
problem is ill-conditioned so that large errors in computed answers are expected and
essentially unavoidable, regardless of which method is used to solve (1.3). Since
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computational experience has revealed serious accuracy problems for small values of
the Ej [4], [13], [22], [30], one suspects that a good deal of the error is due to the
condition of the underlying system.

Thus past computational experience with the accuracy of the Levinson-Durbin
algorithm does not contradict the main result of this paper, namely the stability of the
Levirtson-Durbin algorithm. As outlined above, the very nature of the context in
which the Yule-Walker equations most often arise is one which suggests that the
resulting system will usually be ill-conditioned.

4. The numerical stability of the Levinson-Durbin algorithm: Statement of results.
In this section, the results of an error analysis of the Levinson-Durbin algorithm,
whose derivation is in 5, will be presented.

As mentioned in l, the stability properties of the Levinson-Durbin algorithm
have not been well understood--a naive and gross analysis suggests serious accuracy
problems, while in practice this has not been observed except in the case of ill-
conditioned problems. The analytic results presented in this section show that the
algorithm is stable. By stable, it is meant that errors due to rounding in the solution
computed by the Levinson-Durbin algorithm are no worse than perturbations in the
solution induced by modest perturbations of the initial data. This will be discussed at
length after the results are presented.

First it is necessary to identify the nature of the local rounding errors. Both
fixed-point and floating-point arithmetics will be considered. (Although fixed-point
computations on general purpose computers and the corresponding error analyses are
becoming rare, the fact that the algorithm is commonly implemented by dedicated
hardware in fixed-point arithmetic makes a fixed-point analysis of some interest. It
should be noted that the a priori dynamic range constraints on the various quantities
occurring in the algorithm make the fixed-point realization convenient.)

For fixed-point arithmetic, the rounding error model is

fx(a+b)=a+b,
fx(ab ) ( ab ) / t,

fx(a/b)=(a/b)+,

where a and b are fixed-point numbers and fx(.) denotes the fixed-point representa-
tive of the argument, .. Both and " are in this case the local rounding errors, and
satisfy I I, I’1<- A, where A depends on the wordlength and method of truncation.

For floating-point arithmetic, it is assumed that

fl(a+b)=(a+b)(1 +/),
fl(ab)=(ab)(l+),
fl(a/b)=(a/b)(1 +rl),

where a and b are floating-point numbers and fl(-) denotes the floating-point
representative of the argument, .. In this case it is assumed that I l, I 1, <__A, and A
is again implementation dependent.

For a full treatment of the error models and terminology, the reader should
consult [15], [28], [32] or any other standard text on numerical computing.

Now suppose that ap is the true solution to (1.3). The computed solution is then
p=ap +ap where ap is the perturbation due to the accumulated effect of the local
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rounding errors. This computed solution will then obviously satisfy a perturbed
system of equations,

+ %)

The vector 8v is called the residual vector and satisfies

One can regard the computed solution p as being the exact solution to the problem
(1.3) but with the right side perturbed by the term dp. Notice that this does not
represent a real world perturbation of the problem, since the entries of the coefficient
matrix and the right side vector are related. The perturbation does make sense
analytically, however.

The main result of this paper is summarized in the following theorem, whose
proof is in 5.

THEOREM 4.1. Suppose the Levinson-Durbin algorithm is used to confute the
approximate solution, p, to (1.3). Iffixed-point arithmetic is used, the residual satisfies

p P

(4.1) II,lll<__ (j2+3j+l)A ]I (I/IK,I)/O(A2)
j=l m=j+

<__A (I+IKjl) -g-+p:+p +O(A2)
j=l

Iffloating-point arithmetic is used, the residual satisfies

(4.2) [lSplllA -- + lip II (1 +IK+I)-1 +O(A2).
j=l

The O(A2) terms in (4.1) and (4.2) succinctly express the fact that only first order
errors are considered important in the analysis. That second and higher order terms
cannot become more significant than first order terms is argued in the derivation of
the results.

These bounds on the residual vector indicate that they can only be large if the
partial correlation coefficients, Kj, are large. Since it is known that [Kj[ < 1, "large"
means relatively close to 1, and the results of 3 show that the underlying problem is
in that case close to being ill-conditioned.

These bounds indicate that the algorithm is stable. To see this, the results of
Theorem 4.1 will be compared with corresponding results for the Cholesky method of
solving (1.3), with floating-point arithmetic. The Cholesky algorithm (triangularization
and back-substitution) is known to be stable [28], [32].

Assume that the residual vector corresponding to a solution computed by the
Cholesky algorithm is denoted by p*. It can be shown then that for floating-point
arithmetic,

(4.3) II*lll <O(p2)llTlllllaplllA<O(p3)llalllA.
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Note that the residual must be proportional to the size of the exact solution, a,; this
follows from an obvious scaling argument. Recalling the result of Lemma 3.3,

P

I1%11<__ ]-[ (1 /lgl)-1,
j--1

and Lemma 3.1,
p P. at,,j= I (I+Kj)-I,

j=l j----1

shows that the Levinson-Durbin and Cholesky residual bounds are of comparable size
if the partial correlation coefficients are all positive. Hence, the solutions computed in
that case by either the Levinson-Durbin algorithm or the Cholesky algorithm will
have residual vectors sharing bounds of the same size essentially. It is therefore
analytically established that in this special situation the Levinson-Durbin algorithm
provides solutions as accurate as computationally possible since the Cholesky algo-
rithm is universally considered the most stable method of solving (1.3).

Analytically, not as much can be said about the case when the partial correlation
coefficients are not all positive. It must be borne in mind that the derivation of (4.1)
and (4.2) replaces all occurrences of the coefficients Ks with their absolute values in
order to maintain inequality. This is of course analytically necessary, but realistically
it is extremely pessimistic. Realistically, it is reasonable to expect (4.1) and (4.2) to
remain valid (in the sense of order of magnitude measure) if the absolute values are
removed from the partial correlation coefficients. In fact, Lemma 3.2, which is used in
the derivation of the bounds, can only yield an equality if all the quantities involved
are positive to begin with, and so the first order bounds of Theorem 4.1 cannot be
exact unless all of the rounding errors and partial correlation coefficients are positive.

Thus the true sizes of the residuals are somewhat less than the bounds indicate;
unfortunately, it seems analytically intractible to give tighter bounds and simulta-
neously maintain some a posteriori feel for the size of the residual.

These comparisons with the Cholesky method are no longer true for fixed-point
arithmetic. In this case, the bound on the residual in a solution computed by the
Levinson-Durbin algorithm is comparable to the Cholesky residual if the partial
correlation coefficients are consistently large and positive. However, the Levinson-
Durbin algorithm is usually implemented in fixed-point arithmetic only for very
specialized applications, such as speech signal processing [19], [25]. Empirical studies
of the sizes of the partial correlation coefficients and other data characteristics
peculiar to such applications have determined acceptable hardware implementations.

Numerical simulations have shown that the bounds as stated in (4.1) and (4.2) are
pessimistic. Residuals in actually computed problems are significantly smaller than
the bounds indicate. Comparisons with the Cholesky method showed that residuals
were always of the same order of magnitude, with Levinson-Durbin residuals actually
smaller for the ill-conditioned class of problems where the partial correlation coeffi-
cients were consistently close to + 1.

In light of these analytic and empirical results, it is concluded that the Levinson-
Durbin algorithm is a stable algorithm for solving the Yule-Walker equations (1.3).

5. The numerical stability of the Levinson-Durbin algorithm: Details of the error
analysis. In this section details of the error analysis which led to the conclusion that
the Levinson-Durbin algorithm is stable will be presented. The analysis is for first
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order errors; in other words, terms which are the products of errors will be discarded
in the equations describing rounding error propagation.

For most of the following results the exact nature of the local rounding errors
introduced by any given computation is not important; what is important is the way
in which the errors propagate from intermediate quantity to intermediate quantity.
Once it is evident how the first order errors propagate, it will be possible to return and
identify the exact nature of the local errors. In this way both fixed-point and
floating-point arithmetic implementations can be handled together.

The analysis consists of three major steps:
the propagation of error from stage to stage;
the recursive description of the first order errors in the residual vector;
bounding the first order errors in the residual vector.
Let Kj, 8i, j, and E. denote the computed values corresponding to the exact values

in (2.10)-(2.12). They satisfy the following equations:

(5.1) 8i, y =ai,j+ ti,j,

(5.2) Ka= Ka + %,
(5.3) Ej=E+e.
The local errors are then defined through the perturbed versions of (2.10)-(2.12).

(5.4)

(5.S)

(5.6)

(5.7)

Of course, if the local errors, ’,,r/, are all identically zero, (2.10)-(2.12) and
(5.4)-(5.7) are identical. Bearing in mind that the analysis is for first order errors, we
can now derive the error propagation equations.

LEMMA 5.1. With Ii, ei, and Olij as above,

(5.8) Ki"’-- iEi-l+Kiei-i "]- E Pi-joti-l,j Ei-1,
j=l

Ol j Ol 1, j "+" K t -j - tc a -j "" j

Oli, iKi

Ei E Ojij+Pi,
j--1

where Pi is defined recursively by

(5.12)

and

i-I

Pi= Pi- E Pjij+ KiEi- li +’o,,
j=l
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Proof. The relations (5.9) and (5.10) are obvious. Using the Taylor expansion of
1/(1 + x) together with (5.3) and (5.9)-(5.10) establishes (5.8). The only relation which
is not entirely trivial, and which is really the heart of the matter since it in a sense
precludes the possibility of the geometric error growth alluded to in 3, is (5.11).
Expanding (5.7) gives rise to a term 2 tcigiEi_ which can be expanded in two ways.
From (5.8)

i--1

}igiEi-1 giEi- li- g?ei- gi E )i-joi- l,j,
j--.l

while from (2.10)
i-1

KigiEi-l"--KiPi--Ki E )i-jai-l,j
j--1

Induction will then establish (5.11) and the recursive form of Pi.
The equations describing error propagation above show that the errors are

intricately related; this is to be expected since the algorithm itself is recursive and
relies heavily on the structure of the underlying Yule-Walker equations. Attempting to
bound the errors directly at this point would lead to the extremely pessimistic error
bounds alluded to in 3. These equations are dramatically decoupled by looking at the
residual vector.

Recalling that T/ai=d is the residual for the th order equations, we get from the
above relations a simple recursive description of i"

LEMMA 5.2.

di- + KiWi-

-iEi_l -KiPi_

Proof. The symmetries of T imply that

(5.14)
0

so that

i T/i T

ai-- 1,1 "+’Kioli-l,i-I +Kiai-l,i-1 +i,l
ai- 1,2 "+" Kiti- 1,i-2 "" Iciai- 1,i-2 + i,2

iEi_ Ki ei_
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Now it should be noticed that the recursion relating I to di- is very similar to the
recursion in Lemma 3.2, but the lemma cannot be used directly on account of the
extraneous terms in (5.13). It is however a simple matter to decompose di into a sum
of vectors which are of the same form as in Lemma 3.2.

Examination of (5.13) shows that i contains local errors which were already
present in di-1 together with local errors which were not, namely ’i, r/i-l, and i,j for
j i- 1. Define ,j to be the vector of local errors in d which did not appear in._ but which do appear in .. Furthermore, let ki, be the vector of those errors as
they then appear in dg. By Lemma 5.2,

(5.15) j,j’- Tj

and for >j

(5.16) /i,j"-
gi E Dmj,m-gjEjj-]j-I

m--1

YJm-- m,Clearly di lki, and so IIill Y--ll i, for any vector norm, so all that
remains to be done is the bounding of each of the k,j- In fact, Lemma 3.2 is now

directly applicable and gives the following result.
LEMMA 5.3.

where t) >= , and

II/,ll(+s) I (l+lKml)-sj,
m----j+l

(5.17) sj>= Z )mj,m-- Kjg_ lj--’Oj--l"
m=l

Finally by identifying the exact natures of the local rounding errors, it is possible
to derive (4.1) and (4.2) in Theorem 4.1.

Consider floating-point arithmetic first. Clearly, j, --< A laj, +
AlK2l[ay_l,j_ml, so that

j--I j

E Ij,m[ 2A ]-[ (1 +[gm[)- 1,
m--I m=l

and
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Furthermore,

Ej-llj] 2IK/IA+jA II (l+lKml)-1
m----1

and IKl-lrb_l] < 31Ko/IA. Thus

rJ--(3j+5)A[ (l+lgm’)-I]m--1
bounds II j-, II. The same reasoning shows that

sj=3A+(j+3)A[
m=l

ff[ (l+[Km[)- 1]
works in (5.17). Now

P

(9-ts./) II (1-t-IKm])-j
m--j+

3A+ (4j+ 8)A (1 +lK,,,I)-1 II (l+}gml)--3A
m=l mj+

<=(4j+ ll)A II (1 +lKml)-1
m-----1

and (4.2) follows by summing over j.
The result for fixed-point arithmetic follows in essentially the same way, but with

E-ll’l <A, ]i,j] A, Iil 2A, and

.,j <__j’2A/ (j/ 1)A=), 2jA--sj.
Thus putting these together we get

p P P

()+s) [ I-[ (l+lKm[)
j---1 m--j+ m=j+

P

(1 +lKm[)-sj < .. (j2 +3j+ 1)A
j=l

32<A -p + p +p II (l/lKml).
m=l

A few words are appropriate about the fact that this analysis is for first order
error only. At any given stage of the algorithm the new second and higher order error
terms can be absorbed by the local error, after which they propagate in exactly the
same way as do the local first order errors. It is straightforward but tedious to show
that the new second order errors entering in the computation of aj are smaller than
the corresponding first order local errors so long as all first order relative errors
remain less than VS. Thus these second order errors contribute only if the first order
errors are becoming significant already.

The same argument applies to all computations in the algorithm save the use of
only the first term in the Taylor expansion of 1/(1 +x) in Lemma 5.1. That this is
allowable is based on the result of Theorem 3.1; the condition of the underlying
problem multiplied by A must be small in any case.
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This error analysis does not fit the pattern of either of the traditional approaches;
namely the forward and backward types. It might seem that a strict backward analysis
of the algorithm would be suitable because of the way in which the problem
parameters enter the recursive computation. Unfortunately, there seems to be no way
to avoid exponential error bounds using that approach. It is evident that the various
errors in the computed intermediate quantities are intricately related and the analysis
presented in this paper has taken advantage of the relationships to simplify bounds on
the residual error. A strict forward analysis would not achieve that goal.

6. Summary. This paper has addressed both the conditioning of Toeplitz linear
systems of equations and the numerical stability of the Levinson-Durbin algorithm for
solving the special case of the Yule-Walker equations.

Upper and lower a posteriori bounds were derived for the condition number of a
positive-definite symmetric Toeplitz matrix. These bounds showed that Toeplitz
systems arising in applications where the "prediction error" is known to be very small
are guaranteed to be ill-conditioned. The fact that situations most appropriately
modeled by such systems are consequently ill-conditioned seems to account for the
poor accuracy of computed solutions as observed in past experiments. It seems that
the Levinson-Durbin algorithm has been unjustly held responsible for the large errors
observed.

An error analysis of the Levinson-Durbin algorithm produced upper bounds on
the residual vector for both fixed-point and floating-point arithmetics. The first order
error terms in these bounds are virtually identical to the bounds for the Cholesky
algorithm residual in a large class of special problems. In the general case it is evident
that the residual for both methods should be the same order of magnitude. Since the
Cholesky algorithm is known to be extremely stable, it is concluded that the Levinson-
Durbin algorithm is numerically stable.

The numerical stability of the Levinson algorithm for the general system (1.4)
and the Trench algorithm for inverting positive-definite symmetric Toeplitz matrices
can be investigated using the same ideas presented in this paper. Those results will
appear in a forthcoming paper.
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ANALYTIC SUBTRACTION APPLIED TO THE INCOMPLETE
GAMMA AND BETA FUNCTIONS*

MARIETTA J. TRETTER AND G. W. WALSTER

Abstract. The purpose of this paper is to draw attention to a method of performing analytic
subtractions that can dramatically improve the numerical stability of a continued fraction (cf) or series
expansion. The method is applied to the computation of the incomplete gamma and beta functions.

Key words, analytic subtraction, incomplete gamma function, incomplete beta function, continued
fractions

1. Introduction. A series or continued fraction (cf) that converges rapidly must
also be numerically stable for it to be computationally useful. The most dramatic
source of numerical instability is cancellation due to numerical subtractions (Stoute-
myer [11]). Unfortunately, there is neither a general analytic method for uncovering
the existence of bad subtractions, nor a single method for eliminating them. More-
over, normalized floating point computer arithmetic gives no indication that bad
subtractions have occurred. With the forthcoming hardware implementation of float-
ing point standards and the improved software implementation of interval arithmetic
(personal communications with W. Kahan, Intel. Corp. and L. Liddiard, U. of
Minnesota), we will at long last be able to monitor automatically the numerical
stability of all calculations.

This paper presents one method of resurrecting an otherwise numerically unsta-
ble series or cf: "analytic subtraction". Analytic subtraction can be implemented in
many ways. For example, rearranging an expression may eliminate the bad subtrac-
tions. In all cases, however, the goal of analytic subtraction is to obtain an expression
in which the offending terms can be analytically cancelled out, leaving a numerically
stable result.

To illustrate with a very simple example, assume we wish to compute x-y, where
x=a+b, y=a+c, a= 105, b=2 and c= 1. If we first compute x and y and then
subtract, we will get an answer of 0 on any current fixed wordlength computer.
However, if we analytically cancel out a, we obtain the correct result, b-c=2- 1.

The analytic subtraction we will present in subsequent sections is slightly more
subtle than the above example and has been used elsewhere ([2], [5], [13]). However,
we have found it to be so important that it deserves more prominent exposure.

2. Problem. Suppose we wish to compute the function f(x)=l-g(x)+h(x),
where x is in that part of the domain of f(x) in which g(x)--1 and f(x)--h(x)<<l.
Clearly, if we attempt to compute f(x) directly, total loss of significant digits may
result. Thus, we need to extract from g(x) so that and -1 can be analytically
cancelled out.

3. Solution. If a representation for the natural logarithm in g(x) can be found
that will allow its significant digit computation, the following algorithm can be used to

*Received by the editors May 8, 1979, and in final revised form May 5, 1980. This paper acknowledges
the use of the MACSYMA system at the Massachusetts Institute of Technology.

Division of Management Science, Pennsylvania State University, University Park, Pennsylvania
16802.

*Control Data Corporation, HQNOGV, P.O. Box O, Minneapolis, Minnesota 55440.
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evaluate g(x)"

where

1-g(x)= 1-exp(lng(x))
uj

u--lng(x).

The series in u will be strictly decreasing and rapidly converging, as g(x) implies
lulO.

Thus,
oo uj

f(x)=- E . +h(x).
j--1

4, Example 1, The incomplete gamma tunction, Suppose we wish to evaluate the
incomplete gamma function"

Q,.(xlo)= P(xlo)

fot_e_dt=1
F(a)

x , ( )Jxt+j
=1-

I’(l+a) I’(a) 2" ( --ij--1

The series is a normalized confluent hypergeometric. If significant digits are required,
it is disastrous to perform the subtraction numerically when, for example,
P(10-4110-3)=.9913, or P(10-110-)=.9997, etc.

Luke [10, Chapt. 14] devotes several sections to computing Q(xla) with c 1.
The cf for Q(xla) given by Luke (essentially the same cf for Q(xla) presented in
Wall [14, p. 356]), is slowly converging when x is small. Luke also includes the cf
representation of the even and odd parts of the original cf which, he points out,
occupy the n and n-1 entries in the Pad6 table (Luke [10, p. 202]). While these even
and odd cf’s will obviously converge faster than the original cf, the improvement is
not enough for small values of x. For the even cf the approximate number of terms, n,
required to obtain k decimal digits is n.33k/x (Henrici [7, p. 629]). Thus, an
alternative method for computing Q(xla) is necessary when x and a simultaneously
approach zero.

If we use the power series expansion for In F(1 + a), we can write

X
ot

Ol
u=ln =alnx+ay- E (-1)"’(n),

F(1 +a) =_ n

where y is Euler’s constant and ’(n) is Riemann’s zeta function. Thus, we have at
once:

Qr(xlo)__ ? (- l)Jx ’’+j

which is numerically stable provided both ul and x are less than . A somewhat
similar approach is used by DiDonato and Hageman [5] as part of an algorithm for
computing the incomplete gamma function to 12 significant digits when a< i and
P(xl)>.9.
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5. Example 2. The incomplete beta function. Suppose we want to evaluate the
incomolete beta function: xIx(P, q)=B(p, q)-I up_ 1(1 _u)q-ldu.

The associated cf derived from Mueller’s corresponding cf ([1, 26.5.9], Gautschi [6],
Tretter and Walster [13]) is

{ klW k2w2 k3w- }Ix(p,q)=C 1+
[l+lw+ [l+12w+ 11+13w+

xP(1 --X) q-1
C=

pB(p,q)
x

w--
(l-x)’
(q-l)

kl= (p+l)

(s- 1)(p+q+s-2)(p+s- 1)(q-s)
ks=

(p+2s-3)(p+2s-2)2(p+2s 1)
(q-2)
(p+2)

(p+s-1)(s-q) s(p+q+s-1)
ls (p + 2s 2)(p + 2s 1)

+
(p + 2s 1)(p + 2s)

This cf has the desirable qualities that allow it to be the basis of a significant digit
algorithm for almost any combination of all parameters. However, in its present form,
this cf has very limited computational utility.

Even assuming that both x and (1- x) are explicitly available, thereby eliminat-
ing the necessity of computing l-x, there still exist cases in which the above
algorithm is numerically unstable when implemented using the difference equations of
the well-known forward recursion algorithm. For example,

p .5 102, q= .5 104 and x .9999999999999998863636363636,

introduces so much cancellation from numerical subtractions that all significant digits
are lost before convergence is achieved. The source of these subtractions is the partial
denominators + lsw. However, if we rewrite the partial denominators in terms of the
variable F=qx/p(1-x) (the F random variable of statistics) then expand and
simplify, numerous common terms analytically cancel, leaving:

lsX1+=1+
(1-x)

lpF
q

[2pFs2+4qs(s 1)+2p(p-1)Fs+2pq(2s-1)+p2q(1-F)]
q(p + 2s 2)(p + 2s)

These simplifications, if performed by hand, are extremely cumbersome. The
results here were easily obtained in one step using the powerful algebraic manipula-
tion system of the MACSYMA system at the Massachusetts Institute of Technology.
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With the elimination of these subtractions, the associated cf gives rather astounding
results. For the above example, 25 significant digits are obtained with only 21
convergents.

There is still another possible bad subtraction. In computing Ix(p, q), we always
have the option of employing the well-known reflection identity: Ix(p,q)=l--
I(l-x)(q, P). The question then arises, when should we reflect? Two considerations are
relevant: efficiency and cancellation.

It can be shown that the absolute value of the difference in successive conver-
gents of Mueller’s corresponding cf (Tretter and Walster [13]) form a bound on the
error of Mueller’s associated cf. The terms of the corresponding cf are in a form
appropriate for the application of a theorem due to Thron [12]. Thron’s theorem can
be used to obtain an overall measure, M, of the convergence rate of the reflected and
unreflected forms.

Thron’s theorem [12] states:
The continued fraction K(a/i/1) converges to a value u which satisfies 6.(u)> -5
provided that 2(a/i)<=L(a/i)+- and lal<Mfor all n> 1, where K(a/i/1) is the

a a2 a3continuedfraction + " +
Applying Thron’s theorem to Mueller’s corresponding cf, the following rules are
obtained for determining M for the unreflected form:

Cx
When p > q, M=

p < q andq >= 2, M

p<q and q<2, M=

1--X’
Cx(q- 1)

(1-x)(p+ 1)
Cx(p+q)

(1-x)(p+l)(p+2)

The rule for obtaining the reflected M, M’, say, can be obtained from the rules for M
by interchanging p, q, x, (l-x) in the above (including the coefficient C). It is
appropriate to consider convergence of the corresponding cf, as it essentially con-
verges at half the rate of the associated cf. From Thron’s theorem, we obtain a bound
on the value region of the cf, R/I, where the value region is in the form of nested
circles within which the value of the cf lies:

R/1

Relatively larger values of M are associated with overall slower convergence.
The ratio M’/M R can then serve as a test for when to reflect; i.e., if R < then

reflect. For example, let p= 1,000, q= 100 and F=2.0. Then R=.012, which implies
we should reflect. The reflected form requires about 36 convergents, while the
unreflected requires about 100 convergents, for a given number of digits.

Now, there remains a potential problem. Suppose that the reflected form is more
efficient, but that I(_x(q, p) 1. Then we will have gained efficiency at the cost of
losing digits due to subtraction. The only time this event can occur is when the beta
density function is "J" shaped; i.e., p> and q< 1. For example, let p=999.5,
q=.l 10 -21 and F=.9. Then R10 -47, implying that we should most surely reflect.
But Ix(p, q)=.55 10 -22. Using the unreflected cf is not possible because all digits
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are lost to subtraction in the forward recursion algorithm. Fortunately, in those cases
where reflection is required and Ix(p, q) is small, the coefficient of the reflected form
C’ 1. Thus, evaluating u=ln C’ we can perform the subtraction analytically, yield-
ing

.UJ_c,(k’lW’ k’2w’)Ix(P’ q)= . I1 + rw’ + I1 + r2w’ +

where k, l and w’ have the same definition as k, l and w in (5.1) with x, (1-x) and
p, q interchanged. For the above example, 23 significant digits were obtained with
only 6 convergents of the cf.

It must be noted that extreme care is necessary in evaluating ln C’ to eliminate
further sources of bad subtractions. One cannot simply use a computer library
program to compute In C’ because this may conceal subtraction error in the logarithm
computation. A better method of computing ln C’ is to use a combination of series
expansions, i.e., writing

(1--x)qx’-l’(p+q)
C’=

r(q+ 1)r(p)

then computing lnC’ can be viewed as the problem of computing ln[F(p+q)/F(p)],
ln(x’-1), ln[(1-x)q], and In F(q+ 1). Computing ln F(q+ 1) was discussed in 4.

In computing ln[F(z+a)/F(z)], in general, it is necessary once again to use
analytic subtraction. If Stirling’s well-known asymptotic formula is used separately to
compute In F(z +a) and In F(z), subtraction of the two results can be devastating
when z is large relative to a. Thus, the formulas must be combined to perform the
subtraction analytically.

To compute In x and ln(1-x), we can transform the beta random variable x,
and (1-x), into an F random variable ([1], 26.5.28) and consider the expansion of
the form ln[a/(a+ b)], which allows computation of In x, ln(1-x) with relative error.

The details of deriving the several expansions, and corresponding error bounds,
used in computing In C’ are not particularly difficult; however, they are rather lengthy
and thus are not presented here. The expansion approach outlined above does
eliminate most bad subtractions. A perfect expansion which eliminates all bad
subtractions, even in very extreme cases, remains to be found.

6. Conclusions. Without analytic subtraction, it is difficult to obtain robust
algorithms for the significant digit computation of the incomplete gamma and beta
functions, especially when a great number of digits are required. In the absence of
robust formulas with all positive terms, analytic subtraction should be considered as a
possible means of salvaging an otherwise useless formula. This technique has proved
to be especially useful in statistical computations involving cumulative distribution
functions for extreme values.
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ERROR GROWTH IN USING THE RANDOM CHOICE METHOD
FOR THE INVISCID BURGERS EQUATION*

JAMES LAVITA*

Abstract. This note describes some numerical experiments assessing the rate of error growth when using
the Random Choice Method (RCM) to compute solutions to the inviscid Burgers equation. The RCM was
developed and used to study solutions of various gas dynamical systems by Chorin and his collaborators (J.
Comp. Phys., 22 (1976), pp. 517-533; 25 (1977), pp. 252-272; P. Colella, Ph.D. dissertation, U. California,
Berkeley, 1979). Recently Colella has derived estimates for the error behavior of the Burgers equation. We
assess the error numerically and see whether the bounds derived by Colella are achieved. Our conclusion is
that the RCM does much better than expected and, indeed, approaches the best limits obtainable.

Key words. Random Choice Method, Burgers equation, gas dynamics

1. Introduction. The purpose of this note is to describe some numerical experi-
ments assessing the rate of error growth when using the Random Choice Method
(RCM) to compute solutions to the inviscid Burgers equation

(.) u,+ =0.
The RCM was developed and used to study solutions of various gas dynamical

systems by Chorin and his collaborators [1], [2], [3]. Recently Colella has derived
estimates for the error behavior of the Burgers equation as a model for the larger
systems which he studies. We are concerned with assessing the error numerically and
seeing whether the bounds derived by Colella are achieved. Our conclusion is that the
RCM does much better than expected, and, indeed, approaches the best limits
obtainable.

2. Background. The RCM has been described in detail in several publications [1],
[2], [3], and we refer the interested reader to these more extensive and generally
excellent references, particularly the essay of Sod [7]. A brief description is given here
to stimulate the interest of those unfamiliar with the method.

In Fig. 1, observe the set-up for a 2-step scheme, nk,(n+ 1)k, ih,(i+ 1)h being the
full step mesh points in time and space respectively, and (n+)k, (i+)h being
intermediate steps. We are given or have computed values at the nth step. Now
proceed as follows.
Construct the step function u(x, nk):

u(x, nk)=
Ui+I’ x=(i+-)h,
u x< i+ h,

u] being known values. Solve the Riemann problem with this step function as data,
getting a function u(x,(n+-)k). Now set

=u X+On n+- lc

*Received by the editors December 5, 1979, and in revised form August 5, 1980. This research was
partially supported by the Engineering, Mathematical, and Geosciences Division of the U.S. Department of
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((i+1/2)h,(n+1/2)k)
(ih,(n+ l)k) / /

((i+ 1)h,(n+ l)k)

(ih,nk) ((i+ 1/2)h,nk) ((i+ l)h,nk)

FIG. 1.

where 0 [0, 1] is an equidistributed quasirandom sequence of real numbers. Then
one goes onto the (n+ 1)th step in a similar fashion. One must avoid interacting
shocks by invoking the Courant-Friedrichs-Lewy condition, and one should also
pick the sequence 0 wisely.

Colella derives the error bounds in his paper [3] by using the van der Corput
sequence, and it can be shown that other sequences give less accurate results. The van
der Corput sequence, an, is found as follows: Let

m

ik2k n
k=0

be the binary expansion of the integer n. Then
m

an i,2-(k+l).
k=0

This sequence is quasirandom.
The method is applicable to the equation

(2.1) ut+(f(U))x=O,
where f need not be convex as long as one can solve the Riemann problem. We are
using the model equation f(u)=u2/2 because some analytical error bounds exist for
certain specific types of interactions and the exact solutions can be calculated with
reasonable efficiency. Examples of error estimates are (see [3]):

Shock interacting with compression wave:

(2.2.1) eL,( h, ).CleK’(t-t)h1/2ilog hi+ C2 h Ilog h I,

eL, being the L-error and o being the time when the shock strikes the wave.
Shock interacting with a rarefaction:

(2.2.2) eL,(h, t)C(t-t0)h1/2 [log hi+ C2 [log h I.
Smooth region:

(2.2.3) eL,( h, )Ch [log hi.
Here eL,( h, t) means Eal u(ih, t) u. h where u( ih, t) is the true solution at x ih,
and u’ is the computed solution at ih, nk, k= t/n.

Other measures of error are also useful. One such is the error in the left- and
right-hand limits of the solution value along the shock. These are also used in Colella
[3]. We also will experiment with a case not treated analytically, the case of shock
formation.

3. Experiments and data. Guided by the ideas outlined above, we measured the
error (in the norms described below) at 40 time steps and x running from 0 to 20,
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taking h= 1/2m, m=0 to 4. h/k is constant at 0.4. We deal with five cases: (a)
rarefaction alone; (b) compression wave with shock formation; (c) shock alone; (d)
shock interacting with a rarefaction; and (e) shock interacting with a compression
wave.

The various measures of accuracy used are:
(i)
(ii)
(iii)

(iv)

max norm, called M on the graphs.
L 1- and L2-norms, called L, L2 on the graphs.
distance from the computed shock to the true shock for fixed time, called S
on the graphs.
error between the computed value of the right-hand limit at a fixed time
and the true value.

The initial data are:

O<=x=< 4 4<x_< 20

(a) ,(x) 0 2

cos(r/32(x + 4))
(b) (x)= 2 1+

cos(rr/4)

(c) ,(x) 2 o
x 5

(d) (x) 2 3- +

(e) ,(x) 2
x 5
32 8

We have chosen initial data that allow for the easy derivation of the true
solutions, as presented below.

(a) is a rarefaction wave, i.e.,

u(x, t)=0, 0x 4 and all t,

u(x,t)=2, x>= 2t+4,
X

u(x, t)= -, x between 4 and 2t + 4.

(b) is a compression wave with a shock forming as shown in Fig. 2. It is possible
to calculate that the shock is a straight line with slope and to determine its
starting point. Since this shock, within the triangle in Fig. 2, is the interaction
of many other shocks, this is not evident at first glance. But we can argue as
follows.

Consider the data (b(x) (0=x= 4) and (x)=cos(r(x+4)/32) (4<x
__< 20). In the interval (4,20), (x) is odd about the point x= 12, and a
symmetry argument shows that the shock formed by interacting characteris-
tics emanating from the initial line is a perpendicular line starting somewhat
above the x-axis. Further, the final resulting shock emanating from the apex
of the triangle also has slope dx/dt=O, and thus the entire shock front
consists of a single straight line with slope dx/dt=O. Now the initial data in
case (b) is thus q + 1.

A direct calculation shows that if u(x, t) solves the Burgers equation
with data q,, then u(x-at, t)+ a solves the Burgers equation with data a + q,
and so we arrive at the solution described.
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Shock

FIG.2.

Using the equation

(3.1) u(x, t)=d#(x-u(x, t)t)
which the solution satisfies in smooth regions near the initial line (see [6]), it is
easy to use a rapidly converging bisection routine to plot the exact solution
with great accuracy.

(c) is a shock,

u(x,t)=2, x<=t+4,

u(x,t)=O, x>=t+4,

propagating with speed as required by the jump condition-(u u. + u
dt U- U, 2

where UR(UL) is the right- (left-) hand constant value.
(d) As shown in Fig. 3, a compression wave causes the shock to bend into the

wave. To one side the solution is identically 2; to the other side of the shock
the solution is the compression solution and the shock front itself satisfies the
ordinary differential equation

dx UR+ U/ 20-x
+2

dt -S==- 32-t
whose solution is

12 )_x(t)= ---(32-t +2t-44.

(e) Similarly, a rarefaction causes bending of the shock outward (see Fig. 4).
Here we have U=2 on the left, u=(x-20)/(t+32) on the right and the
shock

x(t)= 20(t+32)_+2t+84"

x-20
t-32

U’-"

FIG. 3. FIG. 4.

x-20
t+52
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One can verify that all these solutions satisfy the entropy conditions guaranteeing
that they are the correct weak solutions to the Burgers equation.

Each set of initial data was run on a grid 20 units in x and 16 units in with
h=l/2m-l, m=l to 5 and k fixed at .4h. Thus the Courant-Friedrichs-Lewy
condition is satisfied for all times.

4. Results. As Fig. 5 shows, the errors in the max, Ll-, and L2-norms appear to
be nearly perfect linear functions of h in case (a), verifying the best theoretical
estimates and mirroring the first order accuracy expected of Glimm’s method. The
above is true at various times and for several sets of data which are not included here.

For case (b), shock formation (Fig. 6), all three norms seem to show excellent
linear behavior, even though we have no theoretical result after the onset of the shock.
In general having a shock makes the max norm useless, but here the shock starts at
zero strength and appears not to affect the error for some time. The time when the
shock begins can be determined by differentiating the relation (3.1) and solving for
ux; thus,

l+tq/

For our choice of initial data (b), q’ is negative at some points, and thus u will surely
become unbounded as approaches ]l/minq/]. (q’ is -(r/(32cos(r/4))). sin(r(x-
4)/32) whose minimum is -/ r/32.) In eases (d) and (e), Figs. 7 and 8 show the
error in the shock location, S, and in the value R computed for the solution
immediately adjacent to the right side of the shock front. The error appears to
oscillate about a line drawn in each graph as shown. Such oscillation would be
expected in any but the simplest cases because of the random nature of the scheme.
Nonetheless, a certain linearity for the asymptotic behavior of the error appears
evident.

It is also possible to test the order of asymptotic error growth by plotting the log
(error) against log h and finding the best linear fit to this set of points. The slope of
the linear function then gives a measure of the exponent of h in the asymptotic error.
This has been done; the result for Fig. 7 is 1.19, which is a bit too high since the best
possible result is 1, and for Fig. 8 is 1.2.

Because of the random nature of the scheme and the fact that the slope of the
linear functions is only truly correct in the asymptotic limit, these numbers are only
approximations to the exponent of h. However, they more nearly support an exponent
of than an exponent of 5.

L Time T=5.2Error scales are different

Time T= 16
40 steps

/
/

/ /- Max

1/161/8 1/4 112 1/16 1/8 1/4 1/2

FIG.5. FIG.6.
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Shock into rarefaction
S at time T=4

S shock location

<T

/S

R at time T=8

R=right limit

/
/

/
/

/
/

/

1/16 I/8 I/4 I/2

FIG. 7. FIG. 8.

/R

5. Further results and conclusion. Observing the terms in h that appear in (2.2.1)
and (2.2.2), we would expect to see growth of the error in time if these terms were
truly contributing significantly. But examination of all runs (not reproduced here)
seems to show little if any growth in time for fixed h. This further supports the
contention that we see only h-order error, and that the coefficients of h order terms
are negligibly small even for the rather long time spans in our situation.

Thus the conclusion of our results is to show that in practice the theoretical
bounds for errors in RCM calculations for our model equation (1.1) are too large by
the factor h- on the time scales involved here. That is, the error is actually behaving
like O(h) independently of time, even in the presence of shocks.

Reference to the articles of Majda and Osher [6] and Lax [5], moreover, indicates
that even for the linear case O(h) error in the presence of discontinuities is very good
and approaches the best obtainable theoretical possibilities. This lends support for the
use of RCM in more difficult and sophisticated situations (for example Chorin’s
method for gas dynamical equations and others [1], [2], [3]).

Research is presently underway to examine similar situations for the more
complicated case of the Buckley-Leverett model equations studied in [4].

Acknowledgment. I would like to thank the referees for many helpful suggestions
and Alexandre Chorin for much advice and many illuminating discussions.
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CONSTRAINED INTERPOLATION*

JOHN A. ROULIER

Abstract. The development of theory and algorithms relating to interpolation to data by functions
which preserve the monotonicity and/or convexity of the data is presented. The functions used for
interpolation are polynomials, piecewise polynomials, polynomial splines and exponential splines. The
techniques emphasized are the shape-preserving splines of the author, although some discussion of alternate
techniques is given.

Key words. Splines, approximation, interpolation, polynomials, shape preservation

1. Introduction. It is well known by anyone who has used polynomials and
splines to interpolate functional data that the interpolant may fail to preserve the
shape of the data. That is, if the data set is increasing and/or convex, there is no
guarantee that the interpolant will share these properties. It is desirable in many
situations tb eliminate or at least minimize this difficulty.

Investigations into the possibility of interpolation by polynomials which share the
monotonicity and/or convexity of the data have been conducted by Young [23],
Wolibner [22], Kammerer [8], Ford and Roulier [6], Passow and Raymon [17], and
Rubinstein [21]. In general, these papers show such interpolation can be done, and
some [17], provide estimates of the degree of the polynomial required. None provide
computational algorithms for accomplishing these goals.

Investigations into the possibility of such interpolation by splines and piecewise
polynomials center mainly on the notions of splines under tension [3], [15], [19], [20],
Bezier methods [1] and the more recent methods due to the present author and others
[2], [4], [5], [7], [9]-[13], [16]. These latter methods are more related to the Bezier
techniques than the splines under tension, but are essentially different from both,
although the algorithm presented by de Boor [2] can be considered a tension spline
technique (See Pruess [20].) Indeed, the manuscript by McAllister and Roulier [13]
presents an algorithm which produces a monotonicity and convexity preserving
quadratic interpolatory spline with variable knots which is local, and which requires
no user judgment as to tension parameters or polygonal arcs as do the above
mentioned techniques. In addition, this algorithm allows osculatory interpolation if
this is desired.

In the sequel, we will discuss the developments of these latter methods and
present examples. The emphasis however, will be on the work of the author.

2. Notation and background. We begin with definitions of terms and notation to
be used throughout. Let A {t0, t,..., tM} be a fixed set of real numbers with tj < tj+
forj= 0, 1,..., M- 1. For given nonnegative integers k, n with k_<_ n, we define the set
of polynomial splines of degree n and deficiency n-k on A by

S(A) (fck[ o, tt] fis a polynomial

of degree n or less on[ tj, tj+ ],j= O, M- 1}.
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Foundation under Grant MCS76-04033 and the National Aeronautics and Space Administration under
Grant NSG 1549.
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The numbers in A are called knots for the elements of Sf(A). Sff-(A) is commonly

eferred to as the polynomial splines of degree n with knots A, and S(A) is simply the
set of all polynomials of degree n or less and will be denoted by I-In.

Now let a data set {(x/, Yi))--o be given with x <xi+ for i=0,1 ,N-1.
Define slopes Si=(yi-Yi_l)/(xi-xi_) for i= 1,2 ,N. The data set is said to be
increasing if S > 0, 1,2,..., N and convex if S < S2 < < Sv. If equality is allowed
in the above inequalities, then we use the terms nondecreasing and nonconcave,
respectively. Similarly, one may define the terms decreasing, concave, nonincreasing,
and nonconvex data. In general, data may be segmented into nondecreasing and
nonincreasing segments and further subdivided into nonconcave and nonconvex
segments. Given fCI[Xo, XN] for which f(xi)=Yi, i=0,1,..., N, we say that f is
monotonicity preserving if the sign off(x) agrees with the sign of Si when x(xi_ , x).
f is said to be convexity preserving if f’ is increasing in intervals in which the data are
nonconcave and f’ is decreasing in intervals in which the data are nonconvex. Thus, f’
can only change sign at a data point which is a local extremum if f is monotonicity
preserving and f’ can only change monotonicity once in any interval between convex
and concave regions if f is convexity preserving. If f is both monotonicity and
convexity preserving, we say that f is shape preserving.

3. Shale-preserving polynomial interpolation. The notion of monotonicity and/or
convexity preserving interpolation by polynomials has been studied by many authors.
The existence of polynomials which share the monotonicity of the data has been
studied by Wolibner [22], Kammerer [8], Rubinstein [21], Young [23], and Passow and
Raymon [17]. In the last paper, an estimate on the degree required of the polynomial
to preserve monotonicity of the data is obtained.

In [6], Ford and Roulier show the existence of interpolation polynomials which
preserve both the monotonicity and convexity of convex increasing data. The main
result is given below.

THEOREM 3.1. Let the data ((xi, Yi))i=o be increasing and convex. There are
polynomials P and Q satisfying

(3.1) P(x,)=yi, i=0,1 N,
(3.2) P’(x ) 0 on ( o, o),
(3.3) P"(xi) 0 on Ix0, XN],
(3.4) Q(x)=yi, i=0,1,..., N,
(3.5) Q’(xi)- 0 on Ix0, XN],
(3.6) Q"(xi) 0 on (-

It should be noted that no polynomial p of degree 2 or higher can satisfy both
p’(x)>= 0 and p"(x) >= 0 on (-o0, oo).

It is also shown in [6] that if certain information is available about the function
which the data represents, then one can prove much more.

THEOREM 3.2. Let k (k2 .... (kp be fixed positive integers and let e ep
be fixed signs (i.e., ej= +_ 1). Suppose fC*[a, b] and kp<=k. Assume that

ef(kA(x) >0 for a<x<=b andj= 1,2,..., p,

and that N+ points are given so that

a<=xo < < <xu <=b.
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Then for n sufficiently large there are polynomials Pn of degree less than or equal to n for
which

(3.7) ejPn(k)(x)>O on [a,b], j=l,2 p,

(3.8) Pn(xi)=f(xi) for i-0, 1,..., N and

(3.9) a<=x<-_bmax f(x)-e,(x)}<= -- o -n
where c is a positive constant depending only on xo, x,..., x, and o is the modulus of
continuity off(k) on [a, b].

Thus, o(h)=max([f(k)(x)-f(k)(y)[; Ix-yl<h, x, y[a, b]).
It should be noted that none of the above mentioned papers present algorithms

for the computation of such polynomials, although the proofs of the theorems
presented suggest possible algorithms. In any event, for most computational purposes,
it would seem more logical to use splines. This is the subject of the remaining sections.

4. Splines under tension. The main purpose of this section is to point out the
main features of general splines under tension. For a more detailed treatment, history
and bibliography, the reader is referred to Pruess [19], [20] and to Nielson [15] and de
Boor [2]. Indeed, Pruess [20] generalizes the notion of tension splines in such a way as
to include the notions of exponential splines, piecewise polynomial tension splines and
rational splines.

A common feature of all of these notions is that of a tension parameter which
may depend on the knot interval. As the tension parameters increase, the graph of the
spline tends to pull closer to the shape of the polygonal segments connecting the data.
Thus, for sufficiently high tension parameters the spline will be (or very nearly be)
shape preserving. Typically, one knows from experience how to choose the tension
parameters so that shape preservation is achieved in two or three attempts. Each time
a change is made in the tension parameters, the complete spline must be recalculated
by solving a system of linear equations.

Cline [3] has produced a subroutine package for interpolation using exponential
splines under tension.

In general, these techniques are satisfactory for many purposes, but they have
some obvious drawbacks:

(4.1) They are dependent on the user’s judgment for a choice and subsequent
adjustment of the tension parameters.

(4.2) They are not local. Therefore, each change in tension parameters affects
the whole spline.

(4.3) The exponential splines have the added disadvantage that exponential
functions must be estimated for each evaluation.

5. Bezier curves. Bezier curves are essentially parametric piecewise polynomial
arcs constructed by using Bernstein polynomials of piecewise linear curves. The
vertices of the piecewise linear segments are subsequently adjusted to give the curve
the desired shape. These curves have been useful in computer-aided geometric design
in an interactive setting. Several papers and references involving these are found in
Barnhill and Riesenfeld [1]. Here, as for the tension splines, the user must make
adjustments to the parameters of the curve in order to attain the desired shape,
although these methods are more local.
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6. Shape-preserving interpolation with fixed knots. Several papers on this subject
have been written recently. The first, by Passow and Roulier [18], provides necessary
and sufficient conditions for shape-preserving interpolation to convex, increasing data
by splines with fixed knots at the data points. The next paper, by McAllister, Passow
and Roulier [9], provides an algorithm for producing the spline discussed in [18]. The
algorithm has serious difficulties in that for a given degree of continuity and given
convex, increasing data the degree of the spline required can be very high. The
problem occurs in the attempt to preserve convexity. If only monotonicity needs to be
preserved, then Passow [16] shows that given n there isf S’,,+I(A ) which interpolates
the data and shares the monotonicity. Here A= (x0, x Xv). Furthermore, in [18],
Passow and Roulier show that this may be done with fSE"n(A) if A is expanded to
include the points 2i =xi-1 + xi/2, i= 1,..., N as well as the points x0 xv.

On the other hand, Passow and Roulier [18] and McAllister, Passow and Roulier
[9] show that for convexity preservation, no such bound on the degree for a given
continuity can be given for fixed knots. We present here the latter and most general
result from [9].

THEOREM 6.1. Let the integer n>__ 1, real numbers xo <xl <X2 <X3 and knots A be
given. There exist numbers Yo, Y, Y2, Y3 such that the data (xi, Yi), i-’-0, 1,2,3, are
increasing and convex and such that no f S (A) satisfies

(6.1) f(xi)=Yi, i=0, 1,2,3,

and

(6.2) f is convex and increasing on xo x3 ].
This theorem is a simple corollary of the following lemma:
LEMMA 6.1. Let Xo, X,x2, x and A be as in Theorem 6.1, and let (xi, Yi),

i=0, 1,2,3, be convex and increasing. Let fSI(A) satisfy (6.1) and (6.2) and let
l=max{xAlx<x} and t=min(xAlx>x}.

(6.3) n2_> $2

(x-x,)(s-s) (x -xo)S
+

l-X x

We note that if A--{x0, xl, X2, X3) then (6.3) becomes

(6.4) n2>_ $2
s-s:+s,"

It is shown by Myers and Roulier [14] that the estimates (6.3) and (6.4) are essentially
best possible. That is, one can not replace n 2 by some lower power of n.

On the other hand, the algorithm in [9] allows one to select for given convex,
increasing data ((Xi, Yi))=0 and positive integer m, a degree n and spline fSff’(A)
with A (x0, x XN), SO that

f(xi)=Yi, i=0, 1,..., N

and

f is convex, increasing on [ x0, Xv].
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This algorithm works but has some major drawbacks. First, the continuity up to
the mth derivative is artificial for m> 2 in that f(9)(x)=0 for j=2,...,m and
i=0, 1,..., N. Thus, the choice of m= is the only realistic choice for graphical
purposes. The second major drawback is that the degree n grows faster for this
algorithm than the estimate (6.4) indicates. Indeed, it grows as if the left side of (6.4)
were replaced by n. This is, due to the special nature of the splines used in the
algorithm, and in fact an inequality like (6.4) can be shown to hold with n2 replaced
by n for the special splines of this algorithm. Examples of just how high n can get for
some data appear in [10]. For this reason, it was decided that an investigation of the
possibility of using variable knots was worthwhile. For this purpose, we need some of
the specific results regarding fixed knots.

In particular, we will give necessary and sufficient conditions on nondecreasing
and nonconcave data ((xi, Yi)}iN__o to insure the existence of a quadratic spline
fSEI(A) which interpolates the data and is convex and increasing on [xo, Xv ], and
with A= (x0, Xl,..., Xv}. We first present some additional notation as in [10].

Dvsmos 6.1. Suppose that the data ((xi, yi))iU_o are nondecreasing and non-
concave. Let i =xi- +Axi/2 where Axi=xi--xi_ 1. The set of numbers (ti)/U__l is
said to be g-admissible if the piecewise linear function L(x) generated by the points

(Xo,

satisfies L(xi)--y for i= 1,..., N- and is nondecreasing and nonconcave.
We now describe a special case of an algorithm found in [9] (see [10]).
The i-algorithm. Define mo =0 and M0 =S1. Now for i-1,2,..., N-1 define

mi--2Si-Mi_ and Mi--min(Si+l,ZSi-mi_l).
We now present necessary and sufficient conditions for convex quadratic spline
interpolation with knots A= (Xo, xl,..., XN). This theorem is in part a special case of
results in [9] and [10] and appears.as two separate theorems in [9].

THEOREM 6.2. Let ((xi, yi))iU_o be nondecreasing nonconcave data, and let A=

(Xo, X XN). The following are equivalent:

(6.5) There exists a quadratic spline fS(A) satisfying f(xi)-y for i=

O, 1,..., N andf is convex, increasing on [x0, XN].

(6.6) There exists a 1/2-admissible set for this set of data.

(6.7) The 1/2-algorithm produces mi, i-- 1,..., N- satisfying miSi+ for
i= 1,2,..., N- 1.

In the next section, we will present theory and algorithms for variable knot quadratic
spline interpolation with shape preservation. Theorem 6.2 is the fundamental tool for

these results.
Once (6.7) is satisfied one can then produce the -admissible set of (6.6) as

follows"
Let

(XN --XN_I) (XN
(6.8) aN =YN- + mN- 2

and bN =YN- +MN-1 2

Let u be any number between aN and bv. The choice of u uniquely defines

tN- 1 tN--2," tl"
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Once the i-admissible set (ti}/N__l is obtained, the piecewise linear function L of
Definition 6.1 is determined. Now, using L, we are able to construct the spline
fS(A) of (6.5) by

(6.9) f(x)=1[Yi_I(Xi__X)2q_2L(i)(X__Xi_I)(Xi__X)_I.Yi(X__Xi_I)2]
(Axi)2

for x Xi_ 1’ Xi] and i= 1,2,..., N.

The above expression is the second degree Bernstein polynomial for L on each
interval [xi_,xi]. (See [10] as well as [12] and [18]). The quantities "i and Ax are as
in Definition 6.1. The fact that f is in Sg(A) and shares the monotonicity and
convexity of the data follows from the well-known properties of Bemstein polynomi-
als and the form of L on [xi_,xi]. That is, on [xi_,xi], L is a piecewise linear
function consisting of two linear segments passing through (xi_ l, Yi- 1) and (xi, Yi),
respectively and intersecting at Xi =xi- + Axi, the midpoint of [xi_ , xi]. In [18], it
is shown that the second degree Bernstein polynomial BE of such a function shares the
monotonicity and convexity of the function as well as

(6.10) B2(x’-)=L(x’-)’ B2(xi)=L(xi)’

Indeed, it is a simple consequence of a theorem in [18] that any fSd(A) can be
constructed in this way. It is observed there that the abscissa of the intersection point
of the tangent lines to the graph of any quadratic q at (a, q(a)) and (b, q(b)) is
(a+b)/2, the midpoint of the interval [a, b].

7. Shape-preserving interpolation by quadratic splines with variable knots. We
begin by considering nondecreasing, nonconcave data ((xi, yi))/N__ 0 as in the previous
section. Theorem 6.2 is used in [10] to provide the technique for choosing a set of
knots A which contains (x0, x Xv) and at most one additional knot between each
pair xi_ and x to insure the existence of a quadratic splinefS() satisfying (6.5).
In fact, we select additional data points which when added to the original set create a
set of data satisfying (6.7). This is done in an optimal way, in that knots are only
added where necessary. We now present the point insertion algorithm which shows
how to select the new points and which is discussed in the next theorem.

Point insertion algorithm. Apply the 1/2-algorithm until

(7.1) mk >= Sk+ for some k,

(note that we are guaranteed that k 2). Consider the four points

(x+_,,y+_,), (x+,y+), (x++,,

Now define SO =(mk_9_ + Mk_2)/2 and define the point (, 97) where

Y" Xk_ --2(Xk_ --Xk_ 2)
-So)

(7.2) and

.=Y_2 + So(E--Xk_=).
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It can be shown that Xk_ 2 <,<Xk_ andYk_ 2 <.,ff<Yk-" Now insert the point (Y,)7)
between (xk_ 2, Yk-2) and (xe_, y,_) and renumber the data. Now proceed as
above until (7.1) is satisfied again or until (6.7) is satisfied using this "expanded data
set."

The following theorem is found in [10].
THEOREM 7.1. Given a convex, increasing set of data ((Xi, yi)}iNo"

The point insertion algorithm will terminate in a finite number M<__N steps.(7.3)

(7.4)
(7.5)

At most one newpoint will be inserted between any two original data points.

The final "expanded" set of data ((x, y. ) )iU=+ot thus created will satisfy
(6.5), (6.6) and (6.7).

To illustrate the usefulness of this result, the reader is referred to the examples in

[10] for which the degree of the splines required using the abscissas as fixed knots and
using the algorithm in [9] is n--21, 9650, 1000, respectively.

This algorithm in [10] can be modified to be used for arbitrary data ((xi, Yi))--0
by subdividing the data into increasing and decreasing segments and then further
subdividing into convex and concave segments. This, however, seems to be more
trouble than is desirable in view of the next result. This provides a technique for
shape-preserving interpolation to arbitrary data as above by quadratic splines with
variable knots. The algorithm provides for exactly one new knot between each pair of
the original data points, is local, and does not require a prior subdivision of the data
as the previous algorithm would. Furthermore, if osculatory interpolation is desired,
this can be done by adding at most two (but usually only one) variable knots between
each pair of original data points. This algorithm appears in part in [4] and [5], but the
most general form appears in [12] and [13].

The general approach of this algorithm is as follows:
(7.6) If derivative values are provided at each of the data points, then procedures

CHOOSE and CASES for choosing the location of the knots between the data
points are called. These procedures choose one or two knots with corresponding
y-coordinates between each pair of data points. The only information needed in
each interval is the data and derivatives at the twoend points. Thus, this
technique is local. The resulting spline will be shape preserving unless the given
derivatives do not agree with the monotonicity or convexity exhibited by the
data.

(7.7) If only data are given with no derivative values, then a procedure called
SLOPES for estimating derivative values at each data point is provided. The
derivative values provided by SLOPES are in conformity with the local monoton-
icity and convexity of the data. The above procedures are then called using the
derivatives provided. It should be noted that this procedure for providing
derivatives is also local in that the value of the derivative at (x, y) is calculated
from the three points (xi_ 1, Yi-l), (xi, Y), and (xi+ l, Yi+) for i= 1, N-1. If
i=0 or i=N, then the value of the derivative provided is calculated using the
information at the given data point and the two points to the right if i=0, or to
the left if N. Furthermore, by construction of these derivatives CHOOSE and
CASES will always provide exactly one new knot between the data.
Once the additional data points are provided and derivatives given, a piecewise

linear function L as in Definition 6.1 is constructed and, because of the placement of
the knots and the derivatives, a quadratic spline f is calculated by evaluating the
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second degree Bernstein polynomial of L between each pair of knots as in (6.9). The
actual evaluation of f(x) at a given value x is accomplished via a master procedure
MEVAL and several subprocedures. We avoid the details of the algorithm which
chooses the location of the knots or the calculation of derivatives since these are
presented in 12].

We present several illustrative examples of the algorithm some of which appear in
[9] and [12]. Figs. 1, 2, 3, 4 and 5 are for functional data and Figs. 6, 7, 8 and 9 are for
planar curves and require parametrization. To apply the above algorithm to paramet-
ric planar data, the data is parametrized by arc length and the separate parametric
function data ((ti, Xi)}iN__O and {(ti, Yi)}iN__O are interpolated. The procedure was
written to detect closed curves (i.e., (x0, y0)=(Xv, Yv)) or symmetric data.

It should be noted here, that although the shape of functional data is preserved
here, the concavity of parametric data may not be preserved unless there are enough
data in the regions of highest curvature. See Fig. 8. The reason for this is obvious if
one examines the second derivative in terms of the quadratic splines interpolating
xi=x(ti) and yi=y(ti).

$. Examples. Figs. 1, 2 and 3 are to illustrate the shape preserving, local and
osculatory properties of the algorithm described in the previous section. The data
given in Table and the resulting shape-preserving quadratic spline curve fit in Fig.
clearly shows the outline of a car. In Fig. 2 we see the curve fit to the data in Table
but with (1, 1.8) replaced by (1, 2.3). Note the local change. In Fig. 3 the data is the
same as in Table but with a slope of imposed at (10, 5) on the "roof" of the car.

Figs. 4 and 5 illustrate examples where other methods had difficulty. In Table 2
the data are taken from an example in Pruess [20]. It took two changes in tension
parameter for the spline in tension used there to match the monotonicity and three
changes to match the convexity. Fig. 4 shows that the algorithm in the previous
section matches both monotonicity and convexity immediately. Fig. 5 appeared in [9]
and shows the insufficiency of standard Lagrange polynomials and cubic splines for

TABLE 1. TABLE 2.

x y Slope

0 0
1.8

2 2.7
3 2.9
4 3.0
5 3.0
6 3.65
7 4.7
8 5.05
9 5.05
10 5.0
11 4.95
12 4.8
13 4.2
14 3.2
15 2.45
16 1.0
16.3 0.0

2.4
1.2
.39
.0833...

0.0
0.0
.80294118
.5250...

0.0
0.0
.050...
.0750...

.750...

.85714286

.98863636
2.0209059

-4.6457607

x y

22
22.5
22.6
22.7
22.8
22.9
23.0
23.1
23.2
23.3
23.4
23.5
24

523
543
550
557
565
575
590
620
860
915
944
958
986
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shape preservation. The shape-preserving spline in this is for fixed knots at the data
using the techniques in [9]. The data for this appears in Table 3, and Fig. 5 shows the
graphs.

Figs. 6, 7, 8 and 9 are for parametric planar data. The technique used is described
at the end of the previous section. In Fig. 6, the spline interpolates the four endpoints
of the major and minor axes of an ellipse (Table 4). In Fig. 7, the points (+__ 4, -&-_ 3.46)
are added, and in Fig. 8, the points (_ 7, +__ 1.94) are added to those of Fig. 7. Note
the lack of concavity in Fig. 7. If the points (+__ 7, +__ 1.94) had been added to Fig. 6
first, then the concavity would not have been lost. See Fig. 9.

Note that except in Figs. 4 and 5 the x and y values are scaled to i the tabular
values.

TABLE 3. TABLE 4.

X y

-1
-.3 11.11...

.2 25

8 0
0 -4

-8 0
0 4
8 0

Fio FIG 2
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-22.0

FIG 4

/

Lagrange
Cubic Spline
Convex

Y

-10

Fm 5

-4.050

FIG 6
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FIG 7

-5.00’-4.50-4.0.00 4.00
Fo 8

0.500

Fio 9
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9. Conclusions and remarks. The above-mentioned algorithms for shape-
preserving quadratic spline interpolation with variable knots has the double advantage
over splines in tension in that no user-dependent choice of tension parameters is
necessary for shape preservation, and yet the method is local so that the user may
modify the shape of the resulting curve as desired in one area without changing the
shape elsewhere. This is also an advantage over Bezier methods in that no user-
dependent adjustments are necessary for shape preservation of functional data.

For parametric data, the application of the algorithm always preserves monoton-
icity, but concavity may not be preserved if points are very sparse. See Fig. 7 once
again. This difficulty can be dealt with and will be the subject of a subsequent paper.

The approximation, differentiation, and quadrature properties of these splines are
currently under study. The results will appear shortly in a subsequent publication.
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A PROJECTED LAGRANGIAN ALGORITHM FOR NONLINEAR
MINIMAX OPTIMIZATION*

WALTER MURRAY* AND MICHAEL L. OVERTON*

Abstract. The minimax problem is an unconstrained optimization problem whose objective function is
not differentiable everywhere, and hence cannot be solved efficiently by standard techniques for uncon-
strained optimization. It is well known that the problem can be transformed into a nonlinearly constrained
optimization problem with one extra variable, where the objective and constraint functions are continu-
ously differentiable. This equivalent problem has special properties which are ignored if solved by a
general-purpose constrained optimization method. The algorithm we present exploits the special structure
of the equivalent problem. A direction of search is obtained at each iteration of the algorithm by solving an
equality-constrained quadratic programming problem, related to one a projected Lagrangian method might
use to solve the equivalent constrained optimization problem. Special Lagrange multiplier estimates are
used to form an approximation to the Hessian of the Lagrangian function, which appears in the quadratic
program. Analytical Hessians, finite differencing or quasi-Newton updating may be used in the approxima-
tion of this matrix. The resulting direction of search is guaranteed to be a descent direction for the minimax
objective function. Under mild conditions the algorithms are locally quadratically convergent if analytical
Hessians are used.

Key words. Minimax approximation, Chebyshev approximation, nonlinear programming, projected
Lagrangian method

1. Introduction. The problem of concern is
MMP: min (FM(2)IRn)

where FM() max(f/(), i= 1,2,..., m),
and the functions f: Rn-R are twice continuously differentiable. The function
FM(2) is called the minimax function and MMP is usually referred to as the minimax
problem. The minimax problem is an unconstrained optimization problem in which
the objective function has discontinuous derivatives. Moreover, any solution is usually
at a point of discontinuity and consequently it is inappropriate to use any of the
known powerful methods for unconstrained minimization to solve MMP. An equiva-
lent problem to MMP is the following nonlinearly constrained problem in which both
the objective and constraint functions are twice continuously differentiable:

EMP: min (Xn+llXRn+l)
subject to ci(x) >= O, 1,2,..., m,
where ci(x)=x+ -f,.(), i= 1,2 m,
and xr=(r, x+ 1).

We could solve EMP using one of the many methods available for the general
constrained optimization problem:

NCP: min (Fa)(x))
subject to ca)(x)>= O, i= 1,2 m,

where F<a) and (c}a) } are arbitrary twice continuously differentiable functions. It will
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be shown, however, that a method can be derived that exploits the special structure of
EMP.

The primary special feature of EMP from which many other properties follow is
that the minimax function Ft is itself a natural merit function which can be used to
measure progress towards the solution of EMP. For problem NCP in general such a
natural merit function is not available, and it is necessary to introduce an artificial
one such as a penalty or augmented Lagrangian function to weigh the constraint
violation against the decreasing of the objective function, or a barrier function to
enforce feasibility. All these merit functions require the definition of a parameter
which is to some degree arbitrary, and its selection can prove difficult. In the case of
penalty and augmented Lagrangian functions, difficulties may also arise because
often the global minimum of the merit function is not the solution of the original
problem.

The method we adopt to solve MMP essentially consists of two steps at each
iteration:

(1) Obtain a direction of search by solving and perhaps modifying an equality-
constrained quadratic programming problem (QP), related to one a projected
Lagrangian algorithm might use to solve EMP. This procedure is described in full in
subsequent sections.

(2) Take a step along the search direction which reduces the minimax function.
Because the minimax function is not differentiable, it is important for efficiency to use
a special line search algorithm.

Projected Lagrangian algorithms for solving the general problem NCP via succes-
sive quadratic programs have been proposed or analyzed by a number of authors
including Wilson (1963), Murray (1969a), Robinson (1974), Wright (1976), Han
(1977a), Powell (1977), and Murray and Wright (1978). We make further comments
on the extent of the implications of the special structure of EMP, and hence the
relationship of our algorithm to these algorithms for the general problem, in 15.

A number of other algorithms have been proposed for solving the nonlinear
minimax problem. Our approach is most closely related to those due to Han (1977b)
and Conn (1979). We will discuss these further in 12, after our algorithm has been
described in full.

An important special case of MMP is the problem of minimizing the l-norm of
a vector function f() R’:

looP: min(Foo()]- g"}
where Fo(Y)=max(lfi(Y)1, i= 1,2 m).

Handling this case in a special manner presents no essential difficulties. However, in
order to avoid unnecessarily complicated notation, we postpone discussion of this
until 11.

We note that no convexity assumptions are made about the functions f(2). The
difficulties of finding global minima without convexity assumptions are well known
we concern ourselves only with local minima.

1.1 Notation. Define } to be a solution of EMP. It follows that :, the vector
composed of the first n elements of )}, is a solution to MMP and Xn+l =FM(X).

Let x(k) denote the k th approximation to : and .(k) the kth approximation to }.
In general, we will use a placed above a vector to denote the vector composed of the
first n elements of the vector without the
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At each iteration of the algorithm, x(k+ 1) is obtained by setting
(k+l) 1).’(k+l) m.,’(k)-I-O/ and X + FM( k+ ),

where/7 is the direction of search and a, a positive scalar, is the steplength. Note that
this choice of Xn+ (k+l) immediately guarantees that all the points {x(k)) are feasible
for problem EMP; i.e., ci(x(k)) >= O, i= 1,..., m.

At any point x we define an active set of constraints of EMP as those which we
think will have the value zero at the solution k, based on the information at x. This
set will usually include all constraints with the value zero at the point x and may also
include some with positive values. The exact procedure for initially selecting the active
set at each iteration will be discussed in 10, and procedures for modifying this
choice will be described in 5.2 and 6. We define t(=t(x)) to be the number of
active constraints at x, and write the vector of active constraints as (x)Rt. We
similarly define f() as the vector of active functions corresponding to the active
constraints, i.e., those functions expected to have the value F(}’) at }. Let 1() be
the n x matrix whose columns (t3.(2)) are the gradients of the active functions, and
let i(x) be the (n+ 1)xt matrix whose columns ((x)) are the gradients of the
active constraints. Thus

1)() / where = (13(x)= 1)rR
r

ll(X)

We define Y(x) to be a matrix with orthonormal columns spanning the range space of
(x), and Z(x) to be a matrix with orthonormal columns spanning the null space of
A(x)r. Let I be the identity matrix of order s. Provided (x) has full rank, we have
that Y(x) has dimension (n + 1) t, Z(x) has dimension (n + 1) (n + t), and

Y(x):r(x)=6, Z(x)TZ(x)=In+I_t

Let en+l=(O,...,O, 1)TRn+l. The Lagrangian function for problem EMP is
given by

L(X,X)=xn+I--XT.(X),

where XR is a vector of Lagrange multipliers. The gradient of L(x, ) with respect
to x is en/-A. We define the (n+ 1)(n+ 1) matrix W(x,) to be the Hessian of
the Lagrangian function with respect to x. Thus

where

t(x)

W(x, t) E --tiV2ei(x)
i---1

x) o
0 0

t(x)

i=1
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The term "projected Hessian of the Lagrangian function" is used to indicate projec-
tion into the null space of A(x)7, i.e., the matrix Z(x)rW(x, ;k)Z(x). This matrix may
also be written Z(x)rW(2, A)Z(x), where Z(x) consists of the first n rows of Z(x).

Often we will omi’t the arguments f,rom, 6,,A, Z, etc. when it is clear that they are
evaluated at x(k). We use the notation V, A, Z, etc. to denote 17, , Z, etc. evaluated
at with the active set correctly chosen, i.e., consisting of all those constraints with
the value zero at .

1.2 Necessary and sufficient conditions. In the following we shall refer to the first-
and second-order constraint qualifications and the necessary and sufficient conditions
for a point to be a local minimum of the general problem NCP as defined in Fiacco
and McCormick (1968). The conditions for to be a local minimum of EMP (and
hence c of MMP) are simplifications of these general conditions. The main simplifica-
tion is that it can be shown that the first-order constraint qualification always holds
for EMP. The first-order conditions therefore reduce to the following (see Demyanov
and Malozemov (1974) for an alternative derivation applied directly to MMP).

First-order necessary condition. If is a local minimum of EMP, then there exists
a vector of Lagrange multipliers ) R such that

(1.1) e,+ l- 0 and >_0.

Two conditions which are equivalent to (1.1) are that is a stationary.point of
L(x, )) with respect to x and that re,+ =0. Note that (1.1) implies that V is rank
deficient and that the sum of the multipliers is one.

The second-order constraint qualification does not necessarily hold for EMP (for
example at the origin for f x3, f =-x3, and f3 =-x). We therefore include this
assumption in the statement of the second-order necessary condition.

Second-order necessary condition. If is a local minimum of EMP and the
second-order constraint qualification holds, then rW(c, ), the projected Hes-
sian of the Lagrangian function, is positive semidefinite.

Sufficient condition. If the first-order necessary condition holds at , the Lagrange
multipliers are all strictly positive, i.e., ) >0, and rW(Yc,) is positive definite,
then is a strong local minimum of problem EMP. Thus in terms of problem MMP,
FM(:) < FM(2) for all 2 such that 12- :l < , for some > 0.

Note that in the case where all the ,f/are linear it is well known that a solution
must exist with n+ active functions at (see Cheney (1966) for the case looP). Then
normally is null and therefore the second-order conditions are also null. The
nonlinear problem, however, can have a unique solution with anything from to n+
functions active at ’. This relationship is exactly analogous to that between linear and
nonlinear programming. For comments on the special case of loo-approximation and
the meaning of the Haar condition, see 11.

2. Use of the equivalent problem EMP. Clearly it is desirable that at every
iteration the search direction/3 be a descent direction for FM, i.e.,

p) < o,

where F(2(k), fi) is the directional derivative limh__,o+(1/h)(F(Z(*)+hfi)-F(Z())).
An equivalent condition is that/3 is a descent direction for each function f/for which
fi((k))=FM((k)) (i.e., Ci(x(k))=O). A second desirable property for fi arises from
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considering the active set which consists of those constraints corresponding to
functions we expect to have the value FM(.) at .. We wish to choose/3 so that the
first-order change in these functions predicts that they will all have the same value at
.(k) +/3. An equivalent condition is

(2.1)
and hence

+ + i--1, t,

for some value Pn+l (the (n + 1)st component of p). If the active set included all the
constraints which are zero at x(k), then the condition

(2.2) P+ ( 0

also ensures that/Y is a descent direction for FM. In fact, at every iteration the active
set will initially include all such constraints, but it may be desirable to drop one or
more of them from the set to move off a constraint. Since the decrease in F.t is limited
to the smallest decrease in any of the functions corresponding to ci(x(k))=O, it is also
desirable to insist that

(2.3) ai(x(k))rp > 0 for all such that ci(x(k))=O.
Conditions (2.2) and (2.3) ensure that p is a first-order feasible descent direction

with respect to problem EMP. It is straightforward to show the following from the
above remarks.

THEOREM 1. If (2.2) and (2.3) hold, then is a descent direction for Ft and hence a

sufficiently small step along it must result in a reduction in F.
Note that (2.2) and (2.3) do not guarantee that p is a feasible direction for EMP.

This causes no difficulty since X.+l
(k+) is set to Fu(.(k+ 1)), and hence it is always

possible to obtain a lower feasible point for EMP if (2.2) and (2.3) hold. Consequently
it is important to look for a reduction of F in the line search and not of a penalty
function constructed for EMP.

Thus we see that the importance of EMP is as a device to obtain a search
direction/5 along which Fu can be reduced in the line search. We emphasize again
that we wish (2.2) and (2.3) to hold so that/ is a descent direction for F, and that the
active set nature of the algorithm indicates that (2.1) should also hold. It is the case,
however, that (2.1), (2.2) and (2.3) will usually not uniquely define/, and in the next
section we utilize properties of EMP to obtain an initial choice of/3 by solving a

quadratic program (QP) based on second-order information incorporated in an
approximation to the Lagrangian function. The solution to this QP may not always
satisfy (2.1), (2.2) and (2.3), and in subsequent sections we discuss how to modify the
initial choice to obtain a satisfactory search direction.

3. The QP subproblem. The solution of EMP is at a minimum of the Lagrangian
function in the null space of the active constraint Jacobian at . The usual method for
solving a general linearly constrained problem is to approximate the objective func-
tion by a quadratic function and then determine the search direction by solving some
appropriate quadratic program (QP). Consider therefore the quadratic program

T x(k) (k)minL(x(k) (k))+(en+l--(x(k))(k))Tp+-p W( )p
p

subject to A(x(*))rp 6(x()),
where X() is an approximation to .
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An equivalent QP is given by
prW(x() (k) rQPI" min i )p+e,,+p

p

subject to A(x(/))rp -(x()).
Let us drop the arguments x(/) and ,() from A and W, and let Y and Z be the
matrices defined in 1.1. The matrices Y and Z may be determined from the QR
factorization of A,

0 0

where R is an upper triangular matrix of order t. If has full rank and ZrWZ is
positive definite, then the unique solution of QP can be expressed as the sum of two
orthogonal components:

p= Ypr+ Zpz, whereprR andpzRn+-t.(3.1)

We have

(3.2)

and Pr is determined entirely by the constraints of QP1. The vector Pz is given by the
solution of

(3.3) (ZrWZ)pz --ZT(en+l + WYpy)

(see Murray and Wright (1978)).
In subsequent sections we will also wish to refer to a related QP and its solution,

namely the one with the same quadratic form but homogeneous constraints:
pT- e 7-QP2" min i Wp + / p

p

subject to A(x(’))rp=O.
The solution to this is given by p Zqz, where

(3.4) (ZrWZ)qz Z’e,,+ 2.

At every iteration of our algorithm an attempt is made to set the search direction
p to the solution of QP1, but for various reasons this may be inadequate (there may
not even be a solution). Much of the detailed discussion of the method is concerned
with what action to take in these circumstances. It is important to realize that it is
only on attempting to solve the QP that these inadequacies are revealed, and if the
solution is not sought in a particular manner, certain deficiencies are not ascertained.
We are restricted in the action we may take by requiring that the search direction
satisfy (2.1), (2.2) and (2.3), and by a need to limit the computational effort when the
information on which it is based has proved suspect. We also wish to arrange the
computation so that any computational efforts already invested can still be utilized
should the initial QP prove inadequate. In particular, provision must be made for the
possibility that the wrong active set is identified at x(’). We will always insist that at
the beginning of every iteration the potential active set includes all constraints with
zero value at x(‘) (and it will normally also include constraints with positive values).
In 5.2 and 6 we discuss how a constraint may then, if desired, be deleted from the
active set.

For the moment we assume that analytical Hessians are used to compute W, but
in 7 we discuss finite difference and quasi-Newton alternatives.
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4. Lagrange multiplier estimates. Lagrange multiplier estimates are needed to
define the matrix W and to determine whether constraints should be deleted from the
active set. Clearly it is better to use new information obtained at the current point x(k)

rather than use the multipliers of the QP solved at the previous iteration.
The most obvious multiplier estimate is the least squares solution to the overde-

termined system based on the first-order necessary conditions, i.e., the solution to

min ’-%+ 112
h 2"

Let us denote the solution by XL, which may be obtained (see Golub (1965)) by using
the QR factorization of A which we have already introduced to solve QP1.
The estimate L has the following property. Suppose for some reason p is unsatisfac-
tory and we wish to delete a constraint from the active set. If (’L)y <0 and we
delete constraint j, then the steepest descent direction in the null space of the new
active constraint Jacobian i.s guaranteed to be first-order~ feasible with respect to the
deleted constraint. Define A as A with y deleted, and Z by

(4.I) r=O, r=l,+2_,, =[Z z].
Then the steepest descent step in the new null space is given by

(4.2) % --;Te,+,,
and we have

(4.3) y rs>O.
The Newton step in the null space, given by Zq2, where

(4.4) (rW2)qi= ren+ l,

does not in general satisfy

(4.5) ayrq>= O.

See Gill and Murray (1979) for the proof of these statements in the context of linearly
constrained optimization.

A more appropriate estimate than Az can be obtained by considering the special
structure of EMP. The least squares solution is motivated by the fact that the
overdetermined set of equations X=en+ is only an approximation to the set of
equations which hold at xM, the minimum of EMP on the manifold defined by
6(x)=0. However, the (n+ 1)st equation 6r,= is exactly, not approximately, the
equation which holds at xt. We therefore define another multiplier estimate Ac as the
least squares solution to the first n equations subject to the constraint rAc 1. Thus
Ac is the solution to the constrained least squares problem

min II 1, II 2 subject to rh
h 2

In fact we can show that c is exactly multiplied by a scalar greater than or equal
to one.

THEOREM 2. Assume A has full rank and let and hc be defined as above. Then
,c=fl)I, where r= 1/TjL>. 1.

Proof. We can assume V has full rank, since otherwise the result follows trivially.
The vector L satisfies
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It follows from the Sherman-Morrison formula (see Householder (1964, p. 123)) that

(4.6) /=1d, where d=(lrlT")-l.
+,rd

Note that rd>0. Since c is the solution to a constrained optimization problem it
follows from the first-order necessary conditions that

2Ir1c=/3 for some scalar

and therefore, since r;kc= 1,

)c
rd

d,

from which the result follows. V-]
Note that it would be highly ill-advised to compute ,/ and ,c by computing d

via (4.6). If x(k) were equal to xt, the minimum on the manifold, then lP would be
rank-deficient, but A would not in general, and hence if x(k) is close to xt, the
condition number of lT"rl may be much bigger than that of AA. Since solving the
least squares problem using the QR factorization of A is already a better conditioned
process than explicitly using ArA (via the normal equations) it is clear that using the
QR factorization of A is far preferable to using (4.6).

Using the scaled estimate ,c instead of / will result in different decisions about
whether to delete constraints from the active set since, as will be explained in 6, the
magnitudes as well as the signs of the estimates are used to make the decision.
Furthermore, using c instead of L in general increases the magnitude of W and
hence affects both the direction (if d v40) and the magnitude of the solution to QP1.
The following example illustrates that it may often be beneficial to use kc rather than
/. Let n=m= and F()=f()= 2. Let the current estimate of the solution be
Y’)= 2. Then 1=4 and A[ -4], ,= 7 and c 1. Using c for W results in the exact
step to the solution being taken, but using results in one seventeen times too big.
Clearly similar examples can be constructed with a larger number of active con-
straints. The choice of )c over )L essentially arises from the fact that problem MMP
is in some sense naturally scaled--the functions of MMP cannot be individually
scaled without changing the solution while the constraints of NCP can be individually
scaled in general.

The second-order Lagrange multiplier estimate #w is defined as the exact
multipliers corresponding to the solution p of QP1, i.e. the solution to the consistent
set of equations

(4.7) w e,,+ + Wp,

where p is given by (3.1), (3.2) and (3.3) and )c is used to define W. The necessity of
requiting W to define/zw implies that second-order estimates can only be useful in
determining whether to delete constraints from the active set. If a constraint is deleted
corresponding to (#w)j < 0, then (4.3) will not hold in general. If =0, then (4.5) will
hold.

The system (4.7) is consistent because of the definition of p. Note that because it
is consistent there is no question of a second-order estimate analogous to Xc--the last
equation is already satisfied by/z w.

Both the estimates c and/zw will be used to decide when to delete constraints
from the active set, as will be discussed in 6. As explained there, a constraint with a
negative component of c will not necessarily be deleted from the active set, since the
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multiplier estimates may not be reliable. However, we also use Xc to define W and
there is no good reason to include in W a term with a negative component of Xc.
Therefore, we define W to be

where

rX,,

and " is defined by ? =max(0,(?tc)i).

5. Properties of solution of QP subproblem. In this section we examine the
properties of the solution to QP1. Initially we assume that all constraints with zero
value are included in the active set and that has full rank and ZT"WZ is positive
definite, so that the solution p is given by (3.1), (3.2) and (3.3) and is unique. We
would like p to satisfy (2.1), (2.2) and (2.3). Clearly the constraints of QP1 ensure that
(2.1) and (2.3) hold. Thus the only question is whether p is a descent direction for
EMP, i.e., whether (2.2) holds. If all the active constraints have the value zero then the
following applies:

THEOREM 3. Suppose that d O, has full rank and ZT"WZ is positive definite. Then
p, the solution of P1, is a descent direction for EMP provided it is not zero.

^Proof. Since A has full rank and the columns of Y span the range of the columns
of A, we have p r 0. Hence p Zpz and

Ten+ p =pz TZTen+
-Pz rZrWZPz by (3.3).

Since ZrWZ is positive definite, 7-en+ lP must be negative if pzO, i.e., pg=0. V-1
If p-0, then by (3.3) ZTen+l=O and hence A?tL=en+ is a consistent set of

equations, with ;kc= )L w. Thus either one of the components of )kc is negative or
zero, or the first- and second-order sufficiency conditions are satisfied and x(k is a
solution of problem EMP. If p =0 and at least one of the multipliers is negative, then
it is necessary to delete a corresponding constraint from the active set to obtain a
descent direction. The procedure for doing this is described in 6. If p=0 and the
smallest component of kc is zero, the point x(k may or may not be a solution. In this
case special techniques such as described in Gill and Murray (1977) must be used to
determine whether to treat the corresponding constraint as active or not. These will
not be discussed any further here.

In the next three subsections we discuss the actions which it may be necessary to
take to obtain a search direction which satisfies (2.1), (2.2) and (2.3) when we drop the
assumptions that 6=0, has full rank and ZrWZ is positive definite.

5.1 Positive active constraints. In practice it will rarely be the case that 6=0, so
we now drop this assumption. We note that if we were sufficiently restrictive in the
definition of the active set (e.g., choose only one constraint active) then we could
force this condition to be true. As will be shown in 10, however, it is important for
the efficiency of the algorithm not to be too restrictive in the definition of the active
set. This may appear to negate the significance of Theorem 3, but this is not the case.
Although dropping the assumption certainly means that Theorem 3 no longer holds,
since both YPr and Zpz could be ascent directions, we can infer that if 611 is small
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(and it approaches zero near the solution), thenp is likely to be a descent direction. If,
after QP1 is solved, it transpires that ren+p >0, then, provided either YPr or Zpz is a
descent direction, a suitable descent direction can be chosen as follows"

Ypy+lZpz if ren+lYpy<O,

3"Yp r+ Zpz if ren+ ZPz< O,

for some 3’ satisfying 0< 3,-< 1. If neither component is a descent direction, then a
further possibility is to replace Zpz by the solution of QP2, i.e. Zqz where qz is given
by (3.4). Provided Zre,+lVaO, the vector Zqz is a descent direction, and hence so is

3"YP r+ Zqz for some 3’, 0 < 3’ =< 1.
When Zre,+=O and YPr is an ascent direction, it is necessary to delete a

constraint to obtain a descent direction. One possibility would be to delete constraintj
(say) where 6j is the largest component of 6, since it is not strictly necessary to be
concerned about whether the resulting search direction has a positive inner product
with j ((2.3) applies only to constraints with value zero). However, clearly this may
lead to a very small step being taken along the search direction with this constraint
being forced immediately back into the active set. The following result shows that
when YPr is uphill, a constraint can always be found with a negative multiplier
estimate and hence can be deleted more safely. The result is also useful when
ZTen+l=/=O, since then the fact that YPr is uphill implies there are too many
constraints in the active set.

THEOREM 4. Assume has full rank and let Yp r be defined by (3.2). If e rn+lYpY) 0,
then one of the components ofc is negative.

Proof. We know that ,c is a positive multiple of )z. The vector )it. satisfies

(.) X,= rre/l
This is a characterization of the least squares solution using the projector matrix yyr
(see Stewart (1973, p. 228)). Thus

r yyrypXrArypy= en+ r

and hence

en+ Ypr>O.
Since 6=> 0 it follows that at least one of the components of k z. and hence hc must be
negative. F-]

It also follows from the above proof that if en+Yprr=0, then either d=0 (covered
by Theorem 3), or the minimum element of kc is zero or negative.

It follows from Theorem 4 that if Ypy is an ascent direction, we can delete the
constraint corresponding to a negative component of c to obtain a first-order
feasible descent direction. The procedure for doing this is described in 6.

5.2 Avoiding rank deficiency in the active constraint Jacobian. In this section we
demonstrate how the active set can alwaysbe chosen so as to avoid rank deficiency in
A. We first consider the consequences of A being rank deficient. If A is rank deficient
and 6=/=0, it is not possible in general to satisfy the constraints of QP1 since they may
not be compatible. In such circumstances it might be thought that an adequate
compromise would be the least squares solution to A"rp,-6, but this may not be
first-order feasible with respect to EMP, and hence may not be a descent direction for
the minimax function even if it is a descent direction for EMP. Clearly it is desirable
to restrict the number of constraints in the active set so that has full rank.
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The way this is done is as follows. Given a set of candidates for the active set, we
determine which are to be actually included in the active set during the QR
factorization of . Assuming the problem is well-scaled, a reasonable order in which
to consider the candidates for inclusion is given by the size of the constraint values.
Therefore we order the potential columns of by increasing size of (cj) before
proceeding to do a QR factorization of the matrix by columns without column
pivoting (except where several columns correspond to the same magnitudeof cj). If it
transpires during the factorization that any of the potential columns of A is linearly
dependent on those already included, then the corresponding constraint is not
included in the active set. Clearly such a process results in a matrix A that has full
column rank.

An example which illustrates this procedure is the following. Suppose the initial
candidates for the active set are

00 i1 014

c-- and A-- 0 0 0.5
10-3 0 0 0 0

10-2

Then the first and third constraints are selected for the active set, and the second and
fourth are ignored.

We must now show that omitting any constraint, say c,.(x), from the active set to
avoid rank deficiency in 3 does not cause (2.3) to be violated. Strictly speaking, we
need not be concerned with constraints for which c,.(x)> 0, but for the moment we
will not assume cr(x)=0 since the following also serves to illustrate why we put
potentially active constraints in increasing order.

Let ar be the gradient of c. We have

(5.2) at= Wi
i=1

for some index s and scalars wi, 1,..., s. Since the constraints were ordered we also
have

(5.3) c>__ds>=s_l >=61.
It follows from (3.2) and (5.2) that

(5.4) arrP=- Wii.
i=l

Since we have no a priori information about how the sizes of the {w} would change if
the columns were ordered differently, we have by putting the constraints in increasing
order attempted to prevent arrPl from being large and in particular to prevent ap
from being a large negative number. Ordering the constraints also ensures that the
omitted constraint c have as large a value as possible, and these two facts combine to
make it as unlikely as possible that constraint r will prevent a significant step from
being taken along p. It follows from (5.3) and (5.4) that if cr=O, then ap=O and
hence (2.3) is satisfied. However, if it is necessary to delete a further constraint from
the active set as described in 6, then (2.3) may no longer hold. This difficulty is
circumvented by allowing a zero step to be taken along p (see 8) and then
reconsidering the choice of active set in the next iteration.
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5.3 Projected Hessian not positive definite. If ZrWZ is not positive definite, it
makes no sense to use the solution of (3.3), even if it exists, to define the direction of
search. Such a direction is a step to a stationary point which is not a minimum of the
quadratic form on the subspace defined by the constraints and may even be a
maximum. It also makes no sense to reduce the number of active constraints (the
projected Hessian will still be indefinite), since one means of ensuring that the
projected Hessian is positive definite is to increase the number of active constraints.
An alternative definition of the search direction which is satisfactory is to utilize the
modified Cholesky algorithm of Gill and Murray (1974).

The following numerically stable matrix factorization is computed:

Z7WZ+E LDLr.
The matrix E is a nonnegative diagonal matrix large enough to make ZrWZ+E
numerically positive definite. The modified Newton direction in the null space of is
then defined as Zqz where

(5.5) LDLrqz zre,,+ ,.
Recently several more complicated methods have been suggested for handling indefi-
nite Hessians; see Fletcher and Freeman (1977) and Mot6 and Sorenson (1979). All
of these, including the Gill and Murray algorithm, provide ways of obtaining
directions of negative curvature. As will be explained shortly, however, these are not
so useful in the context of nonlinear constraints; our main concern here is simply to
obtain a reasonable descent direction.

Like the Newton direction Zqz in the positive definite case, the vector Zqz is a
descent direction provided that Zre,,+ vaO. If Zren+ 0 and re+ Yp r < 0 we can
simply set P YPr," if Zre+ =0 and e+r YPr >0 we have already explained that a
constraint may be deleted. Similarly if e+YprT" =0, but a component of Jkc is
negative, a constraint may be deleted.

If ZrWZ is not positive semidefinite and er+Ypr=O, Zre+=O and hc>0,
then the point x) is a constrained saddle point (or even a maximum). It is desirable
to compute a feasible arc of negative curvature with respect to ZrWZ, which must
exist. For the case of linearly constrained minimization of a differentiable function,
Gill and Murray (1974) have shown how to compute a vector of negative curvature
using the modified Cholesky factorization. However, it is not possible in general to
compute such an arc for the nonlinearly constrained case given only Wit is
necessary to know all the individual constraint Hessians. Such a computation would
hence require an unreasonable amount of storage as well as computational effort. We
therefore suggest the following. If 6 >0 for some j, delete the jth active constraint
and avoid, or at least postpone, the problem. If 6=0, compute the direction of
negative curvature assuming the constraints are linear, which is thus feasible to first
order, and try stepping along it. If the minimax function is lower at the new point,
then take this as x+ o. Otherwise an alternative is to try to obtain a lower point using
a function-comparison method such as described in Swarm (1972). There is no
reasonable procedure which is guaranteed to work in this situation. However, it
should be noted that such a situation is unlikely to occur since the basic modified
Newton iteration of solving successive quadratic programs seeks to avoid saddle
points and maxima.

6. Deleting constraints from the active set. In 5 we explained that when
Zre+ =0 and a multiplier is negative, it is necessary to delete a constraint from the
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active set in order to obtain a first-order feasible descent direction. It is well known in
the context of constrained optimization that it is ill-advised to wait until Zren+ is
zero or very close to zero before deleting a constraint corresponding to a negative
multiplier estimate, since doing so is solving the wrong equality-constrained subprob-
lem with unnecessary accuracy (minimizing on a manifold). It is also well known that
it is even more ill-advised to delete a constraint too early, when the multiplier
estimates are not yet reliable, since this may cause the constraint to be repeatedly
added to and dropped from the active set. Gill and Murray (1979) suggest computing
both ,z and #w when possible, never considering deleting a constraint unless the
estimates have the same sign and agree within a certain tolerance. Here we use c
instead of L" Notice that kc=/w when ZTen+l=O. A further possibility is to insist
that the following hold before deleting a constraint:

II/re+ < .min(1,- min (,c),)
where 8<- is a constant, say = 1. In effect, this test ensures that the higher the
uncertainty that a multiplier is negative, the greater the accuracy to which the
minimum is approximated on the manifold.

In 5.1 we also pointed out a further situation in which we delete a constraint.
This is when ern/lYpr>O, which means (as shown in Theorem 4) that (,c)j<0 (and
j> 0) for some j. A constraint is always deleted in this situation since this is a clear
indication that there are too many constraints in the active set.

In the rest of this section we discuss what search direction p to choose after
deleting constraintj with (c)< 0. Define A, Z and z by (4.1). Define t to be t with t?j
deleted. Since A corresponds to the new active set we wish p to satisfy

(6.1) rp= _,
corresponding to (2.1), and also Pn/l < 0, i.e., (2.2). If j
(6.2) fi’p<_- 0

=0 then we must have

to satisfy (2.3), but as explained in 5.1, this is desirable even if > 0.
As we noted in 4, the steepest descent step Zs2 in the null space of the new set

of constraints given by (4.2) must satisfy (6.2), but the Newton step given by (4.4) may
not satisfy (6.2). A step satisfying (6.2) which is preferable to the steepest descent step
is a combination of the Newton step in the null space of r, i.e., Zqz, and the steepest
descent step in the new direction permitted by deleting the constraint.

THEOREM 5. Assume has full rank. Suppose (c) < 0. Define ., and z as in

(4.1). Let r2 be defined by

ri _zre,/l
where qz is defined by (5.5). Then t)- Zr satisfies (6.1), (2.2) and (6.2).

Proof. The proof may be found in Overton (1979).
Note that there is no guarantee that the corresponding range space step Ypf. to

the modified set of constraints satisfies either (2.2) or (6.2). This step is defined by

where ? is with.
However, since Zr satisfies (2.2) and (6.2) with strict inequality, so does vYpf:+ Zr2
for small enough
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Although Zr2 is~ guaranteed to satisfy the required properties (6.1), (2.2) and (6,.2),
the Newton step Zqi may be preferable if it satisfies (6.2). In fact, the step Zpi,
defined by

;rW2p ,r(en+ + Wf’p f )
may be preferable to either, but this is not guaranteed to even be a descent direction.
We recommend computing Zq and performing the appropriat,e inner~ product to
check whether it is a feasible descent direction, falling back on 7Ypf,+Zr if it is not,
and substituting Zq2 for Zr2 if it is. This may be done even if (/w)j>0, which may
be the case if we are deleting a constraint when ren / Yp r> 0, since Theorem 4 does
not hold with/w substituted for ;k/ (even if W is assumed to be positive definite).
Although when exact Hessians are available it is normally inadvisable to delete a
constraint and take a Newton step when (/w)j> 0, in this case it is desirable to delete
a constraint and the only question is what step to take.

In all of the above, when a constraint is deleted from the active set it is not
necessary to recompute the factorizations of and rW from scratch. They can be
obtained by updating the factorizations already available, as described in Gill, Golub,
Murray and Saunders (1974) and Gill and Murray (1974).

Note that we have been able to always obtain a satisfactory choice for p by
deleting only one constraint with a negative multiplier estimate.

7. Finite difference and quasi-Newton approximations to the Hessian. It may be
that the Hessians (V-f/) are unavailable either because they are too expensive to
evaluate or too difficult to determine. Recall from 1.1 that

0
0 0

so that when analytical Hessians are used a matrix of order n is stored. The two basic
alternatives are using a finite difference approximation or a quasi-Newton approxima-
tion.

A finite difference approximation to W, unlike a quasi-Newton approximation,
requires extra gradient evaluations to be done at each iteration. However, it is
important to note that extra gradient evaluations of only the active functions are
required, where may be significantly less than m, the number of functions which
must be evaluated at each iteration. Furthermore, since the matrix W is not explicitly
required to compute p we can form a direct finite difference approximation__to WZ by
differencing the gradient of the Lagrangian function along the columns of Z. It is also
necessary to difference the gradients along YP, to obtain an approximation to WYp ,
if we wish to compute/z W. Thus the active gradients must each be evaluated only
n-t+ 2 times, which may be considerably less than the n + required to approximate
W.

When a quasi-Newton method is used, two approaches are possible. Powell
(1977) has shown that it is possible to obtain local R-su___perlinear converge___nce using a
positive definite approximation to the full matrix W even though W may have
negative eigenvalues at the solution. Murray and Wright (1978) have suggested
approximating the projected Hessian r WZ, which may have much smaller dimen-
sion than IV.

One of the prime applications of the minimax algorithm is to data fitting
problems in the/oo-norm (see 11). These problems typically have a large number of
functions f/(observations), but a relatively small number of variables. Furthermore, if
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the functions are not too highly nonlinear the number of active constraints at the
solution may be close to n + (it would be exactly n + if the problem were linear).
Thus it may often be that t<<m and n / 1- t<<n, exactly the situation where the finite
difference scheme is most efficient. Since the finite difference scheme will normally
produce a better direction of search at each iteration than a quasi-Newton method
and also has a higher rate of convergence, it will normally take significantly fewer
iterations to reach the solution. Thus the additional work at each iteration may result
in a substantial saving overall.

8. The steplength. Given a direction of search fi which is a descent direction for
Ft, we must determine a steplength a to take along it. We use the algorithm described
in Murray and Overton (1979a) which is designed for the minimax and related
nondifferentiable functions. This includes a facility for varying the limit on the effort
to be expended, producing anything from an algorithm which normally takes a single
function evaluation to one which does an exact linear search. An initial guess a0,

where Ft is to be evaluated first, is required. We set a0 to either one, or the estimated
step to the nearest inactive constraint using the linear approximations at x’), if this is
less than one. Thus

a0 min( 1, ao), where

a’o min ( (ci/arip)[ aip < 0 and not in active set).
It is possible that ao =0, and hence the algorithm must allow for this possibility. In
this case the appropriate inactive constraint must be added to the active set and the
iteration repeated.

9. Flowchart of the algorithm. We summarize the basic iteration of the algorithm
in the flowchart in Fig. 1. For simplicity we have omitted any tolerances from the
flowchart, though clearly in practice these must be included. The parameters y and Y2
are optional. For the results presented in 14, 7 is set to when possible but 72 is
always set to zero. The latter is done because near a saddle point or after deleting a
constraint a poor range space direction can swamp a good null space direction if
"{2 > 0. The notation S is used to mean either W or a finite difference or quasi-Newton
approximation to W.

10. Selecting the active set. The success of the algorithm we have described
depends on being able to make a reasonable choice of the active set at each iteration.
If constraints are required to have very small magnitude to be included in the active
set, then the iterates will follow the constraint boundaries very closely and the
convergence will be slow. Conversely if too many constraints are selected as active the
directions of search may be poor. In this section we describe an active set strategy
that has been most successful for the numerical experiments we have carried out.

Clearly one feature required of the active set strategy is that, as the iterates
approach :, it should become successively more difficult for constraints with magni-
tudes significantly greater than zero to be included. One way to accomplish this is to
have the strategy depend on a parameter which is reduced as the solution is
approached or if any difficulties arise. We found that reducing a parameter in this
way was not satisfactory since it can easily happen that the parameter is reduced too
much, making it impossible to ever include all the correct active constraints. Instead
we take the following approach. There is always at least one constraint active with
value identically zero, so the first decision is whether to include a second constraint. If
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this is done the decision of whether to include others is tied to the magnitude of the
second constraint. Thus the required objective will be achieved, provided that the first
decision is made correctly so that any second active constraint approaches zero as the
iterates approach the solution.

Let us order the constraints so that 0=1<_.c2 m, with the (f,.) and
correspondingly ordered. We include in the active set all constraints with magnitude
less than a very small tolerance, say x0. In order to compare the larger constraint
magnitudes we must scale them in some way. For problem looP (see l) we define
the scaled values by ?i =ci/Foo, since the value of Fo can only be very small if all the
constraints values are very small. For problem MMP the value of FM could be zero or
negative, so we define the scaled values by ?i =ci/(1 + If] + f2 I). Scaling the values is
necessary since two functions with values 999 and 1000 are likely to both be active if
one is, while this is not true of functions with values and 2. Notice that the existence
of any function in problem MMP with negative values much less than Ft does not
affect the definition of ?i, which is appropriate since it does not affect the solution.

If only one constraint is active, then Ilv()ll=0, Therefore the decision of
whether to include a second active constraint c2 is made as follows. If IIv is small,
say v <, then c2 is included only if c2 < x2 v, 2, where x2 > 1, a test which can
be justified by Taylor expansions around the solution. If v >--,, then c2 is included
only if ?2 < x3, where 0 < x3 < 1.

It remains to test the other constraint values against c2. We include c if c_ is
included and i </3 and ?i < ?i-- 1)4’ 3, 4 min(m, n + 1), where 0 < x4 < 1. "fhus,
for example, if x4 =0.5, c3 is included if c2 is included, ?2 10-6 and 73 10-4, but
not if ?2 -0.1 and ?3 =0.5. Note that we always have 721.

We found that it was also important not to include a constraint in the active set if
it was included but subsequently deleted in the previous iteration. It was also helpful
to include a constraint requiring only that ? < x3 if the previous line search ctose a
step to a point of discontinuity involving the corresponding function.
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Sometimes some constraints are much smaller than others which should also be
in the active set (for example if some of the functions are linear). In such a situation it
is not appropriate to compare all the constraints with c2. The remedy is to let the first
constraint with value significantly greater than the machine precision play the role of
c2. However, then/21 must be replaced by a projected gradient ZrVl in the tests, and
the factorization of A and the accumulation of the transformations which form Z
must be performed as the active set selection proceeds. We have not yet implemented
this modification.

Our current active set strategy is the above with x0 set to the square root of the
machine precision,/i; =0.1,/2 =25,/3 =0.25 for looP,/3 -0.1 for MMP, and/4--0.5.

11. The special case of the least Ioo-norm problem. In this section we consider
problem looP, defined in 1. Problem looP is an important special case of MMP. Note
that looP must have a solution, whereas MMP may not. Clearly it is preferable to treat

looP in a special manner rather than just treat If as max(-f/, f.). If we eliminate the
possibility that Foo is zero at the solution, i.e. all the {f/} are zero at the solution, then
we can observe that only one of each pair of constraints Xn+l--fi(.’) O, Xn+ /fi()
>_-0, can be active at the solution. Thus defining oi=sgn(f()) for any it is
straightforward to handle looP by using the algorithm described for MMP, replacing f.
by oif everywhere. The only places where it is necessary to consider the inactive
constraints (c;=x+l+oifi} are in the determination of the initial guess at the
steplength ao, and in the steplength algorithm itself. Thus ao must be set to

ao=min 1,ao,ao

where a is defined by (8.1) and a is given by

a min [Vc;rp < O, i-- l,2 m )
The changes which must be made to the steplength algorithm are indicated in Murray
and Overton (1979a).

If Foo is zero at the solution there is still no difficulty with this approach provided
that m-n+ 1, since then of the 2m constraints active for the equivalent problem
corresponding to looP, at most n + can be included in the active set to obtain a full
rank active constraint Jacobian. Thus including in the active set at most one
constraint of each pair causes no difficulty. Such a situation is a highly degenerate
one, but the point is that if the situation does arise the algorithm will take care of it
efficiently. The usual source of looP is data fitting problems, so we expect almost
always to have rn- n / 1. However, if it does happen that we wish to solve looP with
rn- n, then the above technique may be very inefficient since both constraints in a
pair of constraints active at the solution cannot be put into the active set. Instead of
making a complicated modification to take care of this unlikely possibility, we
recommend writing the problem explicitly in the form MMP and solving this directly.

It is straightforward to generalize the above to an algorithm which can be used to
minimize a more general function,

FaM(Y)=max( max If/(Y)l
l<i<m

max f/(7) },
ml + < i<=m

assuming m -n + if m =/=0. Since coping with the general case introduces very little



NONLINEAR MINIMAX OPTIMIZATION 363

extra overhead, our implementation of the algorithm handles this wider class of
functions. In this way one algorithm takes care of both MMP (rn =0) and looP

11.1 The Haar condition. We comment here on the meaning of the Haar
condition since this is usually discussed in the context of loo-approximation. Let us
first consider the case that the f/are linear. The Haar condition is said to hold for
these functions if every nn submatrix of V is nonsingular, where V is the nrn
matrix whose columns are the gradients of the {f}. Consider problem EMP, which is
now a linear p,r,ogrammin problem. A necessary condition for : to be a solution to
EMP is that V =0 and ) :/=0 (since r 1). Thus the requirement that the Haar
condition holds implies that there are at least n + active constraints at the solution
with none of the multipliers equal to zero, and hence that the solution is unique. Most
algorithms which solve the linear minimax problem do so by solving a linear program
related to ELP. Thus whether or not the Haar condition holds is quite irrelevant to the
difficulty of solving looP, since zero multipliers cause no real difficulty in solving
linear programs. Degeneracy, which occurs when the matrix is rank deficient and
can in theory cause problems in solving a linear program, can occur whether or not
the Haar condition holds. The significance of the Haar condition is that if it does not
hold the solution may not be unique, and hence one may be interested in a "strict"
solution to the data approximation problem, i.e., that solution of looP which reduces
the inactive functions as much as possible (see Rice (1969) and Brannigan (1978)).

The Haar condition is much stronger than necessary to ensure uniqueness. A
slightly more reasonable condition is that there be n+ constraints with nonzero
multipliers active at the solution of looP (see Jittorntrum and Osborne (1979, p. 3) for
an example showing that this condition is still stronger than necessary to ensure
uniqueness). This condition cannot be checked without solving looP, but solving looP is
actually much easier to do than checking whether the Haar condition holds.

Let us now consider the nonlinear case. The Haar condition is then said to hold
at a point if every subset of gradients of functions with zero constraint values at is
linearly independent. As in the linear case we are really only concerned with the
situation at . Thus the Haar condition holds at if every nn submatrix of l has
full rank. Again it follows that if the Haar condition holds there must be n+
constraints with nonzero multipliers active at . This condition is however a much
more unreasonable one than in the linear case. There must always exist a solution to
the linear problem where n + constraints are active, but the nonlinear problem can
have a unique solution with an,ything from to n + constraints active. If the Haar
condition does hold at then Z is null and the problem can be adequately solved by
a method using only first-order information. Thus our algorithm has been designed
with the assumption that the Haar condition often does not hold. When looP arises
from data fitting problems it may sometimes be the case that the Haar condition can
be expected to hold at . However, the only way to ascertain whether the Haar
condition does indeed hold is to solve the problem. Since we cannot be sure at the
outset, it is clearly unsatisfactory to be using an algorithm which uses first order-
information only and hence may indicate that the Haar condition does not hold by
extremely poor performance. For many data fitting problems the number of active
constraints at the solution may be close to n + 1, and as pointed out in 7 this means
that using a finite difference approximation to ZrWZ, which has order n/ 1- t, may
be quite inexpensive.
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Cromme (1972) discusses in a broader setting a weaker condition than the Haar
condition at called strong uniqueness which still ensures that a particular algorithm
using only first-order information converges quadratically. Strong uniqueness implies
that n + constraints are active at , but is weaker than the Haar condition since it
permits active constraints with zero multipliers. Jittorntrum and Osborne (1979)
discuss a still weaker condition which arises from examining the curvature in the null
space of the active constraint Jacobian with gradients corresponding to zero multi-
pliers deleted. This weaker condition also ensures that a first-order method fias
quadratic convergence. The sufficient conditions for a minimum given in 1.1 are
much weaker than any of these conditions since they permit t() to be less than n + 1,
in which case an efficient algorithm must approximate ZrWZ. These conditions could
themselves be weakened if curvature corresponding to zero multipliers were examined.

12. Relationships to other algorithms. A number of other algorithms have been
proposed to solve the nonlinear minimax problem. Most of these are first-order
methods which are satisfactory if the number of active functions at the solution is
n+ but very slow otherwise. It was not until recently that special algorithms for
MMP which make use of second-order information appeared. Han (1977b), (1978a),
(1978b) suggests methods which solve a sequence of quadratic programming problems
using a quasi-Newton approximation to IV. These will be discussed further shortly.
Watson (1979) and Hald and Madsen (1978) propose two-stage methods which begin
by using the first-order methods of Anderson and Osborne (1977) and Madsen (1975),
respectively, and switch to solving a system of nonlinear equations using the second-
order information in W when it is thought that the active set has been identified. The
system is of order n + + t; i.e., the multipliers and variables are all obtained at once.
Recall that for problem looP, is often close to n + 1, so the systems that Watson and
Hald and Madsen solve may be much larger than the ones we solve. The direction of
search obtained is not necessarily a descent direction for the minimax function but
only for the residual of the nonlinear system. A method related to the second stage of
these methods was given by Hettich (1976). Conn (1979) presents a method which is
derived from the point of view of a nondifferentiable penalty function. It is related to
the algorithm of Charalambous and Conn (1978) but uses second-order information.
We discuss this method further below. Other methods which use second-order
information and are related to Han’s method are discussed by Charalambous and
Moharram (1978), (1979) and Wierzbicki (1978).

Our algorithm is most closely related to the methods of Han (1977b), (1978a) and
Conn (1979), so we discuss these further here. The primary difference between our
method and Han’s method is that we attempt to identify the active set at each
iteration and then solve an equality-constrained quadratic program (EQP), modifying
the resulting direction of search and the active set if necessary, while Han solves an
inequality-constrained quadratic program (IQP), thus implicitly selecting the active set
associated with the solution of IQP. The IQP has the form:

IQP" prWp + rmin i en+ lP
subject to Arp> c,

where c and A are the vector and matrix of all the constraints and their gradients.
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The dichotomy of whether to solve EQP or IQP occurs at all levels of constrained
optimization. Murray (1969a) considered solving the IQP associated with his algo-
rithm for NCP but found an EQP strategy more successful. He also considered a
strategy of partially solving IQP. The same question arises in linearly constrained
optimization. Brayton and Cullum (1977) report some results which indicate that for
the case of minimization subject to bounds on the variables (the simplest possible
constrained optimization problem), solving IQP is not in general more efficient than
solving EQP.

The motivation for solving IQP is that it makes the fullest use of the information
at x(k). Furthermore it simplifies the description of the algorithm and for problem
MMP makes it straightforward to get a descent direction since positive constraints are
not selected for an active set except in the process of solving IQP. Clearly one
disadvantage of solving IQP is that it is more work than solving EQP. If m>>n and the
function evaluations are not too expensive, then an algorithm which solves IQP may
be extremely inefficient compared to one which solves EQP. However this is not the
main objection to solving IQP. The main motivation for solving EQP rather than IQP
is that the linear approximations to the constraints (for NCP and MMP) and the
quadratic approximation to the Lagrangian function are unreliable away from the
current point X(k). The process of solving IQP involves successively making decisions
about which constraints to include in the active set at points which may be quite far
from xk, based on the approximations at xk. Thus the final point at which this
decision is made, the solution of IQP, may be the result of choosing an active set
which has no meaning whatsoever. If xk is so close to that the approximations are
satisfactory then IQP may still have no advantage over EQP since they may well have
the same solution.

Most of the differences between Han’s method and ours result from the dif-
ference between IQP and EQP (he uses the multipliers from the old IQP and requires
that the full Hessian W is positive definite, while we use ’c to define W and require
only that ZrWZ be positive definite). He discusses only quasi-Newton methods while
we also consider a finite difference strategy. Finally, although his line search is used to
obtain a reduction in Ft it is not designed specially for nondifferentiable functions as
ours is.

Han (1978b) presents another algorithm for MMP which is related to the one
discussed above. It is quite different, however, in that the line search takes place in the
(n + 1)-dimensional space. The line search obtains a reduction in the function

m

O(a)=x,,+ +ap,,+ + E max(f,.(:+ a/)-(x.+ +ap,,+),O),
i---I

instead of FM(+off). The motivation given for this is that 0 takes into account some
inactive functions while Ft gives bias completely to the active functions. However,
our view is that inactive functions should be considered in the line search only if they
are likely to become active along the line, and this is exactly what our special line
search to reduce the minimax function does.

The problem with reducing 0 is that it relies too much on the value of Pn+l which
gives only a linear approximation to the active functions at x(k). It is easy to construct
examples where minimizing 0 along the line results in a much smaller reduction of Ft
than is possible. We feel that using 0 instead of Ft in the line search is discarding one
of the most useful tools available to solve MMP.
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The analysis in Han (1978b) is concerned with the fact that the quadratic form of
IQP is not positive definite in Rn+ . Our view, however, is that the only matrix whose
positive definiteness should be a concern is the projected Hessian, and this is the same
in R and R+1 since ZTWZ=ZTWZ. Recall that we expect the dimension of this
matrix to be much smaller than that of W.

We now turn our attention to the algorithm of Conn (1979), which is more
closely related to ours in a number of ways. Like us, Conn attempts to identify the
active set and solves a related EQP at every iteration. However, unlike ours, his search
direction does not include a component in the space spanned by Y unless there is
reason to believe that x(k is near a stationary point. Furthermore, he uses the Hessian
of the Lagrangian function to give the quadratic form of the QP only if x(’) is thought
to be near a stationary point. Otherwise he uses instead the Hessians of one of the
active functions at each iteration. His reason for this is that the Lagrange multipliers
may be highly inaccurate away from a stationary point. Although this is certainly
true, our view is that using the Hessian of only one function is equivalent to using a
multiplier estimate with only one component equal to one and the rest zero, and that
this is no less arbitrary than using any other vector of nonnegative components which
sum to one to define W. As we explained at the end of 4, our algorithm always uses
such a vector to define W. Our approach eliminates any need to decide when to
switch from one strategy to another, something which it is difficult to do since it is
hard to tell how accurate multiplier estimates are. Furthermore, using different
Hessians at different iterations makes a quasi-Newton approach difficult.

There are many other differences between Conn’s algorithm and ours which
follow because of the fact that his approach is via a nondifferentiable penalty function
while ours is via a Lagrangian function. For example, he does not factorize the matrix
/ as we do, but instead factorizes a matrix M which is -l less one column tj
corresponding to the one function whose Hessian is to be computed. This matrix
factorization is then updated to give a factorization of the matrix resulting from
adding tj to each column of M. It can be shown that this approach restricts/ to the
same null space as our algorithm. Multiplier estimates can also be computed by this
approach but they will not be the same as either XL or Xc since they give bias to
function j. Conn shows how to take advantage of any explicitly linear functions in his
algorithm.

In a way our algorithm treads the middle ground between Han’s method and
Conn’s method. Han relies on the approximation at x(k) so completely that he solves
the IQP. Conn distrusts the multiplier estimates and does not use them unless x(k) is
near a stationary point. We believe that some multiplier estimates are better than no
estimates at all, but we solve the QP which relies as little on the approximations as
possible.

13. Convergence properties. In the limit our method becomes a projected
Lagrangian method for NCP applied to the special case MMP, and so we can make
use of the known asymptotic local convergence results for these methods. Robinson
(1974) showed that the method of Wilson (1963) has a quadratic rate of local
convergence if analytical Hessians of the objective function and constraints are used.,
provided that the functions are sufficiently smooth, ,r V is positive definite, A
has full rank, and ? >0. This last condition also ensures that ultimately solving the
IQP and the EQP are the same, so the only difference between our method and
Wilson’s in the limit is the fact that we use the first-order multiplier estimates at the
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new point (instead of the multipliers of the old QP) to define W. It is shown by
Fletcher (1974) that using the first-order multiplier estimates does not inhibit the
quadratic convergence of a projected Lagrangian method.

Using finite difference approximations to the Hessian or projected Hessian is well
known to have essentially the same final rate of convergence (to machine precision) as
using analytical Hessians. An R-superlinear rate of convergence for a projected
Lagrangian method using a particular quasi-Newton approximation to the full matrix
W has been shown by Powell (1977). All of the above convergence results assume that
in a neighborhood of the solution, the steplength is always one.

14. Computational results. In this section we illustrate the usefulness of the
algorithm by presenting some numerical results for the case where finite difference
approximations to the Hessian of the Lagrangian function are used. Six problems are
selected from the literature. The definitions of the functions (f,.(x)} and the starting
points used may be found in the individual references listed in Table 1, and all of the
definitions appear together in Murray and Overton (1979b). Not all of the problems
were originally posed as minimax problems (for example some of them defined least
squares problems). The first four problems are treated as type lP and the last two as
type MMP.

The results are summarized in Table 3. The termination conditions required were
that Ildl[ 2 < 10-6, IlZTen+ 1]12 ( 10-6, zTwz numerically positive semidefinite and c
_>-0. The line search accuracy parameter ,/was set to 0.9 (see Murray and Overton
(1979a) for the definition of this parameter). Several other choices of r/were tried, but
,/=0.9 was the most efficient, indicating as expected that a slack line search is
desirable at least on these problems. The machine used was an IBM 370/168 in
double precision, i.e., with 16 decimal digits of accuracy. The column headed NI
reports the number of iterations required, which is also the number of times the
Hessian was approximated. The column headed NF gives the number of function
evaluations (not including gradient evaluations for the Hessian approximation).

The results demonstrate that at least on a limited set of test problems the
algorithm fulfills some of its promise. Final quadratic convergence was observed in all
cases. The algorithm has been tested on a wider set of problems and results obtained
for a variety of choices of the optional parameters. It was clear from these more
extensive results that more work needs to be done in developing the active set
selection strategy. These results must therefore be regarded as preliminary.

15. Concluding remarks. It should be clear by now how our algorithm is related
to the projected Lagrangian algorithms which have been proposed to solve NCP.
Wilson (1963), Robinson (1974), Han (1977a) and Powell (1977) all solve successive
inequality constrained QP’s, so in that sense they are more closely related to the
method of Han (1977b), (1978a) than to our method. Murray (1969a), (1969b), Wright
(1976) and Murray and Wright (1978) solve successive equality-constrained QP’s.
However, their methods differ from the others and from ours in the sense that they do
not attempt to step to the active constraint boundaries at every step but control how
far outside or inside the feasible region the iterates stay by means of penalty and
barrier parameters. This type of approach has proved to be very successful for solving
NCP because it balances the reduction of the objective function with the reduction of
the constraint violation in a satisfactory way. However, this approach is quite
unnecessary for solving MMP since it is always trivial to obtain a feasible point for
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EMP. To put it another way, reducing the minimax function in the line search always
results in a step towards the constraint boundaries, although we do not usually wish to
step exactly to the boundaries by doing an exact line search.

Linearly constrained minimax problems can be handled by the algorithm we
have presented, since the constraints can be included in the QP at each iteration.
However, nonlinear constraints cannot be handled by the algorithm for MMP in a
straightforward way. As soon as nonlinear constraints are introduced the natural
merit function is lost and the problem takes on the complexity of the general
nonlinear programming problem NCP. Of course nonlinear constraints can still be
handled by nonlinear programming methods, but it is important to recognize the
increase in difficulty. Clearly the best approach would be one which takes advantage
of the minimax structure and introduces an artificial merit function dealing with the
genuine nonlinear constraints and not with those of EMP.
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Abstract. A new technique for numerically solving the reduced wave equation on exterior domains is
presented. The method is basically a relaxation scheme which exploits the limiting amplitude principle. A
modified boundary condition at "infinity" is also given. The technique is tested on several model problems:
the scattering of a plane wave off a metal cylinder, a metal strip, a Helmholtz resonator, an inhomogeneous
cylinder (lens), and a nonlinear plasma column. The results are in good qualitative agreement with
previously calculated values. In particular, the numerical solutions exhibit the correct refractive and
diffractive effects at moderate frequencies.

Key words, exterior domains, difference equations, Helmholtz equations, Helmholtz resonator, inhomo-
geneous media, lens, numerical solutions, numerical boundary condition at infinity, relaxation scheme,
scattering

1. Introduction. It is well known for dissipative linear ordinary differential
equations with a forcing term of period that the transients die out and the solution
tends, as t-, to solutions of period ). The same is true of many hyperbolic
equations. In particular, solutions of the wave equation in infinite domains with
appropriate boundary conditions and with the forcing term fei’t tend, for large times,
to solutions of the Helmholtz equation Au+o2u=f. This is known as the limiting
amplitude principle [10].

The purpose of this paper is to show that a varied form of a limiting amplitude
principle can be used to solve numerically, in a short time and for a rather wide
variety of geometries, the Helmholtz equation in the exterior of an obstacle with a
variable index of refraction. Furthermore, this can be done at such high frequencies
that a great deal of geometric optical behavior can be confirmed even on a relatively
coarse mesh.

The Helmholtz equation with variable index of refraction is

(1.0) Au+w2nu=O,

where the index of refraction is a function of the space variables (x). We also
consider situations where n=n(x, ul), which corresponds to certain models of laser
beam propagation. At large distances we assume n constant which may be scaled to
1. Then the parameter w has the dimension of [Length] -1 and the appropriate
dimensionless constant is wa where a is a characteristic length of the scatterer. It may
range from zero to infinity.
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N00014-76-C-0439. The U.S. Government’s right to retain a nonexclusive royalty-free license in and to the
copyright covering this paper, for governmental purposes, is acknowledged.
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The field u is given as a plane wave eix and its scattered field us,

(1.1) u=ei’x+us.
However, the source could equally well be located at a finite point in the plane. The
scattered field satisfies the outward radiation condition

(1.2)
OU U

-r wu + r --- O
This problem may be studied using geometrical optics for high frequency and

expansion in 0 for low frequency. Our original objective was to deal with the range of
frequency where neither of these approximations is good. We found, in addition,
however, that many of the features of geometrical optics emerge from the computa-
tions at moderate frequencies. Primarily, though, we are concerned with perturbations
in the index of refraction or with disturbing objects where the characteristic length is
not large compared to the wavelength.

A wave at frequency w has the wavelength 2rr/w and theoretically, for geometri-
cal optics, one needs 2rr/w<<a. Our observations confirm that in many applications
wa=5 or 10 displays the significant features of geometrical optics and diffraction
theory.

In this paper, we restrict ourselves to two-dimensional examples. In a second
paper, we plan to demonstrate results in axisymmetric and possibly three-dimensional
geometries. A particular advantage in 2D is that every simply-connected object can be
studied by noting that it can be mapped conformally onto the exterior of a circle and
the transformation induces a new Helmholtz equation for the solution with a new
index of refraction. In fact, however, we have also computed objects that are not
simply connected but have rectangular boundaries in polar coordinates.

The principal results of interest are:
(i) Confirmation of the scattering cross-section for a cylinder of radius one with

Dirichlet boundary condition. Results are compared with those presented by Bow-
man, Senior and Uslenghi [1]. The error is less than 1(10)% at the frequency to= 5(10).
The computations also show that the position of the shadow edge, as given by
geometrical optics, is within one or two mesh points.

(ii) The diffraction by an infinite strip of halfwidth 2 at various angles to an
incident plane wave. There is good correlation with [1] particularly at low frequencies
and at an angle of 45 and with geometrical optics [1].

(iii) The computations of the field including the cross-section of a Helmholtz
resonator of radius with various apertures and for plane waves at various angles of
incidence.

(iv) The refraction of a plane wave by a lens of either constant or variable index
of refraction. In particular, we include lenses that produce focusing and caustics such
as the Luneberg lens.

(v) The refraction by a model of an overdense plasma.
The method of computation is a modification of the relaxation method used in

[2] and is described in 2. To reduce the number of mesh points involved, a modified
radiation condition corresponding to (1.2) is imposed at a finite radius (see 3). The
difference scheme and how to deal with the artificial singularity at the origin created
by using polar coordinates is described in 4. In 5, we describe in detail the
particular examples computed. In each case we give the running times or the CDC
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6600 required to achieve convergence. The effects of applying the modified radiation
condition at different distances are also discussed.

In 6, we discuss the limitations of this kind of iterative method and other
possible applications.

2. The iteration method. We consider a time-dependent equation

(2.1) (O lT] ) AlQ+ n oo2,
where Q is a first-order operator in the space variables, Q 2a. V + b. The coefficient
vector a and the scalar b are chosen so that the solutions of (2.1) of the form plane
wave or source plus outgoing scattered wave will approach a time-independent state.
This will be the desired solution.

This method was used in [2]. However, (2.1) was used directly, i.e., in characteris-
tic form. Data were given on a characteristic surface. The convergence was therefore
very slow because a very small time step was required for stability with the space
differences used.

In the present method, we transform (2.1) to a Cauchy problem by a change of
variables given by

(2.2) dt’=dt+a.dx, dx’=dx.

We obtain in the new variables

(2.3)
where we have dropped the primes. We now solve an initial value problem which by
our choice of a and b will converge to the steady state. For example, the convergence
has been improved by more than an order of magnitude in the case

x
(2.4) a=

ix
b 2ito+V a.

In two dimensions, with a, b given by (2.4), we introduce in (2.3) the change of
variable

lreit
(2.5) U’- eix +

with Ix r. Equation (2.3) reduces in polar coordinates to

1] +2(n-- 1)l’+02Vr (n-- 1)eia’x-t(2.6) Wtt Wrr +r-[ Wee +
which for n= is the wave equation. However, in general, it has fixed characteristics
that are independent of n. Thus, if n 1, we are using the standard limiting amplitude
principle, but since in some of our examples n changes dramatically it is a great
advantage that the characteristics are fixed. For nv 1, we are solving a wave equation
with potential.

From [2] we have the growth restriction to obtain decay,

(2.7) --- r(n- 1)] > 0.

If this condition is not satisfied, we are dealing with a potential which has bound
states that give rise to exponentially growing solutions of (2.6). This showed up
numerically in a very dramatic fashion when we tried lenses with n > 1. The inequality
(2.7) was proved by J. Weidmann [4] as a necessary condition to prevent these
growing modes.
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In order to handle this situation, we note that instead of (2.6) we could use

1] +(n 1)2l+2Vr (n- 1)ei(x-t)(2.8) nlWtt Wrr -[-r-2[ Woo +- 2

where n +n2 =n+ 1. If the limiting amplitude principle holds, i.e., the potential
(n2 1)w2 does not give rise to growing modes and n >0, then the solutions of (2.8)
also approach a time-harmonic steady state and the space-dependent coefficient
satisfies the desired Helmholtz equation.

If we make n > in such a way that [r(n 2 1)], >= 0, then (2.8) can be used for
the iteration. This worked for cases with n =n>_- 1, n2 and n <__ 4 inside a circle.
Note that the Courant-Friedrichs-Lewy condition for the time step continues to be
satisfied over n > if it holds for n 1. On the other hand, if there are trapped rays
produced by the artificial index n, then the approach to steady state may be
exceedingly slow as the higher frequencies have poorer exponential decay.

3. Improving the radiation condition and finding the scattering cross-section.
Returning to the original radiation condition (1.2), we note that if a solution satisfies
the radiation condition, then by using the fundamental solution representation for the
reduced wave equation, we have with u W,-<N- /2ei" the expansion

(3.1) W= Y Ajr-J,
j=0

in any number of dimensions. Here Aj is a function of 0 and the angular variables.
The differential equation for W at large distances is

(3.2) 2iW W 1_LW,
where L is a differential operator acting on the angular variables (the Laplace-Beltrami
operator). We have rescaled r so that 0= 1. On substituting the expansion for W, we
find the recursion formula

(3.3) An+l=fi(n+l,L)An, n>-_O,

where P(~n + 1, L) 5’i(n+ 1)-l{L+n(n+l)}. Note that /(1, L)=-(i/2)L. Next
we set

P(n, L)= ]-I if(j, L), P(O, L)= 1,
j-’l

and obtain

(3.4) W= P(n L)r -hAo, Wr=-P(n L)nr -1A0,
0 0

which we invert to find

and thus

Ao=- ne(n,L)r -"-l

(3.5) Wrr=-- n(n+l)P(n,L)r -"- nP(n,L)r -n- Wr.

The boundary condition on W is then found by substituting in the differential



HELMHOLTZ EQUATION FOR EXTERIOR PROBLEMS" I 375

equation (3.2),

(3.6) 2iW
r2
LW+ 2P(1, L)+ n(n+ 1)P(n, L)r -"+t

1. n---2

P(1, L)+ Y nP(n, L)r -’+l Wr,
n----2

and solving for W, as a function of LW.
We simply expand the formula in powers of r, but it may be better to use the

approach of Engquist and Majda [5] and use other representations of the operators.
What is needed is a good representation of Yn2nP(n, L)r -+. The first approxima-
tion is W, =0, and from (3.6) the next approximation is

(3.7) (2i- 2 )W LW0(1.-4)
1. I. 2

Note that as o, LW---o in general, and there are problems of co,nvergence.
In transforming to the Cauchy problem, the derivative W---W + W and the

right-hand side is unchanged. Thus, the radiation condition which we used was

(3.8) +
LW

2or2(i- 1/or)
where, for the two-dimensional problem, L--- 02/002 -I-.l

To obtain the far field, that is the scattering cross-section A0, we invert (3.4) and
obtain

(3.9) A0= [1-P(1,c0r_.L)]W,
which is accurate to 0(1/o2r2); see also [3].

4. The difference scheme. To solve the time-dependent differential equation (2.7)
imposing the far field condition (3.9), we have used a standard backward difference
scheme for the initial value problem of a second-order hyperboli.c equation with
second-order accuracy. Let the solution to the difference scheme be W(j, m, n), where
(j, m, n) are evaluated on a grid

(4.1) r=jAr+ro, O=mAO, t=nAt,

with
0<j<N,= 0<m<M.=

Thert for an interior point,

(4.2) W(j, m, n+ 1)-- T(j+__ 1, j, m+__ 1, m, n, n- 1)
is determined from the values of W at (j_+ 1, m+ 1, n),(j, m, n),(j, m, n- 1). On the
outer boundary r= NAt+ ro we use the differenced form of (3.8),

(4.3) 2At ( ff/’(N, m, n+ 1)- I(N, m, n- 1))

+ -r{ ITV(N+ 1,m,n)-lTV(N 1,m,n)}=S(M,m,n),
where S(N, m, n) denotes the difference approximation for the right-hand side,
centered differences being used in L. The value of W at j-N+ 1, m, n has to be
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eliminated by using the difference equation (4.2), and thus one obtains

(4.4) W(N, m, n+ 1)=B(N, m, m_+ l, n, n- 1).
It still remains to apply the Dirichlet condition if there is a disturbing object, or

to deal with the singularity at the origin which is artificially created by the use of
polar coordinates.

(a) To apply the Dirichlet condition (u=0) we simply use the given values from
1=- Vr exp[i(x-t)] at the mesh pointj=0 for a circle or at any other boundary
point. To simplify the computation, we have only boundaries consisting of sections
0 constant or r constant.

(b) To deal with the origin, we note two difficulties. First the Courant-Friedrichs-
Lewy condition limits the smallest radius; i.e., we must have rAO> At for all points in

Eft/.. However, wethe computation. Secondly, there is a singularity from the term r

do have ffzVr. Our approach is to keep doubling the mesh size A0 as r--0. Thus, in
these problems for r<_-r0, we use the mesh

(4.5) r=j’Ar, O=ms(j’), t=nAt,

where s(j’) is chosen so that rAO=j’Ars(j’)> At and so that for each j’ where the
mesh size s(j’) changes, the 0-mesh is half as dense as before. The behavior of the
equation at the origin itself has to be taken into account. Various integral forms of
the equation could be used, but it is sufficiently effective to use the equation for U at
r=0 using for A the values of = ff’/Vr at 0=0, _+r/2, r and r=2Ar. By the
standard difference formula along with tb(n) for the value of U at r=0 and time
t=nAt, this yields, for the symmetric case,

((I)(n + 1)-2(I)(n)+ (I)(n--1))

1(2, rn, n)+ 21(2, rn, n)+ 1(2, rn, n)--4(n)
(2Ar)/

+ t2n(0)O(n) + t2(n(0) 1)e --tnAt.
Here rn, m2, m3 correspond to 0=0, r/2, rr. Note n(0) refers to the value of the index
of refraction at the origin.~In the nonsymmetric case, there is a similar formula.

Finally we obtain W(1, m,n+l) by interpolating the values of ("+) and
1(2, m, n+ 1)/2/r to obtain 1(1, m, n+ 1)/V’Ar. The error is O(Ar2) but turns
out to be larger than in the rest of the computation.

In.closing this section, we shall describe our numerical method for determining
when W has reached its time harmonic steady state. Recall that the scattered field, us,

is given by

The bracketed term must approach Weir as t. Thus, for large time, 111 becomes
independent of t. We terminate our computations when

(4.6) max IIl(n+lij)l-II(n,i J)ll<e,
O<__i<N

for some prescribed e > 0.
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5. Results for model problems.
(i) The metal cylinder. This is a benchmark problem to test the method.

Solutions have been determined by separation of variables, integral equations and
geometrical optics (see [1] for a fairly comprehensive bibliography). In [1], the "scaled

cross-section" (X/r/2)S(0) is presented graphically for various frequencies. Here,
S(0) is the amplitude of the outgoing cylindrical wave and 0 is the polar angle, with
O=r the direction of the incident plane wave. These results were carefully converted
to tabular form for the case 0a 5. They are shown in column C of Table 1, while the
results of our present calculation are listed in column B. The agreement is excellent.
The relevant parameters used in the computation are oa=5, At=0.1, AO=r/40,
At=0.05, and e=0.01.

For the sake of comparison, the results of [2] are listed in Column A. The gain
over our old method is in the running time, which is now approximately minute on
the CDC 6600. The old calculations took roughly 15 minutes on the same machine.
Both methods used the same amount of core, 138K.

The effect of applying the modified radiation condition (3.8) at various distances
to gain in mesh refinement was done by increasing the radius of the cylinder and
applying (3.8) at a fixed radius. The relevant parameter is toa, where a is the radius of
the object [see Table 1, columns D-F]. This does not, of course, refine the 0-mesh.

Since our numerical method gives the total field at each grid point, the cross-
sections given in Table represent a small fraction of the generated information.
Instead of just listing these numbers, an alternate method was devised to visually
convey the results. First, the polar output was converted into a rectangular grid of
numbers using straightforward interpolation. (This unfortunately introduces errors
which tend to smear out the optical features that will be described shortly.) Then
seven weights of shade were used, with the darkest color corresponding to the smallest
total field while the lightest gives the largest field. The amplitude ranges are (0,2),
(2, 6), (6, 8), (8, 10), (10, 14), (14, 17) and (17, ). This process gives the interference
pattern shown in Fig. when a= 10. The light regions correspond to constructive
interference, the dark ones to destructive. Since the incident wave enters from
x=- (O=r or from the left of the figure), the total field is symmetric about the
x-axis and only half the pattern is shown in Fig. 1. The dark semicircle is the metal
cylinder. The wave patterns are readily seen in this picture. Moreover, the shadow
cast by the cylinder is quite apparent. The width of the transition region which
connects the deep shadow and the illuminated portions of the plane is exaggerated by
the interpolation process mentioned above.

(ii) Infinite strip. (Dirichlet case). The diffraction by an infinite strip of half-
width 2, {x=O, ly[<= 2} was computed at the frequency 5, 6oa= 10 at the angles of
attack a=90 (head-on), 45 and 90 (on edge). Here a is the angle between the
incident plane wave and the positive x-axis. The wave again is approaching from
O=r. The mesh size is r/20 in 0 and 0.1 in r. A variable mesh was used near the
origin.

Since the interference pattern in the x, y coordinates is smeared by interpolation
in this and in other cases with sharp boundaries, it is omitted here. However, the
results for a=O are presented in polar form in Fig. 2. The numbers printed at the
mesh points are ten times the total field. Thus, the dark regions now correspond to
constructive interference, the light to destructive. In this picture, one sees the shadow
at 0, 2r, the standing wave in the illuminated region along O=r, the singular corners
at 0=r/2, 3:/2 and the shadow boundaries ony= +_2=rsinO.
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TABLE
Columns A-F present the cross-section (ra/2)l/2s(o), for a metal cylinder with

[usl.-..S(O)/Vr At--0.05, and A0=r/40. Column A contains the results given in [2],
B presents a tabulated version of the data given graphically in [1 ], and columns C-F
contain the results of our new calculations.

o()

0
9
18
27
36
45
54
63
72
81
90
108
126
144
162
180

5.67
5.30
3.78
2.10
1.81
2.00
1.89
1.74
1.79
1.86
1.86
1.93
1.97
1.99
1.99
2.00

B

6.05
5.25
3.30
1.75
1.75
1.95
1.75
1.68
1.75
1.80
1.82
1.88
1.92
1.93
1.94
1.95

6.05
5.29
3.34
1.70
1.77
1.99
1.81
1.73
1.80
1.83
1.82
1.86
1.89
1.91
1.93
1.96

11.33
6.63
2.11
3.21
2.50
2.61
2.54
2.55
2.56
2.56
2.56
2.57
2.55
2.55
2.59
2.55

10.84
7.20
3.72
3.87
3.55
3.41
3.32
3.23
3.18
3.10
3.04
2.88
2.79
2.76
2.75
2.76

12.49
10.15
11.15
13.50
14.71
15.04
14.97
14.74
14.41
13.91
13.12
10.60
7.51
5.02
3.97
3.88
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To save space, we have not included the polar output for the cases a=45 and
90. Rather a few words describing these results will be offered instead. A turn
through 45(=a) destroys the symmetry and slightly distorts the waves in the
illuminated region. The shadow is shifted 45. When the wave attacks the strip on
edge (a=90) there is no shadow. However, in the forward scattered direction the
total field is cut in half as it should be; see [6]. The field is again symmetric.

The cross-sections are presented in Table 2. They check well at 45 and
qualitatively at 0 with those given in [1]. The deviation between our results and those
given by [1] is probably due to the fact that the derivatives of the field become
singular at the strip’s edges. The coarseness of our mesh masks this problem.

The running time and core requirement for this problem were roughly the same
as those needed for the metal cylinder problem.

(iii) The Helmholtz resonator. A cylindrical Helmholtz resonator was placed in a
plane wave at different angles of attack. The resonator is an infinitely thin cylinder of
radius two with a strip aperture centered on the negative x-axis. The angle fl which
subtends the aperture was taken at different sizes. When fl--0 the resonator is a metal
cylinder which was used for comparison. (The frequency was fixed at five.) The
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TABLE 2
Columns A-D present the cross-section (,r6o/2)1/2S(0), for a metal strip with

[usl,S(O)/Vr, At=0.05, Ar=0.1, and AO=rr/20. Columns A and D present
tabulated versions of data given graphically in [1 ]. Columns B and C contain results of
our new calculations. Theparameter x is the angle between the incident plane wave and
the normal to the strip" 2a L is the length of the strip.

A

0() a=45 10

-90 .89
81 .89
72 .89

-63 .89
54 .89

-45 1.20
36 .90
27 1.20
18 1.20
9 1.20
0 1.50
9 1.66
18 1.80
27 2.10
36 5.96
45 7.20
54 5.37
63 2.98
72 1.49
81 1.05
90 .70

B C D

m45, 10 x----0 10 -,,0 10

.41

.85

.19
1.31
1.72
1.62
1.60
1.64
1.52
1.49
1.88
1.71
2.08
2.40
5.40
7.30
5.61
2.50
1.30
1.05
.68

.32

.96

.09
1.0
1.9
2.6
2.8
3.3
3.6
6.2
8.1
6.2
3.6
3.3
2.8
2.6
1.9
1.0
.09
.96
.32

.00

.00

.00

.83
1.8
1.5
.9

2.6
0.0
7.0
9.9
7.0
0.0
2.6
.9

1.5
1.8
.83
.00
.00

0.0

cross-sections are shown in Table 3, where c is again the angle between the incident
plane wave and the positive x-axis. The other relevant parameters are At=0.05,
Ar=0.1 and A0= rr/20. There are no data for comparison. In iterating on the closed
resonator, the method generated some eigenmodes in the interior. These exist as
slowly damped modes as the aperture opens.

At an angle of attack of c=0 and an aperture of 36, the exterior field is very
similar to that generated by a metal cylinder. The interior field contains a consider-
able amount of energy. The amplitudes focus on the axis in two places. The strongest
(maximum amplitude 5) at x=-0.5 is a portion of caustic caused by the second
reflections off the interior. The weaker focus (maximum amplitude 3) at x= +0.5
probably corresponds to the peak of a nephroid-like caustic formed by the first
reflections. The difference in strength is probably due to constructive interference.

When the wave strikes the resonator from directly behind (angle of attack 180),
it acts like a metal cylinder. The only energy inside is diffractive and weak.

At an aperture of 180 and an angle of attack of 0 there should be a
nephroid-like caustic, but the edge diffraction obliterates this feature. There is marked
focusing as expected, for -2 <x<= -1. The shadow is not so sharp as with a metal
cylinder. The aperture edges act like slits and smear the geometrical effects.

The core requirements for these problems were the same as those needed for the
various metal cylinders. However, the running time depends upon the aperture size
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TABLE 3
Columns A-C present the cross-section (ro/2)1/2S(0), for various Helmholtz

resonators with us S(0)/Vr, A 0.05, A0 r/20, and Ar 0.1. Theparameter
is the angle between the incident plane wave and the positive x-axis while fl is the
aperture angle of the resonator. The parameter oa--10, where a--radius of the
resonator.

0()

0
9
18
27
36
45
54
63
72
81
90
99
108
117
126
135
144
153
162
171
180

8.86
6.81
4.10
4.11
3.99
4.06
4.01
4.01
3.97
3.86
3.71
3.53
3.42
3.50
3.72
3.83
3.66
3.28
2.48
1.10
1.36

180

2.70
2.71
2.73
2.75
2.79
2.85
2.96
3.11
3.30
3.50
3.70
3.85
3.99
3.95
4.15
3.83
4.25
3.87
3.77
7.60
8.48

C

fl- 180, 00

8.55
6.83
4.11
4.01
3.73
3.39
2.58
1.38
.84

1.39
1.09
1.86
2.15
3.12
3.73
2.85
3.55
5.55
3.78
2.99
5.32

which determines the complex eigenfrequencies of the resonator. Several eigenfre-
quencies for various resonators are computed numerically and presented in [7]. For an
aperture of 36 and 800 iterations, we could satisfy (4.6) only for e>= 0.1. However,
when the aperture was 180 we could satisfy (4.6) with e= 0.05 at 400 iterations. These
two numerical examples show how the iteration scheme depends upon the eigen-
frequency with the smallest imaginary part. In the first case, the imaginary part is
roughly 0.015 while in the second case, it is about 0.3. If we assume that the transients
decay like exp(-0.015t) in the first situation, then t-200 would make this factor
O(1/100). Thus, for At 0.05 (the number used in our program) we would need in the
neighborhood of 5000 iterations to obtain convergence. The same crude argument
shows that about 310 iterations are needed when the aperture is 180.

All of these problems could be solved with the addition of a variable index of
refraction depending on all variables including the amplitude of the total field
provided the focusing effects are weak.

(iv) Lens with variable index of refraction. For a lens of constant index of
refraction less than 1, we used (2.6), i.e., (2.8) with n 1, n 2 =n. There are no
particular difficulties and the fields are qualitatively correct. The basic lens was of
radius 3 and the frequency to<= 5 so that the relevant parameter toa= 15. For constant
n less than in the lens there is rapid convergence and typical lens patterns emerge. In
Fig. 3, the interference pattern (in the x,y-plane) is shown for a lens with a= 1, to 5,
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and n=0.4. For <=n < 2, there are focusing effects; e.g., when n=2 the maximum
amplitude is 2.6 and occurs on the axis 0=0. The full limiting amplitude principle
with n n and n2 works well for these cases. However, n =n cannot be taken too
large. A rescaling of time in (2.8) would introduce a large effective frequency into the
exponential term. This would generate a large truncation error for a fixed At and
cause numerical instabilities. Numerical experiments confirmed this observation for

n =n>= 8 and At=0.05. On the other hand, taking n 1, rt 2 =n brings immediate
instability into the computation.

More interesting effects occur if n=n(r) or n=n(r, 0). For example, geometrical
optics predicts [8] that for n=r2/9, r<= 3, n= 1, r>__ 3 that there will be focusing at
(3, r/2). At 0= 5, we obtained an amplification of 2.5 in the total field at that point.
Also there is a geometrical shadow on 0=r/2. This shadow (for a finite w) is not
sharp because a single ray on 0=0, 0=r passes through it.

A second case is a Luneberg lens with n=2-r2/9 for r<__ 3, n--1 for r>__ 3 that
focused at (3, 0) with a magnitude of 3. This point is a focus for the geometrical optics
rays.

The general case n=n(r,O) was tried with n=(r2 -r)/(9-ro2) for r__< 3, n=
for r>3, where ro=2-O.5cos2(O/2). The particular effects are not of interest.
Obviously the oscillations in n cannot be too large without destroying accuracy. What
is important is that this problem cannot be solved by separation of variables.
Geometrical optics is complicated and an integral method would involve inverting a
kernel in four variables. No difficulties are encountered here. There is some increase
in memory since n depends on two variables. The running time was again about a
minute. Condition (4.6) was satisfied for e= .01 with w= 5, a= 3.

(v) A model of an overdense plasma. An overdense plasma column can be
modeled by an index of refraction which becomes negative, such as the example used,
n=(r2 -4)/5 for r< 3, n= for r>_- 3. Geometrical optics predicts [9] a caustic on the
ellipse x2/4 +y2/9 1.

Fig. 4 shows the calculated field in polar coordinates with 0= 5, a--2, At=0.05,
Ar=0.1, and A0=r/40. Recalling that the larger (hence darker) numbers correspond

FIo 3. The interference pattern produced by the total field’s amplitude, U l, for a dielectric lens with n-0.4.
The relevant parameters are ta 15, Ar 0.1, A0 r/20, and A 0.05.
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FIG 4. The totalfieM’s ampfitude, U 1, in polar coordinatesfor an overdenseplasma column. The incident wave
was normalized to 10. The heavy curve represents the caustic x2/4+y2/9= 1, when r<= 3 and the geometric
shadow y=3 when r>= 3. The relevant parameters are oa= 15, At=0.1, A0= r/40, and At=0.05.
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FzG 5. Same physical problem and relevant parameters as Fig. 4. However, this is now the interference pattern
in x-y coordinates with the light regions corresponding to constructive interference, the dark to destructive.
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to constructive interference, note that for r/2<__0<=r the heavy curve (ellipse) lies very
close to the edge of the constructive interference. The rest of the shadow is cast by
the caustic along the line y=rsinO=3 (remaining portion of the heavy curve for
r>= 3, 0<-_r/2). Fig. 5 shows the x-y plot of the interference pattern where the lighter
regions now correspond to constructive interference. The amplitude ranges for the
various shades are again (0, 2), (2, 6), (6, 8), (8, 10), (10, 14), (14, 17), and (17, o).
Unfortunately, the interpolation required for the rectangular output smears out the
caustic.

6. Conclusions. There are four obvious dimensionless parameters in the com-
puted problem, 0Ar, torAO, oa and 0r0, where a is a relevant length and r0 is the value
of r where the radiation condition is imposed. The square of the first two enters the
errors produced by the second-order difference scheme and in most of our calcula-
tions was approximately 0.2. The third measures the relevance of geometrical optics
and ranged up to 15. The last one, usually about 50, arises from an expansion at o
for fixed 0. The error terms are of order (0r0) -3 but the coefficients are singular as

In many of the problems, there were discontinuities, infinitely thin objects or
discontinuities in the index of refraction. These induce discontinuities in the second
derivatives of the time-dependent solution and in the steady state. In spite of this
source of inaccuracy, there was remarkable agreement with known results and there is
probably some cancellation of error.

The method could be applied to higher dimensional phenomena where the
reflecting object as well as variable index of refraction are not amenable to solution
by integral equations. Since the problem is solved by a very straightforward difference
scheme, it should be easily effected by vector computation. Other problems where
variations of the limiting amplitude principle could be used involve Maxwell’s
equations, and wave propagation in water.

Finally, the method has been modified slightly and applied to the interesting and
important case of a nonlinear medium [12]. In that report

where no is the index of refraction used in our overdense plasma model and y is a
constant which controls the strength of the nonlinearity. The results were excellent;
the effects of refraction and self-focusing could be discerned and controlled by
varying 7. In particular, self-focusing amplifies the fields near the origin as was first
observed by F. Tappert [unpublished results].

Acknowledgments. The authors are grateful to F. Tappert for much advice and
many suggestions. The work of A. Bayliss and E. Turkel [3] on similar problems with
obstacles treats the radiation condition using the same ideas. Turkel pointed out to
the authors that the modified radiation condition is well-posed in the sense of
Kreiss-Lobatchinskii 11 ].

Note added in proof. The authors have learned of the work of Taflove and Brodwin
[13], [14], who used the direct form of the limiting amplitude principle to study certain
electromagnetic scattering problems.
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A NUMERICAL METHOD FOR CONFORMAL MAPPINGS*
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Abstract. A numerical technique is presented for calculating the Taylor coefficients of the analytic
function which maps the unit circle onto a region bounded by any smooth simply connected curve. The

method involves a quadratically convergent outer iteration and a super-linearly convergent inner iteration.
If N complex points are distributed equidistantly around the periphery of the unit circle, their images on the
edge of the mapped region, together with approximations for the N/2 first Taylor coefficients, are obtained
in O(Nlog N) operations. A calculation of time-dependent waves on deep water is discussed as an example
of the potential applications of the method.

Key words, conformal mapping, Fast Fourier transform, conjugate gradients, water waves

1. Introduction. A large number of numerical methods have been proposed for
calculating approximations to the unique mapping which is described in the Riemann
mapping theorem. We will consider the problem of finding the leading Taylor
coefficients in a mapping from the unit circle to a given simply connected domain
bounded by a smooth curve J.

A book by Gaier [3] gives detailed descriptions of the methods known in 1964.
The introduction of the Fast Fourier Transform algorithm (FFT) shortly afterwards
(Cooley and Tukey [2], 1965) made possible dramatic increases in the efficiency of
some of these methods (Henrici [7]). The most important of the currently used
methods seem to be different approximations of Theodorsen’s integral equation
(Henrici [7], Gutknecht [4], [5]), Symm’s method (Symm [10], Henrici [7], Hayes et al.
[6]), a method based on numerical solution of the Cauchy-Riemann equations in
conjunction with optimization techniques (Chakravarthy and Anderson [1]) and a
method based on some new integral equations (Menikoff and Zemack [9]). Theodor-
sen’s method is limited to regions which have single-valued representations in polar
coordinates. For almost all such regions, good performance also requires estimates for
certain relaxation parameters. The position of the N points on a fixed curve J, which
correspond to the N roots of unity in the mapping from the unit circle, can be found
in O(Nlog N) operations. However, the proportionality constant depends strongly on
the shape of J. Symm’s method has a similar operation count for simple regions, but
in addition, allows general regions with an increase in operation count to O(N3)
(Hayes et al. [6]). The method of Chakravarthy and Anderson [1] requires O(N3)
operations if a Newton optimization technique is used, but may go somewhat faster
with an alternative conjugate gradient procedure. The method by Menikoff and
Zemach also costs O(N3) operations, but it allows an arbitrary distribution of the
computational points on the boundary.

Most of the methods address the problem of finding a mapping to or from a unit
circle. They establish first the mapping of the boundaries. From this follows then the
complete mapping function. The method we will present produces approximations to
the Taylor coefficients in the mapping from the unit circle onto the given region at the
same time as it finds the boundary correspondence. For this reason, we will describe it
as a method to map the unit circle onto a given region rather than a method for the

*Received by the editors January 24, 1980. This research was supported by Control Data Corporation
and by the U.S. Department of Energy Office of Basic Energy Sciences.

tDepartment of Applied Mathematics, California Institute of Technology, Pasadena, California 91125.
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inverse mapping. The method has an operation count of O(Nlog N) for the general
case, i.e., without any restrictions on the region to be "near-circular" or "starshaped."
The convergence rate appears to be only weakly affected by the complexity of the
region and no parameters are required to optimize the performance. Before we
describe the idea of the method, we will briefly illustrate some possible ill-conditioning
of the mapping problem and mention the application in fluid mechanics for which
this method was originally developed.

Fig. illustrates a typical case of mapping from the unit circle to a simple region
(described in the last section as test case with a=.5). It transpires in this case that
more than 8000 Taylor coefficients of the mapping function are needed to obtain the
mapping with a 10-s accuracy. This in turn requires N, the number of points on the
periphery, to exceed 16,000. The density of the mapped points (uniform on the unit
circle) varies by as much as a factor of 400 along different parts of the edge. Very
small changes in the shape of the region will quite dramatically change the position of
some boundary points. It is clear that conformal mapping is an ill-conditioned
problem. One might try to avoid part of this difficulty by looking for a more
economical functional representation of the mapping function than a Taylor series.
Simply moving the origin would help the economy in this case, but would not help in
many others. For example, in cases of fixed shapes like airfoils, initial explicit
transforms can be used to first remove a corner or a cusp. A preliminary sequence of
transformations, for example with square root branch points just outside indentations
in 3", may be useful to make the region closer to a circle. Even with the implementa-
tion of such preliminary steps we must at some stage find the remaining mapping
between a near-circular region and a perfect circle.

Applications of conformal mappings include generation of computational grids
and simplifications of geometries for analytical work (for, example, to find electrical
fields or potential flows around bodies). Which method is most suitable depends on
the application, in particular on the type of geometry (with or without corners,
near-circular shape or not, etc.) and the importance of computational efficiency
(mapping performed only once or performed repeatedly). The mapping method
described in this paper was developed particularly for the calculation of time-
dependent waves on inviscid and irrotational deep water. We consider a periodic
section of deep water, as shown to the left in a complex z x + iy -plane in Fig. 2, and
introduce a velocity potential ,/,(x, y, t) such that ’/’x and @y are the x- and y-velocities

C f(z)

FIG 1. Example of conformal mapping.
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FIG 2. The steps in a conformal mapping of a wavy surface on deep water to a fixed, flat surface.

of the fluid elements. The governing equation is

(1) ( 0232 )+ @=0
3X2 0.),’2

inside the fluid, with two conditions on the free surface. One is

(2) 3@ 2 2-ay- +,;),
(where g is a gravity constant) and the other one expresses the fact that fluid elements
on the surface remain on the surface. Fig. 2 illustrates how, at any step in a numerical
time marching, the wavy surface can be mapped to a flat one, leaving the form of (1)
unchanged. The derivatives G and y, required for a time step, can now be obtained
easily. In one test calculation, a second order modified Euler scheme was used to
advance a uniformly traveling periodic wavetrain five periods in space. The initial
condition was a Stokes’ wave with height over wavelength .09083 (cf. maximal wave
.14107) and a theorectical speed of 1.04155. Fig. 3 shows the solution at time
t= 30.1628 superposed on the initial wave. The very small discrepancy between the
curves at the top of the wave is caused by graphical straight line interpolation between
the 32 poiints used for the spatial discretization.

1.2

0.8

0.6

0.4

0.2

/\

-3. -2. O. 2. 3.
X POSITION

FIG 3. The initial shape of a Stoke s wave compared with the calculated shape andposition after five periods.
(Spatial resolution 32 points.)
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The idea of the mapping method can be described as follows" we introduce N
complex points ’i ordered monotonically along the boundary curve J. The problem is
to find a strategy for moving these points along J so that, through the unique mapping
(which is unknown to us), they will come to correspond to the N roots of unity z on
the unit circle. For each guess of the positions of the points ’i, an analytic function

N/2

E
v---(N/2)+l

is introduced. The coefficients d are obtained from a complex discrete Fourier
transform applied to the numbers ’i. The function ’(z) becomes one particular case of
an analytic function which maps the points z into the points ’ on J. However, this
function ’(z) is in general singular for z =0. This is an unacceptable property of a
mapping function which is required to satisfy ’(0)=0. We will describe a quadrati-
cally convergent strategy to move all the points ’ along the curve J in such a way that
the function ’(z) loses its singularities inside the unit circle and will satisfy ’(0)=0. In
other words, we will make d,=0 for v=0,- 1,- 2, -N/2+ 1. The coefficients d
for v= 1,2,3 N/2 will then approximate the Taylor coefficients of the mapping
function. Each step in this process gives rise to a linear problem which is solved by a
(super-linearly converging) conjugate gradient iteration.

This mapping method has been coded in vectorized Fortran on a CDC STAR- 100
computer (located at the Control Data Corporation Service Center in Arden Hills,
Minnesota). We wish to express our gratitude to Control Data Corporation for
making their STAR-100 computer system available for this work.

2. Description of the outer iteration. The boundary curve J is assumed to be
smooth, simply connected and enclosing the origin in a complex plane. Since J is
smooth, the true mapping function (z) can be represented by a convergent Taylor
series as

(4) (z) c,,z", [z[ =< 1.
v--1

(We denote by ’(z) the approximate mapping function we will determine). One more
condition than (0)=0 (and ’(0)=0) is needed to uniquely determine the mapping.
The condition 0/Oz>0 is often used. We will instead require that ’(1) lies at a
specified point on J. For values of z on the unit circle, i.e., z(O)=e-", 0<0<= 1, (4)
becomes

(5) (Z(0)) E Cve2rivO"

This is called the "boundary correspondence function," a uniquely determined peri-
odic function of 0. We consider now (5) at the 0-values Ok=k/N, k=0, 1,...,N-1,
and suppose that N is even (N a power of 2 is most efficient and will be assumed in
our operation count). We get

N/2
(6) k (Z(0k)) ]

--(U/2) +

where w e2’i/u and

(7) g

N/2
ge2rivk/U Z gvW

(N/2)+

E Cv+jN,
j=O
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defining c =0 for v < O. The error in accepting g as an approximation for c is

(8) g,- c, ,
c,+2v.

j----1

N can now be chosen so large that these errors for v= 1,2,..,N/2 are within our
tolerance.

The discrete Fourier transform in (6) can be inverted

N N,w-k, v k(9) g" -=o 2 2"
Hence, given the positions for the N points ,, we obtain all the coefficients g by
applying one FFT. By choosing N sufficiently large, the values of g, v=-N/2+

,0, become arbitrarily small, and those of g, v= 1,..., N/2 arbitrarily close to the
corresponding c,. This leads us to consider the following approximate analogue of (9):

N-1 N N
’kw-’, V I-(10) d=- k=0 2 2"

Here, the points ’k lie monotonically along J and represent guesses for the numbers
k. We wish to move these points ’k on J in such a way that d, becomes equal to zero
for v-- N/2 + 1,...,0. With N free real parameters, we wish to make N/2 complex
numbers zero. This count of equations and unknowns appears correct, but we have
not yet prescribed a position to one of the points. It will transpire that the N equations
we obtain after linearization will form a system with rank only N-1 (to within
truncation errors).

We move the points ’k in a two-step process. Given the tangential directions
(with [ek[ 1) at the points ’k on J, we can try to move these points in the tangential
directions by distances t/, in such a way that do, d_ 1,..-, d_ v/2+ become_ zero:

N-1 N
(1 l) 0= - k=o

(’" + tke’)w-k"’ v
2

I- 1,...,0.

Afterwards, the points ’, + t,ek are moved back to the curve J. Since J is smooth, the
distance from the curve is O(ti). From this follows the quadratic convergence of this
outer iteration.

By subtracting the vth equation in (11) from the vth equation in (10) we get N/2
complex linear equations for the N real unknowns k"

(12a) 4= N ,=o
tkekw-"’ v= - + ,0,

or, using matrix notation
(12b)

do
d_

d_2 -------.
d_lv/2 +

w w w

w w4 w6

wN/2-1 wN-2 w3N/2--3

wN--I
w2N--2

w(/-XN- )

eoto
etl
e2t2

eN- tN
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Two questions must now be investigated
1. Can the special structure of the coefficient matrix in the linear system (12) be

exploited to give a very fast method of solution?
2. The position of one point, for example ’0, should be arbitrary. How is this

freedom present in (12)? These questions are discussed in the next three sections. A
practical implementation of the method and its performance on some test cases is
described in the final section.

3. Reformulation of the linear system of equations. Collecting the odd- and
even-numbered columns of the matrix in (12b) gives

do

d-2 =
d-N/2+l

w w4 wN-2

w4 w W2N-4 X

w- 2R--4 1422(N)2-1)

eo
e

e4

eN-2

o

t4

tN-2

(13) +

wo

W

w

wN/2-1

W

W4

N-2w

W
4

W
N-2

W W
2N-4

W
2N-4 w2(N)2-1)

or

el

e3

(14) -d= FEoto + - WFEltI.

e5

o,
t/V-eN--

Here, F is the discrete Fourier transform matrix of order N/2. The matrices

1/X/N/2 F, Eo, g and W are all unitary. Multiplication of any vector by any of
these matrices or their inverses will require at most O(Nlog N) operations.

Let us consider the following iteration: Given any real vector t0 c), solve (14) for
the uniquely determined complex vector t c0), remove the imaginary parts from t co)

and then solve (14) for to el) where the imaginary parts that are obtained are again
removed.

The real vector t0 (l) that results from one step of this iteration will depend
linearly on the initial vector t o c0). There must therefore be a relation

(15) t0 (1) =Ato c) +b.
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Straightforward algebra gives now

(16) A RrR, where R Re C,
2 EIFi-iWFEc--

A is symmetric and positive semidefinite and C is a unitary complex matrix. Since
A 2 R [2 < C 2 1, the eigenvalues X of A satisfy

N
(17) 0=< .=< l, i=0,1 - 1.

If there is a real solution to, t of (14), to() to must imply t0(1) =tO in (15). Hence,
to must then satisfy

(18) Gto=b
where G I-A is again positive semidefinite. Once t o has been computed, t follows
from (14). The calculation of to (1) from t0 (), in particular the calculation of b by
starting with to (> -0 in (15), and the multiplication of any real vector by G is
performed in O(Nlog N) operations if N is a power of 2.

We will now further investigate the eigenvalues of G and describe how the
conjugate gradient method can be applied very efficiently to solve a modification of
the system (18).

4. Eigenvalues of the G-matrix. The outer iteration was designed to force to zero
not only the coefficients d_ 1, d-2 d-N/2 +1 but also d0, thereby ensuring ’(0)= 0.
The mapping is still arbitrary with respect to a rotation. In particular, we should be
able to require o =0, where o is the first component of the vector t 0. That means that
the point ’0 is not moved during the mapping process. Imposing o =0 is only
consistent with (18) if G is singular and if b lies in the subspace spanned by the
columns of G except the first one. This was true (to within truncation accuracy) in all
cases we tested. The following examples illustrate this result, and show typical
distributions for the remaining eigenvalues.

Example 1. Mapping of the unit circle onto itself. The points , j =0, N-l,
become equidistantly spaced in this trivial mapping. Omitting a complex factor of unit
magnitude (corresponding to a rotation), the tangential direction at the point is

(19) e2ri/N.

The elements of C become in general

e2n-(20) Cm, - (1 + cotpr)
e2m 2

where p [2(n m) + ]/N. In this case, this simplifies to

(21) Cm, - (- + icotpr).

The elements of the matrix R are

(22) N’
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independently of m and n. The matrix A has one eigenvalue equal to one and all the
others equal to zero. Therefore, the matrix G has one eigenvalue equal to zero and the
others equal to one.

The bottom line in (13) gives in this case

(23) -d_(s/2)+l=(to+ t2+ + tu_2)--(tl + t3+ + tv_ 1).
Since all the are real, the requirement for a solution is that Imd_(v/2)+ =0. This is
satisfied since, in the mapping, all coefficients except the first one are absent. It is
possible to add the same constant to all in (13) and (18). This corresponds to a
rotation of the mapping. Fixing o =0 removes this ambiguity.

Example 2. We consider regions bounded by curves given in the complex plane
’=x+ iy by

(24) fl(x,y, a)=((x-.5)+(y-o))(1-(x-.5):-y)-.l=O.
For a= z, this defines a circle with center at x-.5, y=0. Fig. 4 shows the curves for
some different values of a down to c.2746687749, at which point the region ceases
to be simply connected. Fig. 5 illustrates, for different a, the distribution of the
eigenvalues of G (and of the matrix G which we will introduce below).

In every example we have studied, the eigenvalues of the G show the same
pattern. One eigenvalue is zero to truncation error accuracy and all others lie in a
heavy cluster around X- 1. A few double eigenvalues gradually move toward smaller
values of X as the complexity of the curve increases. Increasing the number of points
N for a fixed a made (to within truncation accuracy) no difference in this picture or in
the positions of the eigenvalues pairs. All additional eigenvalues simply joined the
cluster at X- 1.

-I .0

FIC 4. The curves f(x, y, a)=--((x-.5) +(y-ct)2)(l-(x-.5)2 -y2)-.1--0 for different values of a.
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FIG 5. Eigenvalues of G (virtually independent of N) and of (every second dependent on N) for different
values of a in the test case described in the text.

In the case of extremely low values of N, such as N---4 or N 8, these eigenvalue
properties fail to hold to within truncation accuracy. (In particular, the matrix G is no
longer exactly singular.) This indicates that they are not exact properties of the
discrete systems. These observations suggest that a smooth curve has some kind of
spectrum with the same properties (but with a limit point) and that the discrete
method provides exponentially accurate approximations to it for increasing values of
N. We have not been able to find any theoretical support for these observations.

The previous discussion has suggested that we can require 0-- 0 and also consider
one equation, for example, the first one, redundant. We write, therefore, (18)

(25)

This leaves us to solve

(26)

The matrix G is positive semidefinite with only one eigenvalue equal to zero.
Therefore, G is strictly positive definite, again with a cluster at X 1. In the case in
Example 1, ( has one eigenvalue equal to 1/N and all the others equal to one. Fig. 5
shows the eigenvalues of G corresponding to those of G described earlier in Example
2.

In every case we have studied, we have also noticed the same trend in the
eigenvalues of G. As we mentioned above, G was found to have an eigenvalue l =0,
then double eigenvalues 22,3, 4,5, etc., clustering at , 1. For each double genvalue
of G, ( must have a single eigenvalue and the remaining eigenvalues of G must lie
between the pairs for G. We have noticed that these eigenvalues converge from above
to X =0, to X2, 3, to ?4,5, etc., with a rate which seems to be proportional to 1/N as N
increases.
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5. Practical implementation of the mapping method. Conjugate gradient iterations
are applied to (26) in a straightforward manner (see for example Luenberger [8] for a
description of the method). We simplify the notation of (26) to

(27) Hx b.

The method is initialized by the steps

(28) choose x0

compute r0
set P0

and then iterated for i=0, 1,2

=0,

b- Hxo,

ro

(29) a
piTHPi

Xi + Xi -" a’i,
ri + ri- aiHPi,

rir+ ri +hi

Pi+ ri+ -k bipi.

We stop iterating when the changes in the x are sufficiently small. The level of errors
that we desire to reach depends on the current accuracy in the quadratically conver-
gent outer iteration. The ith approximation in the conjugate gradient method can be
shown to minimize

(30) X X H
2

X xi) rn(x xi)
over all approximations of the form

(31) ximxo- Pi_l(H).O.(x-Xo),
where P_ is any polynomial of degree i-1. This result is very favorable in cases with
eigenvalue distributions like the one in Fig. 5 but with their exact positions unknown.
Complete convergence is assured in the same number of steps as there are distinct
groups of eigenvalues. Convergence to sufficient accuracy may take still fewer steps.

The computational cost of the inner iteration is dominated by the fast Fourier
transforms. Finding d (10) costs one transform over N points, or equivalently two
transforms over N/2 points (denote for simplicity 2 FFTs). Initializing the conjugate
gradient method adds 3 FFTs (to find b) and each iteration costs another 4 FFTs (to
evaluate Hpi ). When the iterations are finished, 2 FFTs are needed to find tl. One
outer iteration with K inner iterations will therefore cost 7 +4K FFTs. In the last
section, we will see that K is usually about six, which means that each outer iteration
typically requires about 30 FFTs (complex transforms over N/2 points).

The mapping method requires information about the boundary curve J in two
connections:

i) To find the tangent directions at each point.
ii) To move a point back to the curve after it has been moved in the tangential

direction.

Any parameter representation of J can be used (for example polar coordinates if the
region is "starshaped", spline representation between discrete points, etc.). For the test
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runs described below, we implemented the method assuming the curve J was given in
the form

(32) f(x,y,a) =0,

with fixed c. (The parameter a allowed us to modify the curve.) Routines were
provided for evaluating f, f, Of/Ox and fy Of/Oy at any point o Xo+ iyo near J. A
unit tangential vector at ’0 on J is obtained as

(33)

and a point ’0 off the curve J can, to within sufficient accuracy, be brought back to
the curve with one step of a quadratically convergent Newton iteration:

(34) d= f

Xl= X0 d.fx
Y =Y0- d-fy.

Tests have to be made to determine the number of outer and inner iterations. The
rules implemented to obtain an automatic code were as follows:

1. Number of outer iterations. Each time an outer iteration is started, a residual
vector is obtained (which later forms the right-hand side of the linear system in the
inner iteration). Outer iterations are stopped when the maximal element of this vector
has not decreased by more than a factor of 2 since the last iteration. Since the outer
iterations are quadratically convergent, an improvement by a factor less than two
indicates that the rounding or truncation error level has been reached.

2. Number of inner iterations. The inner iterations use conjugate gradients to
approximate the vector to; i.e., the distances the even-numbered points (apart from ’0
which is held fixed) are to be moved. These iterations were performed until all
elements of t o had settled to within .001 of the size of the maximal element of t 0.
These tests can easily be improved. Since the outer iterations are quadratically
convergent, the accuracy in the inner iterations ought to be increased correspond-
ingly. Also, the last outer iteration gives only a small improvement (at most by a
factor of two). For each special application, a test should be devised which allows this
last iteration to be omitted. For example, in the case of solving a time-dependent
problem in a slowly changing geometry, it may be possible to use just one outer
iteration for each numerical time step in the main problem.

6. Test results. In this section, the application of the mapping method to the
following two one-parameter families of curves is described.

Case 1.

(35) f(x, y, a)=--((x .5)2+(y-a)2)(1--(x-.5)2-y) .1 =0.

Fig. 4 showed these curves for some different values of c. The value ct= oo gives a
circle with center at (.5,0) and radius 1. The curve ceases to be "starshaped" (i.e.,
ceases to have a single-valued radius in polar coordinates) at ct,.7675275331 and
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ceases to be simply connected at a.2746687749. The mapping method was em-
ployed for values of a down to a .5.

Case 2. (Cassini’s oval).

(36) f(x, y,a)=((x+a)+y2)((x-a)-+y-) 1--0.

Fig. 6 shows these curves for some values of a ranging from 0 to 1. In the case a 0,
the curve becomes the unit circle. For a= 1, it ceases to be simply connected. The
mapping function from the unit circle can in this case be found in closed form:

(37) ’(z)=z
1-(az)2

Tables and 2 illustrate the performance of the mapping method for these two test
cases. Fig. 7 shows some corresponding mappings. For each parameter value, the
initial guess on the distribution of the points ’i was obtained from the solution for the
previous value of a together with two Newton iterations to bring these points to the
curve for the new a. If the number of points N was doubled, a fourth-order
interpolation was used to find the positions of the new points. In most cases, larger
continuation steps in a than those shown would also have worked. At the bottom of
Table 1, we give one case in which we tested for the largest possible step. Tables and
2 show the maximal distance any boundary point was moved in each step of the
mapping. In these two test cases, an approximate guide for finding the largest allowed
continuation step seemed to be that the initial point positions should not be in error
by more than about 0.25. If points had to be moved further than that tangentially to
the curve in the first outer iteration, they are likely to be returned to the curve in

FIG 6. The curves f(x, y, a)=-((x+a) +y2)((x-a)2 +y2)_ 1--Ofor different values of a.
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a= 0

6

.99_

.999

FIG 7. Examples of conformal mappings in the two test cases.
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places which are no more accurate or may be returned to the curve out of sequential
order. If a careful algorithm was developed for returning the point to the curve after
each tangential move, still larger continuation steps could probably be used.

We observe in the two test cases that the number of outer iterations seems to
depend mainly on the accuracy of the initial guess (which can be read from the
column labeled ("Max distance point moved in mapping"). The average number of
inner iterations for each outer iteration increased only marginally with increased
complexity of the boundary curve. It was found that the method generally produced a
uniform absolute accuracy in all the N/2 produced Taylor coefficients, and that the
error level agreed in size with the first omitted coefficients. The residual vector in the
outer iterations also reached this same size. The numbers displayed in the column
"Accuracy reached in Taylor coefficients" have been obtained as the maximal
element in the final residual vector in the outer iterations. When we keep N fixed and
change the parameter c, the changes in the accuracy that was reached only reflect the
changes in the decay rates for the leading coefficients.

TABLE
Performance of the mapping method in test case 1.

Nr. of Nr. of inner

N outer iterations per
iterations outer iterations

Max distance Accuracy reached Total comp.Max distance point moved in Taylor time (sec)
between curves in mapping coefficients CDC STAR-I00

128 Points equidistantly distributed along the curve

o 128 7 4 2 3.0 .000 1.000 .14-10-13 .08
2.0 128 4 4 4 4.0 .047 .028 .17.10-ll .07
1.5 128 4 5 4 4.3 .088 .058 .14.10-7 .07
1.2 128 4 5 4 4.5 .140 .118 .33.10-5 .07

1.2 256 2 5 4 4.5 .001 .001 .97.10-8 .05
1.0 256 4 5 5 5.0 .137 .176 .17.10-5 .11

1.0 512 2 5 4 4.5 .000 .000 .40.10-8 .09
.9 512 4 6 5 5.5 .076 .149 .26.10-6 .19

.9 1024 3 6 5 5.7 .000 .000 .98.10- l0 .28

.8 1024 5 6 6 6.0 .082 .206 .42.10-7 .48

.8 2048 3 6 4 5.0 .000 .000 .55.10-11 .53

.75 2048 5 6 3 5.4 .042 .147 .58.10-9 .94

.72 2048 5 7 4 5.8 .026 .109 .40.10-8 .97

.70 2048 4 7 4 5.8 .018 .083 .30.10-7 .78

.70 4096 3 6 4 5.0 .000 .000 .31-10- 1.24

.68 4096 5 7 4 5.8 .018 .091 .38.10- 2.24

.66 4096 5 7 4 5.8 .018 .101 .13-10-9 2.24

.64 4096 5 7 4 6.2 .018 .111 .29.10-8 2.33

.62 4096 4 7 7 7.0 .018 .122 .19.10-7 2.01

.60 4096 4 8 7 7.5 .018 .135 .84.10-7 2.10

.60 8192 3 7 5 6.0 .000 .000 .23.10- 0 3.37

.58 8192 5 8 5 6.6 .018 .149 .78.10-9 5.92

.56 8192 5 8 5 6.8 .018 .165 .90.10-9 6.05

.54 8192 5 8 5 6.8 .019 .182 .22.10-7 6.04

.54 16384 3 7 2 4.7 .000 .000 .28.10- lO 6.86

.52 16384 6 7 5 5.7 .019 .200 .99.10-9 15.20

.50 16384 7 8 5 6.4 .019 .218 .15.10-7 19.22
Longest continuation step from a .70, N 4096 that worked

.64 4096 6 7 7 7.0 .053 .248 .29.10-8 3.00
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TABLE 2

Performance of the mapping method in test case 2.

N

Nr. of Nr. of inner Max distance Accuracy reached
outer iterations per Max distance point moved in Taylor

iterations outer iterations between in mapping coefficients

Total comp.
time (sec)

CDC STAR- 1oo

O. 128 Points equidistantly distributed. (Exact mapping).

0. 128 2 3 3 3.0 .000 .000 .28.10-13 .03
.5 128 5 5 2 2.6 .133 .127 .14-10-13 .06
.7 128 5 6 2 3.0 .151 .154 .17.10-l0 .06
.8 128 4 3 3 3.0 .114 .139 .66-10 -7 .05
.9 128 4 3 3 3.0 .163 .257 .81.10 -4 .05

.9 256 3 3 3 3.0 .006 .004 .69.10 .06

.93 256 4 3 3 3.0 .068 .143 .37-10 -5 .07

.95 256 3 3 3 3.0 .055 .137 .47.10 -4 .06

.95 512 3 3 3 3.0 .006 .004 .47.10 -7 .10

.97 512 4 3 3 3.0 .069 .212 .75.10 -5 .13

.97 1024 3 3 3 3.0 .004 .002 .22.10 -s .18

.98 1024 4 3 3 3.0 .044 .172 .34.10 -6 .24

.99 1024 4 4 3 3.5 .058 .291 .42.10 -4 .26

.99 2048 3 4 3 3.7 .012 .010 .18.10 -6 .42

.993 2048 3 4 3 3.7 .023 .154 .32.10 -5 .42

.993 4096 3 4 3 3.7 .004 .003 .18.10 -s .97

.995 4096 4 4 3 3.5 .018 .146 .91.10 1.26

.997 4096 4 4 3 3.8 .022 .220 .42.10- 1.30

.997 8192 3 4 3 3.7 .007 .005 .65.10-s 2.38

.998 8192 4 4 4 4.0 .014 .176 .32.10 -6 3.29

.999 8192 3 4 4 4.0 .018 .293 .14.10 -4 2.49

.99916384 2 4 4 4.0 .021 .020 .16.10 -6 3.96
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MINIMUM COVERING ELLIPSES*

B. W. SILVERMAN" AND D. M. TITTERINGTON

Abstract. With the aid of a duality relation originally obtained in the theory of statistical experimental design,
an exact terminating algorithm is developed for finding the ellipse of smallest area covering a given plane
point set. Some applications and related problems are discussed. Empirical timings show the algorithm to be
highly efficient, particularly for large sets of points.

Key words, computational geometry, convex hulls, optimal design, D-optimality, spatial data analysis,
ranks

1. Introduction. Suppose V={vl,"’, vn} is a set of points in Rk. Then the
minimum ellipsoid problem for V is that of finding the k-dimensional ellipsoid, ME(V),
of smallest generalized volume or content that contains V. In algebraic terms we have to
choose a k k nonnegative definite matrix N and a k-vector c to maximize det N
subject to

(v-c)7N(vi-c)<-k, ]= 1, ..., n.

The existing algorithms for solving this problem are of a nonexact iterative kind;
see, for example, [22] and the references therein. In this paper we develop an exact
terminating algorithm for the minimum ellipse problem in the plane. This algorithm is
very fast and requires only elementary operations, except, in our implementation, for
the solution of a cubic equation.

We shall assume throughout that n => 3; for n equal to 1 or 2 the problem is trivial.

2. Applications. Minimum ellipsoids are useful in various statistical contexts. They
satisfy the property of affine invariance, and can be used as peeling devices in data
analysis in a similar manner to the use of convex hulls by Barnett [1] and Green and
Silverman 12]. Although, in contrast to the convex hull case, the seqence of minimum
ellipsoids may not be nested, they do provide, for most data sets, a finer "peeling".
Almost always, the number of points on the surface of a minimum ellipsoid in k
dimensions is between k + 1 and k(k + 3)/2. In two dimensions this means that 3, 4 or 5
points are peeled off at a time, which is much fewer than, say, for the convex hull results
quoted in Green and Silverman [12]; see also Bentley and Shamos [3].

As with convex hulls, the early peels provide a means of detecting outliers, or of
trimming off possible outliers. The effect of a single such peel in the context of robust
estimation of a correlation coefficient is described by Titterington [22]. There also the
use of the minimum ellipsoid itself to estimate the mean and correlation structure of a
population is discussed. This is particularly useful if the interior of a data set is somehow
obliterated but where the outer crust can be observed.

Minimum ellipsoids can also be used to separate clouds of points, as discussed by
Rosen [16]. He takes a different criterion for optimality, choosing to minimize tr(N-1),
in the notation of 1. Even for planar V there seems as yet to be no exact algorithm for
this problem.
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were visiting the Department of Statistics, Princeton University, Princeton, New Jersey, supported by the
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under contract N00014-75-C-0453 (DMT).

" School of Mathematics, University of Bath, Bath, BA2 7AY, England.
Department of Statistics, University of Glasgow, Glasgow, G12 8QW, Scotland.
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Another application is in operational research. Analogous problems involving
spheres and circles have been considered in the context of optimal location of facilities
relative to the positions of customers [6], [7], [8], [9], [14], [17] and the ellipsoid
problem can perhaps be regarded as modeling "nonisotropic" versions of these.

A final application concerns the calculation of optimal experimental designs for
estimating parameters in a linear regression when observations may be made at points
in V. Although this application is more esoteric, the link between the two problems is
important, particularly in view of a duality relationship given in the next section. This
duality leads to an important theoretical result which justifies our algorithm for the
minimum ellipse problem.

3. Theoretical considerations; duality and optimal designs. Consider the following
optimization problem. Let A (A x, , A,) be a set of nonnegative numbers summing
to 1 and define the nonnegative definite matrix

i=1

where 7 YAivi. A matrix Mo(A*) is said to be Do-optimal on V if it minimizes
log det Mo(A) over choices of

Direct application of the theory of Lagrange multipliers shows that the Do-optimal
problem for V is the dual of the minimum ellipsoid problem for V; see [21 for details.
Further, ME (V) is defined in the terminology of 1 by N-1= M0(h*) and c given by
the corresponding 3. Since the dual criterion function -log detM is strictly convex on
the set of nonnegative definite matrices M, it follows that the minimizing matrix
M=N-1 and the vector c are unique and hence that ME (V) is unique; see, for
example, Sibson [18]. It should be pointed out that the optimal measure h * may not be
unique.

In the experimental design context, hj denotes the proportion of the total number
of observations to be taken at the point vj, and the problem is to choose , to produce
optimal information about the underlying statistical model; see Fedorov [10]. The
D0-optimality criterion reflects one particular possible definition of "optimal".

The duality can be exploited to prove the following theorem which is essential to
the development of our exact algorithm for the planar case.

THEOREM. Given any plane set o]: points V, containing at least three points, there
exists a subset S of V such that

(1) S consists of 3, 4 or 5 points;
(2) the points of S lie on ME (V);
(3) ME (S)= ME (V);
(4) no subset of S has properties (1), (2) and (3).
Proof. S will contain points in V for which the components of an optimal design h *

are positive. Existence of an optimal design is guaranteed by the boundedness of V.
Conclusions (1) and (2) follow directly from optimal design theory; see [21], [18], [10,
Thm. 2.2.3].

The vector h* defines a design measure that is D0-optimal for V and, since S is
contained in V, afortiori for $. By the duality theorem, then, the ellipse corresponding
to h* is both ME (S) and ME (V), proving conclusion (3). To prove the final part
suppose (1), (2) and (3) are satisfied by both S and a proper subset S’ of S; replace S by
S’ and if necessary repeat this step to obtain a subset of V which satisfies the theorem.

A set such as S will be called a support set of ME (V). It follows at once from the
theorem that S is a support set of ME (V) if and only if

(C1) S is itself a support set of ME (S); and
(C2) ME (S) contains V.
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Note that, for points V in general position, the support set of ME (V) will be
unique. It is only in certain special cases (for example when V forms a regular hexagon)
that ME(V) will have more than one support set.

4. Description of the algorithm.The philosophy of the algorithm is first to use an
efficient convex hull algorithm to find the set VE of extreme points of V. It is clear that
ME (VE) is identical to ME (V) and that, in general, V will contain far fewer points
than V. Efficient convex hull algorithms are discussed by Eddy [5], Green and
Silverman [12] and Bentley and Shamos [3]. The next stage is to step through possible
test support sets S, for ME (Vz) until a correct one is found. We shall presume for the
moment that we can reconstruct a minimum ellipse from a support set. The details of
this procedure are given in the next section. Note that it follows at once from the
theorem that every 3-point set is the support set of its minimum covering ellipse, and so
we can find ME (T) for any 3-point set T. The algorithm then proceeds as follows.

Step 1. Using the algorithm PEEL of [12], find the convex hull of V and eliminate
all but the extreme points Vz from further consideration.

Step 2. Choose a 3-point subset So of Vz. Find ME (So), which must have support
set So.

Step 3 (the iterative step). If the ruth test support set is S,, check whether each of the
points of VE lies outside ME (S,,). If no point lies outside, then S, is a support set of
ME (V); exit. Otherwise choose v in V outside ME (S,) and set S* S, v.

In our implementation, we choose the v which maximizes the defining quadratic
form (x- c)7"N(x- c) of ME (Sin), since this v is in a natural sense "furthest" outside
ME (S,,).

Step 4. Find a support set S of ME (S*). Note first that S*,n must include v. To
prove this, suppose otherwise; then S* will be a subset of S,,, and hence ME (S)=
ME (S), since ME (S)= ME (S) covers So, and ME (S,) covers S. Therefore by
construction ME (S) will not contain v, a contradiction. Note also that S* has at most
6 points. Find S* by exhaustive search, as follows

4a. For each 3-point subset T3 of S* containing v, find ME (T3). If ME (T3) covers
S* then S =T3; go to step 5. Otherwise flag any 4- or 5-point subsets which have
minimum ellipses with support set T3 and hence cannot be possible support sets.

4b. Repeat 4a for unflagged 4-point subsets T of S* containing v, flagging any
5-points subsets covered by ME (T).

4c. Repeat 4a for unflagged 5-point subsets of S* containing v.
Step 5. Set S,+1 S. Go to step 3.
Notice that the flagging in step 4 ensures that the subsets T whose minimum

ellipses are considered are precisely all those subsets of S satisfying condition (C1),
and hence one of them must be S. This also ensures that each unflagged T is the
support set of some minimum ellipse, ME (T), so that the procedure described in the
next section can be used to find ME (T).

In the flagging, subsets are characterized by their complements in S*, and so the
storage requirement in Fortran is at most two LOGICAL arrays of dimension 6 and
(5, 6).

Note also that ME (S,/1) ME (S*) ME (S, t.J v), and therefore S,
_

ME(S,+I). Since v is strictly outside ME (S,), ME (S,+1)# ME (S,.), and therefore
ME (S,/1) has strictly greater area than ME (S,). Thus no support set $, is ever
considered twice. Since there are only finitely many possible support sets, the algorithm
must terminate.

It is clear that the algorithm will terminate quickly if the initial support set So
corresponds to a large ellipse, in some sense. In our implementation the points of S0 are
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chosen to be as equally spaced as possible round the convex hull. This gives a
heuristically sensible starting set which is invariant under some affine transformations.

5. Reconstructing an ellipse from its support set. There are three cases to consider,
where the support set S has 3, 4 and 5 points respectively. Let the points of S be
s, s2,. ., s. If S has 5 points, there is only one conic section passing through the points
of S; this must be an ellipse by the definition of support set, and can be found by solving
the system

s
h b

Si+2g)si+c=O’ i= 1,... ,5

of five linear equations in the five unknowns b, c, f, g and h.
If S consists of 3 points it follows by consideration of the dual problem (see [21])

that ME (S) is given by

(x c)7"N(x c) 2,
where c 1/2(sl + $2 q- $3) and

N_
1 __I(S --C)(Si--C)T

The case where S has 4 points is dealt with by a geometrical approach. A series of
unitary affine transformations is applied to the plane, as follows. Let O be the convex
quadrilateral with vertices the points of S. The steps are illustrated in Fig. 1, which
depicts the diagonals of O.

A

b4

b

b3

b2 a4 a2

a3
C

FIG. 1. Steps in the affine trans[ormation of a convex quadrilateral.

(a) Rotate so that a diagonal of Q is parallel with the x-axis.
(b) Shear parallel to the x-axis to make the diagonals perpendicular.
(c) Keeping the diagonals perpendicular, make Q cyclic by x-->d-/nx and

y--dX/4y, where d blb3/b2b4.
(d) Apply a transformation with matrix

Do [ (cos 00)-/ sin 0 (cos 0)-1/2].
(cos0)/: ]’

this first "swings" the diagonal AC through an angle 0 preserving .the lengths a, a2, a3,

a4 and hence the cyclic nature of ABCD, and then rescales by a factor of (cos 0) 1/2 to
make the determinant equal to 1. The angle 0 is chosen, as described below, to minimize
the area of the covering circle.

(e) Find the circle passing through the transformed support set; reversal of steps
(d), (c), (b) and (a) transforms this circle into ME (S), as will be shown next.

To justify this procedure, we prove an easy lemma.
LEMMA. Suppose S is a convex 4-point set. Given any ellipse E through the points of

S, there exists a value o] 0 such that the transformations (a) to (d) above will transform E to
a circle with the same area as E.
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Proof. The fact that the circle has the same area as E follows immediately from the
unitary nature of the transformations. After affine transformations (a), (b) and (c),
suppose that E has equation

[ a h](x_c)= l(x-c)r
h b

It is easily shown that then applying D0 with 0 tan-X(h/a) transforms E to a conic
Eo with axes parallel to the coordinate axes. Such a conic is uniquely determined by four
of its points, and, since the transformed points of S are concyclic, Eo must be the circle
passing through them, completing the proof.

Since every ellipse through the points of S corresponds to some circle of this kind,
the minimum ellipse must, because of the area-preserving property, correspond to the
circle of minimum area obtainable by transformations (a), (b), (c) and (d). Thus the
procedure described above will yield ME (S).

It remains, finally, to determine the optimal value of 0 in step (d) above. Consider
Fig. 2 and let R be the circum-radius of ABCD. Here A -(cos 0) x/2.

D B

Aa

C

FIG. 2. Finding the optimal "swing".

Then 2R dx/sin g, and since Aaa/sin g d2/cos 0, it follows that

dld2
2R=

ax(cos 0)3/2,

and hence that the area of the circle is proportional to

(1) d2d (a + a] + 2axa4 sin O)(a + a2 -2axa2 sin 0)
COS3 0- COS

3 0

The condition for stationarity in (1) with respect to 0 can be written as

(2) 2ax(a4d-aEd)(1-sin2 0)+3ddsin 0--0.

If d2 and d2
2 are written in terms of the ai and sin 0, then (2) takes the form f(sin 0) 0,

where f(t) is a cubic with leading term -4a 2 3
xaEa4t. Since (1) tends to infinity as

sin 0 + 1, the minimizing value of 0 is strictly between -1 and + 1. Further, f(-1) -<_ 0
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and f(1) _-> 0, while f(t) - c as - and f(t) -c as -. It follows that f has a zero
in each of (-c,-1], (-1, 1) and [1, c), and that we are seeking the middle root.

This can be found explicitly, albeit using trigonometric functions; see, for example,
[13, p. 23].

6. Theoretical computational complexity. It is straightforward to obtain upper
bounds for the computational complexity of the minimum ellipse problem as the
number of points in V increases. Suppose V contains n points, of which m lie on the
convex hull. It was shown by Graham [11] that the convex hull can be found in O
(n log n) operations. Once the convex hull has been found, the total possible number of
support sets that can be considered is O (mS), because each support set contains at most
5 points and no support set is ever considered twice.

Since at most m points have to be checked for coverage by the current test ellipse, it
takes O (m) operations to check the optimality of each support set, while the number of
operations involved in apdating to the next support set is bounded independently of n
and m. Thus, once the convex hull is found, it takes at most O (:m6) operations to find the
ellipse. So the total time required is O (n log n + m6).

In many cases m increases slowly with n. For example, Raynaud [15] showed that,
when the points are drawn from a bivariate normal distribution, m O[(log n)1/2].
Bentley et al. [2] showed that the expected value of m is O(log n) if the points are drawn
from a continuous distribution with independent components. It follows from
Devroye’s [4] extensions of this result that E(m6) has polynomial order in log n under
the same conditions, and hence the expected time to find the minimum covering ellipse
once the convex hull has been found is o(n). Furthermore, the expected time to find the
convex hull is linear in n under conditions milder than these; see Bentley and Shamos
[3] for a theoretical discussion and Green and Silverman [12] for a practical demon-
stration. Thus the time to find the convex hull will dominate asymptotically and the total
expected time to find the minimum covering ellipse will be O(n) under the assumption
that the points are independently drawn from a distribution with independent
components.

It should be stressed that these calculations and in particular the O(m 6) term
provide only a crude description of the behavior Of the algorithm in practice; even for
moderately large data sets, only a very small number of support sets will be considered.
The empirical results given in 7 below show that the running time of the algorithm
increases far more slowly than the number of points, even for quite large values of n.

7. Empirical results and numerical considerations. The method was implemented
in a Fortran program, available on request from the authors, on a Honeywell Series 60
Level 68/DPS machine. Results are given for two different point patterns. In the first,
pseudo-random samples of different sizes were generated from a bivariate normal
distribution, with 100 replications for each sample size. In the second, the pseudo-
random samples were generated from the uniform distribution on the annulus whose
inner and outer radii are 0.95 and 1. The latter pattern was expected to test the
efficiency of the routine severely because the convex hulls would typically have many
extreme points, all of which lie approximately on a circle. One difficulty which might
then arise is when 6 or more points lie exactly or almost exactly on an ellipse. In that
case, as a result of rounding errors, the addition of a further point to a 5-point support
set S may fail because none of the test ellipses covers all 6 points. From a practical point
of view, however, this would correspond to the algorithm having succeeded, subject to
rounding errors. In any case this difficulty was not encountered with this data model.
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The average results reported in Tables 1 and 2 indicate the feasibility of the
algorithm as far as time is concerned, and also show that the theoretical work of 6
above is unrealistically pessimistic, and by a long way. Even for the case of points on the
annulus (Table 2) the computation is very quick.

TABLE
Results ]’or bivariate normal samples, 1O0 independent replidations ]’or each sample size. Timings

on Honeywell Series 60 Level 68/DPS machine.

Sample size

10 30 100 300 1000

Average number of extreme points 5.5 7.2 9.0 10.3 12.0
Average number of iterations 2.9 3.7 4.2 4.8 4.9
Average cpu time (secs) 0.05 0.11 0.18 0.31 0.53
Standard deviation of cpu time (secs) 0.09 0.12 0.18 0.20 0.23

TABLE 2.
Results ]’or samples from the annulus 0.95 _<- radius <-_ 1, O0 independent replications for each

sample size. Timings on Honeywell Series 60 Level 68/DPS machine.

Sample size

10 30 100 300 1000

Average number of extreme points 9.1 20.5
Average number of iterations 4.6 6.6
Average cpu time (secs) 0.27 0.67
Standard deviation of cpu time (secs) 0.21 0.23

33.6 48.6 72.7
7.5 8.3 8.6
0.95 1.17 1.52
0.22 0.25 0.24

+++ +, ++ ++
4-; +
+,, ’ +

FIG. 3. Steps in finding the minimum ellipse of a 20-point set.
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Fig. 3 shows the progress of the algorithm in a particular example consisting of 20
points. First the extreme points are marked, and then successive support sets and their
minimum ellipses are shown. The convex hull has 7 extreme points, and 5 iterations
were necessary to find the minimum ellipse. This example was chosen to be somewhat
more laborious than is typical for small point sets.

8. Relation to other problems. The two-dimensional problem can be dealt with in
this exact way because 5-point ellipses and optimal 3- and 4-point ellipses can be
computed exactly. In higher dimensions there is, as yet, no evidence that explicit results
re possible unless the optimal support contains k + 1 or k (k + 3)/2 points. In these
circumstances it seems at present that iterative algorithms offer the only feasible
approach; see [22].

Another, related, problem is that of finding the minimum central ellipsoid
MCE (v) covering a point set V, in other words, constraining c to be zero in the
definition of the ellipsoid. This problem has a dual relationship with the D-optimal
experimental design problem; see Fedorov [10] for details of D-optimality and Silvey
[19] and Sibson [18] for the duality. An algorithm for finding MCE (V) in the plane
case would be similar to that of 4, but much simpler because only 2 or 3 points are
necessary to define the support of a minimum central ellipse. In k dimensions the
bounds are k and k(k + 1)/2; see [10]. Furthermore, the optimal 2-point central ellipse
is of the form

v (vv + v2v v 1,

where vl, v2 are the two support points, corresponding to equal design weights on Vl
and v2. For three points, the ellipse can be found in the form

v TNv r with Nll= 1.

Computation of the convex hull of V c R2 is clearly a sensible first stage in
attacking the minimum central ellipse problem for V. It may be even more efficient to
construct the convex hull of V t.J VR or V t3 {0}, where VR denotes the reflection of V in
the origin.

The use of a convex hull algorithm as a preliminary stage in solving the minimum
circle problem was suggested by Bentley and Shamos [3] who showed that under mild
conditions the minimum circle can be found in linear expected time; this betters the
more generally applicable O(n log n) attained by the method of Shamos and Hoey 17].
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A FINITE ELEMENT-CAPACITANCE MATRIX METHOD
FOR THE NEUMANN PROBLEM
FOR LAPLACE’S EQUATION*

WLODZIMIERZ PROSKUROWSKI" AND OLOF WIDLUND

Abstract. Capacitance matrix methods extend the usefulness of fast Poisson solvers to an important
family of elliptic problems on arbitrary bounded regions. New algorithms of this kind are introduced for finite
element approximations. The use of these methods for the Neumann problem for Laplace’s equation and
important issues of implementation are discussed in some detail. It is shown that the new methods offer
considerable advantages in comparison with finite difference-capacitance matrix methods previously
employed.

Key words, capacitance matrix methods, finite element methods, fast Poisson solvers, potential theory,
Fredholm integral equations

1. Introduction. In this paper, we explore the use of capacitance matrix techniques
for the solution of the large, sparse and very special linear systems of equations which
arise when Laplace’s equation is discretized by finite element methods. Capacitance
matrix methods extend the usefulness of fast Poisson solvers to problems on arbitrary
bounded regions, and certain variants of these methods are almost optimal in that the
number of arithmetic operations per mesh point required to achieve a given accuracy
grows only in proportion to the logarithm of the number of unknowns. The efficiency of
such methods has previously been confirmed by several series of numerical experiments
with finite difference schemes in two and three dimensions; see O’Leary and Widlund
[36], Proskurowski [39], [40] and Proskurowski and Widlund [41]. The almost opti-
mality of certain of these algorithms has also been rigorously established in a number of
cases by Astrakhantsev [1], [2] and Shieh [42], [43]. Earlier work on algorithmic design
was done by Buzbee and Dorr [8], Buzbee, Dorr, George and Golub [91, George [19!,
Hockney [23], [25-1, and Martin [33]. These techniques, known in the Soviet literature
as methods of fictitious domains, have also been studied by II’in and Korotkevich [26],
Korneev [29], Kuznetsov and Matsokin [30]; see also the references given in those
papers. For a discussion of some of the work prior to 1976, see Proskurowski and
Widlund [41]. We also note that capacitance matrix methods can be designed so that
they are very suitable for problems with very many degrees of freedom. For a discussion
of programs which use much fewer words of storage than degrees of freedom, see
O’Leary and Widlund [36] and Proskurowski [39].

Fast Poisson solvers, see for example Banegas [3], Bank [4], [5], Bank and Rose
[6], Buneman [7], Buzbee, Golub and Nielson [10], Fischer, Golub, Hald, Leiva and
Widlund [16], Hockney [22], [24], and Swartztrauber and Sweet [45!, are used as
important subroutines in capacitance matrix programs. These powerful algorithms are
limited with regard to the choice of meshes and the form of the operators, and work
essentially only if the region and the differential operator allow the separation of the
variables. Capacitance matrix methods have to our knowledge been developed
exclusively for finite difference schemes with uniform meshes in the interior of the
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region in order to match completely the corresponding linear algebraic equations for
the fast Poisson solver. In the experiments reported in this paper, we similarly work with
regular, right-triangular, finite elements in the interior, while the remaining skin area,
which is of a width on the order of the mesh size h, is partitioned into irregular triangles;
see 3 and 5. The implementation of our ideas has also been limited to a standard
model problem, the Neumann problem for Laplace’s operator discretized by using
piecewise linear finit6 element functions. Such finite element problems can equally well
be considered finite difference schemes, and in this work, we have indeed tried to
combine the most attractive features of finite differences and finite elements.

The introduction of a finite element framework offers very considerable advan-
tages compared to the finite difference methods used previously in capacitance matrix
work. As shown, for example, in Ciarlet [11] and Strang and Fix [44], the use of finite
elements greatly simplifies the design of accurate methods for general regions. New
tools for the analysis of the efficiency of the methods become available within a
variational framework and, as we shall see, it also enables us to design more efficient
iterative methods for solving the capacitance matrix equations than those previously
employed. We note that fast Poisson solvers, based for example on a fast Fourier
transform, can be developed for higher order finite element approximations of constant
coefficient elliptic problems on rectangular regions subdivided into uniform triangles or
quadrilaterals. Our algorithm can therefore be extended to a large family of finite
element methods, including those of isoparametric type.

Choosing the triangulation of the region as we have done in our program
decreases the cost of the calculation of the stiffness matrix compared to a standard finite
element method, since only the contributions to the stiffness matrix from the irregular
triangles in the skin region next to the boundary need to be computed and stored; see

5. At the cost of calculating more elements of the stiffness matrix, some additional
storage and a modest increase in the arithmetic per iteration, the number of irregular
triangles can be increased and more general and flexible triangulations allowed.
Methods further extending those considered in this paper can be obtained by using a
finite element method on a triangulation with vertices which are the images under a one-
to-one smooth mapping of those of a triangulation as previously described. Similarly,
any uniformly elliptic second order Neumann problem can be solved by preconditioned
conjugate gradient methods in which the restriction of the solution operator of the
discrete Laplace operator on a simple larger region to a suitable subset of mesh points is
used as a preconditioning operator. See, for example, Concus, Golub and O’Leary [12]
for a discussion of preconditioned conjugate gradient methods. The main theoretical
difficulties arise when a general region is considered, while the extension of the proof of
almost optimality to cases with variable coefficients and the general meshes described
above can be carried out as in the paper just cited.

We have previously written extensively on the connection between classical
potential theory and capacitance matrix methods; see, for example, O’Leary and
Widlund [36] and Proskurowski and Widlund [41 ]. We nevertheless discuss this subject
again in 2, since the presentation differs in several important respects from that of our
previous papers. We explain in particular how the classical integral operator for the
Neumann problem, which is nonsymmetric, can be symmetrized, a fact which enables us
to design more efficient conjugate gradient methods; see 4. We are thus able to avoid
the least squares formulation of the capacitance matrix equation previously employed,
and limit the number of fast Poisson steps to one per iteration step.

In the third section, a brief review of the finite element method and our capacitance
matrix method is given. In particular, we show how to multiply the capacitance matrix
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by an arbitrary vector in an efficient way using sparsity. A suitable variant of the
standard conjugate gradient method is derived in 4, where we also show that this
iterative method converges rapidly when applied to the integral equation which is the
continuous analogue of the capacitance matrix equation.

In the fifth section, we show how a suitable triangulation of a bounded plane region
can be generated from similar type of information on the boundary which we have used
in our previous work on finite differences. We also discuss how the nonredundant
information on the stiffness matrix and the weights for the data is obtained. In the last
section, some results of numerical experiments are reported. We conclude that our
finite element program performs with an efficiency which is even more favorable than
that of our finite difference codes and that an accurate solution can be obtained at an
expense comparable to a modest number of calls of the fast Poisson solver subroutine.

2. The continuous problem, a variational formulation and potential theory. We
consider the numerical solution of the Neumann problem

-Au + cu f inf,,
(2.1)

g on F,
On

where the region 11 is a bounded open subset of the plane with a sufficiently smooth
boundary F. The functions f and g are given and sufficiently smooth, c is a nonnegative
real constant, A the Laplace operator and O/On the outward normal derivative. This
problem, which often serves as a model problem in the calculus of variations, has a
unique solution for any c >0; see, for example, Ciarlet [11]. A solution, unique up to
a constant, exists when c 0 if and only if

(2.2) fafdx+Irgds =0,

which can be interpreted as the condition that the heat liberated from sources in D, must
be balanced by the heat flow across the boundary F.

By using a Green’s formula, (2.1) can be written in the variational form

This formula has a good meaning for any v Hl(f), where

Under the conditions stated above, Lax-Milgram’s lemma shows that the problem (2.3)
has a solution in Ha(f). This solution can be shown to solve (2.1) as well. The
variational formulation lends itself to the derivation of finite element and other
Galerkin methods; see discussion in 3.

An alternative, classical method to solve the Neumann problem is provided by the
potential theory developed by C. Neumann, Poincar6, Fredholm and others; see for
example Courant and Hilbert [14] or Garabedian [18]. In our discussion we specialize
to the case of c 0, and by subtracting a particular solution of the Poisson equation we
can also reduce our problem to the case when f---0. Following the presentation of
Nedelec [34], we state certain identities which provide useful insight. We note that
(1/2rr) log Ix-yl is a fundamental solution of the operator -A, where [x-yl is the



THE NEUMANN PROBLEM FOR LAPLACE’S EQUATION 413

Euclidean distance between the points x and y. The formulas (2.4) and (2.5) below are
derived by using a Green’s formula. We denote by fl’ the open set which is the
complement of the closure of I).

Let u be harmonic in l) as well as in lq’, and sufficiently smooth so that the limits
Uint, Uext, Ou/Onint and Ou/Onext exist, when F is approached from fl and lq’ respectively.
Assume further that lu<x)l- o( /Ixl) and Ivu<x)l- o( /Ixl)=, for large x. Then

(2.4a)

u (x) log Ix y[ ds (y)

+2--1 Ir[u an--a og x y ds y Vx f t.J f

Here, [b tint--text. For x F, the left-hand side of (2.4a) is replaced by

(2.4b)
(Uint d-" Uext)

In the classical theory, a Fredholm integral equation of the second kind is obtained
by seeking a harmonic function with the properties just listed for which [u 0. By (2.4),
the solution is thus given in the form of a single layer potential. By using techniques
similar to those used to derive (2.4), we obtain for such a function and x F,

x( u(2.5)
2 ]int Ox nn nx" log Ix Y[ ds(y).

We introduce the integral operator K by

1
(2.6) Kq I--Tr Jr q nx log Ix y as (y).

It is well known that this operator is compact in L2(F). We now obtain straightforwardly
from (2.5) the Fredholm integral equation of the second kind,

(2.7) (I-K)[ Ou] 2 O___U_U.
LOnJ Onint

The operator I K has a one-dimensional null space, and by the Fredholm theory, (2.7)
is solvable if and only if the right-hand side is orthogonal in L2(F) to the left
eigenfunction associated with the zero eigenvalue. In this case, this means that the right-
hand side of (2.7) should have a zero mean value, a condition equivalent to (2.2). Our
capacitance matrix equations are discrete analogues of (2.7) with the role of the
fundamental solution played by the operator defined by a fast Poisson solver. This
analogy suggests that the capacitance matrices should have attractive spectral proper-
ties to a large extent inherited from (2.7); see further Astrakhantsev [1], O’Leary and
Widlund [36], Proskurowski and Widlund [41] and Shieh [42].

The operator K is nonsymmetric except for very special choices of F and so are our
capacitance matrices. In the continuous Neumann case, we can obtain a symmetric
problem by making [Ou/On]=O rather than [u]=0. The resulting equation is a
Fredholm integral equation of the first kind, and finite element methods for its solution
have been designed and studied by Nedelec [34]. Because of less favorable spectral
distributions, these discrete problems and capacitance matrix equations similar in
design cannot be solved in optimal time by the conjugate gradient method. See
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Proskurowski and Widlund [41] for a detailed discussion. We note, however, that the
choice of a solution such that [Ou/On 0, i.e., a so called dipole potential, is appropriate
for a Dirichlet problem. Equation (2.4) then leads straightforwardly to the equation
considered in the famous paper by Fredholm [17],

(I+KT)[u]---2Uint.
Here K 7" is the transpose of the operator introduced by (2.6).

Returning to the Neumann case, we show that a symmetric operator can be found
which symmetrizes (2.7) (see Pekker [38]) and which enables us to use a conjugate
gradient method closely related to the standard one. Denote by Vp(x) the potential
resulting from a charge distribution p concentrated on the boundary F,

Vp(x) p(y) log Ix Yl ds(y).

By using a Green’s formula, we can show that r [Ou/On ds 0, if u is harmonic in D, and
D,’. It is therefore natural to consider only p with a zero mean value. The mapping V can
be extended to the space/--a/z(F), where/--a/2(F) is the subspace of H-/Z(F) of
elements of zero mean value, H-/2(F) the space dual to H/2(F), and Hx/2(F) the space
of traces of Ha(O); see Nedelec [34] or Nedelec and Planchard [35]. Denote by Qp the
restriction of Vp to F. For p /-]r-x/2(F) the restriction of Vp to 12 belongs to Ha(D,), and
thus its trace Qp H1/2(F). Let further (,/z) be defined as the L2(F) inner product of v

and/x in L2(F). This bilinear form is extended in the normal way to Ha/2(F) H-a/2(F).
Consider two single layer potentials u Vp and v V/z. By formula (2.4a), p [Ou/On
and/x [Ov/On]. Thus

By a Green’s formula, our definition of the normal direction and the fact that u and v
are harmonic,

(Olx, p) In Vv Vu dx + In, Vv Vu dx

=Vv Vudx Vu Vvdx =(Op, lx).

Thus, Q is a symmetric, positive definite operator on/-]r-/2(1-’). By using (2.7), we
similarly find

(2.8) (Qla,, (I-K)o) 2 Qlz, 2 Vv Vu dx (Q(I-K)Iz, o),

which proves that QK is symmetric. It is also easy to conclude that the eigenvalues of K
are real and less than or equal to one in absolute value, since

(Q/z, (/-K)/x)= 2 In (7/))2 dx/(n (Vv)2 dx+In (7U)2 dx)"(Otz, z)

see also Kellogg [31, p. 309.]
Equation (2.8) can be considered as a reformulation of (2.3). We need only note

that, in this context, it is legitimate to restrict the choice of test functions to the subspace
of Ha(D,) of single layer potentials, since we know from potential theory that the
solution sought can be represented in such a form.
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3. A finite element-capacitance matrix method. In this section, we review a few
facts on a finite element method and introduce our capacitance matrix equation. We
discuss only a very simple finite element approximation, but, as we have previously
noted, these methods can be extended quite straightforwardly to finite element methods
of higher accuracy. A discussion of the details of the triangulation algorithm which has
been used in our code is given in 5. To simplify, we discuss simply connected regions
only.

The great majority of our triangles will be regular, i.e., right triangles with sides h, h
and x/ h. When triangulating the region, we begin by approximating the boundary F to
within O(h 2) by a polygon -’h. This can be done, for example, by choosing a number of
points on F, each at a distance of the order of h from its nearest neighbor, and
connecting consecutive members of this point set by line segments. The basic strategy is
to cover the resulting polygonal region -h by as many regular triangles as possible,
leaving a skin area of a width of the order of h which is bounded by the -’h and a nearby
polygon. The skin area is then partitioned into triangles by connecting suitable pairs of
points on the two polygons. In certain cases, such a procedure leads to very thin triangles
As shown by Jamet [27], this does not decrease the rate of convergence of the finite
element method if the solution is regular enough. We have found, however, in our
experiments, that the performance of our iterative method suffers when some of the
triangles are very thin. To avoid this problem, we widen the skin area by adding some
suitably chosen regular triangles to it. We can then triangulate the resulting area using
as vertices only points on the two polygons, thus avoiding the use of any very thin
triangles; see further, 5.

Piecewise linear continuous functions are now introduced in the standard way.
They can, for example, be represented in terms of their values at the vertices of the
triangles. The corresponding linear space is denoted by vh; it is a subspace of H(Oh).
A natural basis for the space Vh is given by the elements which take the value one at one
vertex and vanish at all others. A finite element approximation is then obtained by
replacing by u h Vh in (2.3) and by selecting the test functions v from Vh only. If
necessary, the integrals in the right-hand side of (2.3) are replaced by suitable numerical
quadrature formulas. In its basic form, this finite element method is second order
accurate in L and first order accurate in H. It is known that the rate of convergence
in H is unaffected by changing the boundary from F into 1-’h, and the effects of
the numerical quadratures are also well understood; see Ciarlet [11] and Strang and
Fix [44].

The discrete problem has the form of a linear system of algebraic equations with a
positive semidefinite, sparse stiffness matrix A, which for c 0 has a one-dimensional
null space of constants. As pointed out by Courant [13], the finite element approxima-
tion of the Laplace operator at a vertex, which with its neighbors is located on a uniform
square mesh, is the standard five-point formula. This is independent of the orientation
of the triangles and, for this reason, no specific choice of triangulation of the interior of
the region has to be made. Departing from the textbook finite element model, we
approximate the zero order term of (2.1) by a diagonal matrix rather than a multiple of
the mass matrix of L2 inner products of the basis functions of Vh.

In our capacitance matrix method, we use a fast Poisson solver on a uniform mesh
which is an extension of the regular, interior part of the finite element triangulation. For
each vertex of the triangulation which does not fall on the uniform mesh, we associate a
nearby point of the mesh in such a way that we create a one-to-one correspondence
between the set of all vertices and a subset of points of the uniform mesh. This set of
mesh points naturally divides into two disjoint sets Sh and sh, corresponding to the
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points where the regular five-point formula applies and remaining points close to the
boundary. Point charges, which simulate a single layer charge distribution, are asso-
ciated with the set S/hr.

Denote by G the restriction of the solution operator defined by the fast Poisson
solver to the set sh Shag. We seek the solution of the linear system

(3.1) Ax b.

For c 0 the matrix A is singular, but this does not create any serious difficulties; see
Proskurowski and Widlund [41]. By subtracting, if necessary, a solution obtained from
the fast Poisson solver with an arbitrary extension of the vector b as data, we reduce the
problem to the case where the right-hand side vanishes except on the set shr. By analogy
to the continuous case, we make the Ansatz.

x =Gy,

where the vector y vanishes at all points of Sh, and obtain

(3.2) AGy=b.

The principal submatrix of AG corresponding to the set Shr is the capacitance matrix C.
The original linear system (3.1) is thus reduced to a much smaller problem, and this
reduction in dimensionality, analogous to that of the potential theory of 2, is
accompanied by a very favorable change in the spectral distribution which makes
iterative methods quite attractive; see further 4 and 6.

The capacitance matrix can be computed inexpensively for two-dimensional
problems if a suitable fast Poisson solver is used, and the resulting linear system of
equations can be solved by Gaussian elimination, at least when c > 0, or by an iterative
method; see Proskurowski and Widlund [41] or O’Leary and Widlund [36] for details.
However, in our experiments, we have instead used an iterative method in which access
to the capacitance matrix C is needed only in terms of products of C with vectors. It is
not necessary to compute or store the capacitance matrix. This idea is due originally to
George [19]. To find Cz, charges corresponding to the vector z are placed at the points
of Sgh, the fast Poisson solver is applied to these data and the values of AGz are
computed at the points corresponding to the set shr. The data for the Poisson solver is
quite sparse and a close examination of the special structure of the matrix A shows that
we need the values of Gz only at the points of shr. We have, therefore, chosen to use a
special fast Poisson solver similar to that developed by Banegas [3]. See also Pros-
kurowski [39] and 5 for an operation count and the savings in storage.

4. A conjugate gradient method. We now consider the solution of (3.2) by a special
conjugate gradient method. This system has a nonsymmetric coefficient matrix which,
however, is similar to a symmetric positive semidefinite matrix. We also consider the
solution of (2.7) by the same method to stress further the close connection between the
integral and capacitance matrix equations. We note that the use of conjugate gradient
methods in the present context has been discussed previously. See O’Leary and
Widlund [36] and references therein.

The standard conjugate gradient method applies to symmetric, positive definite
problems; see Hestenes and Stiefel [21] or Luenberger [32]. Since it is widely used and
well understood, we discuss it only briefly.

Let M be symmetric and positive definite, My d a linear system, Vo an initial
guess, and ro d-Mvo the corresponding initial residual. Let

ro, Mro, ., Mk-lro
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be the first k elements of the so-called Krylov sequence, and denote by Sk) the subspace
spanned by these vectors. The minimizing element Vk for the problem

min
u_voeS(k

guTMu U Td

is identical to the standard conjugate gradient approximation. The approximation is
thus optimal in a natural sense and, by expanding the initial error v0- v in eigenvectors
of M, it can be shown that

(4.1) E(vk)<_--min max (1-AP,_I(A))2E(vo).
Pk- X o’(M)

Here, E(u) (u v)TM(u v) is an error functional, tr(M) the spectrum ofM and Pk-x
an algebraic polynomial of degree k-1. See further Daniel [15], Kaniel [28] or
Luenberger [32]. The inequality (4.1) provides a basis for estimates of the rate of
convergence of the method. In particular, if the polynomial Pk-a is chosen in terms of
Chebyshev polynomials, the estimate

(4.2) E(v)<=
2(1-) 2

2k 1 2k’ E(Vo)

results, where K is the spectral condition number of M. We note that conjugate gradient
methods require no a priori information on the spectrum of the operator and that the
acceleration parameters are chosen automatically.

Equation (3.2) has the form

AGy =b,

where, by assumption, b R (A), the range of A. If the coefficient c is strictly positive,
the matrix A is positive definite and we can also assume that the fast Poisson solver is
chosen such that this is the case for the operator G. For c 0, we assume that the fast
solver is chosen such that the restriction of G to R (A) is symmetric positive definite.
Since the same condition holds for A and all elements of the Krylov sequence, ro, AGro,
(AG)2r0, , belong to R (A), the entire iteration is confined to R (A) if the initial guess
is chosen in R (A). We then essentially have a positive definite problem and from now
on we consider only that case. Introduce a new variable z G/2y and multiply (3.2) by
G/2:

GI/2AG/2z G/2b.

The new operator is symmetric and the standard conjugate gradient method can be
used. The following algorithm, which requires five vectors of storage, emerges when we
return to the variable y.

Compute

ro b AGy0,

and set

PO to.
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where

For k =0, 1, 2,
Update the solution Yk and the residual rk by

Yk+l Yk + okpk,

rk + rk akAGpk,

rGrk
Ok

Find a new search direction p/l by

Pk+l --/’k+l + flkPk,

where
Trk+lGrk+l

This algorithm appears to require the multiplication of the two vectors Pk and rk+l
by G, i.e., the use of the fast Poisson solver twice in each iteration step. This can,
however, be avoided by introducing additional auxiliary vectors qk Gpk and Sk. The
alternative form of the algorithm, which requires no extra storage, has the following
form.

Compute

and set

Compute

and set

with

ro b -AGyo,

PO

qO (Po,

SO qo.

Sk+l Grk+l.

Find a new search direction Pk+l and a new auxiliary vector qk+ by

Pk+l rk+l + kPk,

qk+l Sk+l + [3kqk,

rk + rk CekAqk,

Yk+l Yk -I- akPk,

Compute

For k 0, 1,
Update the solution Yk and the residual r by
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where
.T
rk+lSk+l

T
rkSk

As pointed out in 3, the iteration can be carried out using only vectors of an order
equal to the number of irregular mesh points and in addition, if a more traditional fast
Poisson solver is used, a two-dimensional work array. The possibility of exploiting the
sparsity of the vectors Yk, rk, etc., gives this algorithm an advantage over the generalized
conjugate gradient algorithm considered by Concus, Golub and O’Leary [12] and
others. In their algorithm the vectors Xk Gyk are carried, and they fail to be sparse in
this application.

The error estimates (4.1) and (4.2) apply for our algorithm. The relevant spectrum
is now that of G1/2AG/2 which coincides with that of AG.

The integral equation (2.7) can also be solved by this conjugate gradient method.
The role of AG is then played by the operator I-K and that of G by the symmetrizer
Q. Information on the distribution of the nonzero eigenvalues of I-K enables us to
estimate the rate of convergence of the conjugate gradient method. We have already
shown that all eigenvalues of I-K are less than or equal to two. By elementary
properties of compact operators, the eigenvalues have one cluster, at the point 1. The
smallest eigenvalue is bounded away from zero by a positive number y whi.ch depends
only on lq. Linear convergence of the iterative method follows directly from (4.2), and
more elaborate constructions of the polynomial Pk- show that the convergence is
superlinear in this case. See further Hayes [20], Shieh [42], [43] and Widlund [46] for
further discussion of superlinear convergence.

5. Implementation of the method. In this section, we describe in some detail how a
FORTRAN program can be designed and give additional information on operation
counts and storage. Since this is our first program of this kind, we expect that future
versions developed inside a framework similar to that outlined in 3 will represent
improvements in several respects when compared to this first effort.

The region l) is imbedded in a larger region for which a fast Poisson solver is
available, and a suitable rectangular mesh covering this larger region is introduced. The
coordinates of all mesh points which fail to have all their nearest mesh neighbors in the
open set lq and their signed distances to the boundary F along mesh lines provide all the
information about the geometry necessary for this simple finite element method. The
coordinates of a number of points on F are thus available, and a subset of these points is
used to construct the polygon Fh which approximates F. The skin area, briefly described
in 3, is bounded by Fh and a second polygon which is the boundary of a union of the
regular triangles which covers most of the interior of 12.

These polygons are constructed as follows. A parameter a, 0 =< a =< 1, is introduced
to control the minimal thinness of the triangles. For a study of the performance of
certain problems for different values of c, see 6. Similarly, the set of points on F can be
thinned out to avoid very short edges. The inner polygon is defined in terms of the mesh
points in f which are within (1 +a)h of the boundary in at least one coordinate
direction, excluding those which fall within ah of F. This set of points, which normally
differs from the one originally available but which is easy t_o compute from that
information, is sorted so that consecutive points are within x/ h of each other and
stored in a circular list. For each available point on F which does not fall on the mesh
we seek a nearby mesh point which is not to be used as a vertex in the triangulation.
These mesh points, as well as those defining the inner polygon, carry point charges
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during the conjugate gradient iteration. As noted in 3, no mesh point in the interior of
the skin area is used as a vertex, and they can therefore be used for this purpose. Others
are found outside 1. If our rule leads us to assign the same mesh point to several points
on F, only the point on F closest to the mesh point in question is retained in the set, with
ties resolved in an arbitrary way. When completed, the list of remaining points on F and
their associated neighbors on the mesh are sorted and stored in the same way as the
point set defining the inner polygon. The construction of the polygons and the set sh is
then completed.

The triangulation of the skin area is carried out with the aid of the sorted, circular
lists which define the two polygons. By a pair, we denote a pair of points with one
element from each of these sets. A pair of nearby points is chosen initially and
connected by an edge. The next elements of the lists of vertices are inspected and one of
them is chosen to create a new current pair and to complete the first triangle. This
process is repeated, always choosing the next vertex of a triangle in the half-space which
lies opposite to the half-space defined by the current pair and which contains the
previous triangle. If there are two possible ways of completing a triangle, the shortest
edge defining a new pair is preferred, resolving a tie in an arbitrary way. When the
circular lists are exhausted the skin area is completely covered by triangles, since a
closed path can be found through the interior of the union of the triangles constructed
and each triangle has exactly one edge which is adjacent to either the exterior of Fh or a

regular triangle in the interior of 1).
While this triangulation is carried out, the lengths of the edges of the triangles are

computed. Each triangle is stored in terms of a triple of integers, pointing to the lists of
coordinates of the vertices, with the first element of the triple associated with the largest
angle of the triangle.

With the aid of this information, all nonredundant contributions to the stiffness
matrix can be computed by the subassembly method; see, for example, Strang and Fix
[44, 1.10]. The largest angle of any triangle is mapped onto the straight angle of a
reference triangle. No list of regular mesh points in the interior of 1 is needed. Suitable
quadrature formulas are developed to approximate the right-hand side of (2.3). For a
basis function the support of which is a union of regular triangles, only values of the
function f at the quadrature nodes and a fixed set of weights are needed. The boundary
integral is approximated by integrating exactly the product of basis functions and a
linear function which interpolates the boundary data using the values of the Neumann
data at the boundary vertices.

Essentially no further new algorithmic ideas, beyond those used previously in our
work on finite difference schemes, are needed. See O’Leary and Widlund [36] and
Proskurowski [39].

With the exception of the sorting of the lists, all these operations involve only
information for relatively few neighboring points at any given time, and the effort
required therefore grows only in proportion to p, the number of irregular mesh points. It
is well known that sorting can be carried out very efficiently, and we can conclude that for
fine meshes the cost of the fast Poisson solver dominates.

In the calculation a total of 15 vectors, of length p, are used to carry geometric
information, boundary data and to serve as workspace for the conjugate gradient
iteration and the fast Poisson solver which exploits sparsity. By a result from Pros-
kurowski [39], the multiplication count, in our case, for such a fast solver is only
6n .p +4m n, where m and n are the number of mesh points in the two coordinate
directions for the .region in which l) is imbedded. In addition, a two-dimensional array
of dimension m n is used to store the data f(x, y) and thefinal solution; see, however,
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Proskurowski [39] for other alternatives which require less storage and which present
very attractive space-time tradeotts on many computer systems.

We note that neither the right-hand side of the Poisson equation nor the solution at
the interior mesh points is required during the conjugate gradient iteration which
makes up the main part of the calculation. It might appear as if the solution is needed at
certain regular mesh points which have neighbors in the set s/h in order to calculate the
restriction of mesh functions of the form AGy to the set s/h. However, the relevant rows
of A can be represented as the sum of the standard five-point stencil and stencils which
only involve points of Shr. No special information on this subset of the regular points is
therefore required, since the five-point formula applied to a mesh function of the form
Gy returns a component of y.

6. Numerical experiments. In this section, we report on numerical experiments
which were carried out on the CDC 6600 at the Courant Institute and a CDC 7600 at
the Lawrence Berkeley Laboratory, using FTN (OPT 2) FORTRAN compilers, and a
DEC 10 at the University of Southern California. Single precision was used throughout,
even on the DEC 10 which has a short word length.

In our tables, N denotes the number of degrees of freedom in our finite element
model and p the number of irregular mesh points. In the cases we tried, m n, the
number of mesh points in the rectangle in which the region is imbedded, exceeded the
value of N by a factor of about 2.5 and our fast Poisson solver, which exploits sparsity,
required about 15-20 m n multiplications and about as many additions.

In our tables, the following norms are used:

and
\ p /

\N]

Here, G is the operator defined by the.fast Poisson solver. We note that the G-norm is
an analogue of the O-norm introduced in 2, recalling that during the iteration, the
residual r differs from zero only at irregular mesh points. In our computations, the
iteration is terminated when Ilr]] drops below a prescribed tolerance. Such a stopping
criterion has been found quite satisfactory, just as for our finite difference codes. For
many problems, a condition of the form IIr ll --< 10-3 (an estimate of the norm of the
solution u) provides a satisfactory accuracy.

In an early series of experiments on the CDC 6600, we explored the numerical
stability and the rate of convergence of the iteration for a discrete problem for which the
exact solution is known. The solution was equal to x + y, the region a polygon
approximating a circle of radius 0.375, and N varied between 507 and 7481. The
parameter a, introduced in 5, was set equal to zero. The relative/2-error decreased
below 10-3 in 5 to 8 iterations, and in all cases it dropped below 10-8 in less than 20
iterations. The rate of convergence of the iteration was virtually independent of N.
Experiments with other smooth solutions and with solutions generated randomly
likewise showed only very minor differences in the rate of convergence. The results
reported in the tables below are therefore quite representative of the performance of
our iterative method.

For smooth solutions and polygonal approximations of the region with smooth
boundaries, we have consistently found the method to be second order accurate
provided sufficiently many iteration steps are carried out. As expected, the simplified
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approximation of the constant term of the differential operator, which was introduced
in 3, does not degrade the accuracy of the finite element model.

While this first set of experiments shows no ill effects of small triangles, the
performance of our algorithm can deteriorate for increasing N if the parameter a is
chosen to be zero or quite small. This is illustrated in Table 1, where the region is a circle
of radius 0.365. As seen from the table, a choice of a _>- 0.2 is adequate to alleviate this
problem. See also Table 3 for detailed study of the iteration for the same region and
=0.5.

TABLE a
The effect on t, the number of c.g. steps, of enlarging the width of the skin area

by increasing a. The region is a circle ofradius 0.365. The solution is u x + y with
Ilul12 0.26. The iteration was terminated when Ilrll <= 10-3.

16 0.0 12 .8E-3 .53E-3
0.1 6 .5E-3 .57E-3
0.2 6 .5E-3 .49E-3
0.5 4 .6E-3 .32E-3

32 0.0 10 .7E-3 .32E-3
0.1 6 .3E-3 .17E-3
0.2 6 .3E-3 .17E-3
0.5 5 .4E-3 .17E-3

64 0.0 15 .8E-3 .65E-3
0.1 8 .3E-3 .18E-3
0.2 5 .9E-3 .12E-2
0.5 4 .3E-3 .36E-3

128 0.0 10 .8E-3 .17E-2
0.1 6 .7E-3 .16E-2
0.2 4 .1E-2 .25E-2
0.5 3 .8E-3 .24E-2

TABLE lb
The effect on t, the number of c.g. steps, at the tolerances Ilrll --< lO-3 and IIrll -<- 10-6 when N

increases. The problem is the same as in Table a with a 0.5. For the two largest problems the
solutions were not computed at all the mesh points. The source of the discretization error is the

approximation of the boundary.

rn n N p IIr[l Ilell=

DEC 10
CPU
sec.

16 145 68 4 .6E-3 .49E-3
8 .8E-6 .44E-3

32 497 132 5 .4E-3 .17E-3
10 .1E-6 .95E-4

64 1861 268 4 .3E-3 .36E-3
9 .5E-6 .26E-4

128 7001 524 3 .8E-3 .24E-2
9 .6E-6 .10E-4

200 16541 820 3 .6E- 3 not avail.
8 .8E-6 not avail.

400 66541 1644 2 .9E- 3 not avail.
8 .7E-6 not avail.

.57

.83
1.94
2.94
5.96
9.27

20.37
34.94
31.63

not avail.
101.41
not avail.
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TABLE 2a
Results for the nonconvex region described in the text. Iteration was terminated when

Ilrll --< 10-3. The solution u x + y.

m n N p a Ilrll Ilel12

64

128

1243 266 0.0 2"2 .9E-3 .30E-2
1211 262 0.2 12 .6E-3 .18E-2
1172 260 0.5 5 .6E-3 .86E-3

4953 530 0.0 22 .9E-3 .18E-2
4899 524 0.2 7 .7E-3 .39E-2
4830 524 0.5 5 .6E-3 .24E-2

TABLE 2b
Results.for the nonconvex region and a 0.5. Termination when [[rl[o 10-3 and

Ilrllo <-- 10-6, respectively. The DEC 10 CPU times for these problems exceeded those
recorded ]’or the sdme m in Table b by between 11 and 24%.

m n N p Ilrll Ilel12

64 11’72 260 5 .6E-3 .86E-3
11 .6E-6 .75E-3

128 4830 524 5 .6E-3 .24E-2
11 .6E-6 .30E-3

200 11883 820 3 .1E- 2 not avail.
10 .1E- 5 not avail.

400 47994 1644 3 .8E- 3 not avail.
10 .9E-6 not avail.

TABLE 3
A detailed study of Ilrll and Ilel12 as a function of and the mesh size. The discrete solution is a second-order

accurate approximation to x + y on a circle ofradius 0.365, cf. Table 1, and a 0.5. The runs were carried out in
single precision on a DEC 10.

m n 16 m n =32 m n =64 m n 128

.28E- .94E- .20E- .10 .13E- .10 .94E- 2 .10
2 .89E- 2 .10E- .13E- .25E- .40E- 2 .61E- 2 .28E- 2 .60E- 2
3 .27E- 2 .12E- 2 .25E- 2 .30E- 2 .11E- 2 .20E- 2 .84E- 3 .24E- 2
4 .62E- 3 .49E- 3 .11E- 2 .95E- 3 .32E- 3 .36E- 3 .29E- 3 .35E- 3
5 .14E-3 .44E-3 .35E-3 .17E-3 .66E-4 .34E-4 .62E-4 .58E-4
6 .27E-4 .43E-3 .91E-4 .liE -3 .23E-4 .35E-4 .17E-4 .27E-4
7 .42E-5 .44E-3 .34E-4 .10E-3 .44E-5 .27E-4 .63E-5 .llE-4
8 .77E-6 .44E-3 .10E-4 .95E-4 .12E-5 .27E-4 .12E-5 .llE-4
9 .35E-5 .95E-4 .45E-5 .26E-4 .56E-6 .llE-4
10 .97E-6 .95E-4

In Table 2, results for a nonconvex, piecewise semicircular region are given. The
region f is defined by

where 1 and "4 are the intersections of the circular disks centered at (0, 0) and (0, r/2)
and with radius r and r/6, respectively, with the right half-plane, while 2 and3 are the
intersections of the circular disks centered at (0, -r/3) and (0, 5r/6) and with radii r/6
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with the left half-plane. The parameter r 0.365 in this experiment. We note that it is
even more important to use a nonzero value of a for this region. A closer examination
of the problems with a 0 show highly nonmonotonic convergence.

In our experience, our code runs about 18 times faster on a CDC 7600 than on a
DEC 10. In a typical run, about 70% of the time is spent executing the code of the fast
Poisson solver subroutine. The speed of the code could therefore easily be upgraded by
replacing that routine by existing faster codes. We finally note that the execution times
given include the generation of the finite element model and the data necessary for the
run in question.
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ON IMPROVING THE 2-4 TWO-DIMENSIONAL LEAP-FROG SCHEME*

SAUL ABARBANELf AND DAVID GOTTLIEB

Abstract. The present paper shows how to modify the Kreiss-Oliger 2-4 two-dimensional leap-frog
scheme so that the allowable time step may be doubled while the computational complexity remains about
the same.

1. Introduction. In a previous communication [1] (see also [2]) it was shown how
the standard multidimensional leap-frog finite difference method for solving linear and
quasi-linear systems of partial differential equations can be modified so that the stability
condition is substantially improved. In particular, it was shown that in the two-
dimensional case one can double the time step. The required change in the algorithm is
simple to implement, and the resulting modified leap-frog (MLF) algorithm remains
convenient to program and requires no more flux vector evaluations than the original
leap-frog scheme.

Recently the question arose whether a similar improvement can be achieved for
the Kreiss-Oliger 2-4 scheme [3], which is second order accurate in time and has a
fourth order spatial accuracy. This scheme is widely used in meteorology and global
circulation studies. Its explicitness imposes, of course, a priori restrictions on the time
steps, and attempts have been made I-4] to improve running times by resorting to implicit
2--4 methods [5]. Improvements of a factor of 2 in machine time have been reported [4].
In this paper we show how a similar improvement may be obtained by modifying the
explicit 2-4 scheme in a manner analogous to that reported in [1].

Here we are considering the hyperbolic system

Ou OF OG Ou Ou
+=A+B,(1.1)

Ot Ox Oy Ox Oy

where u, F(u) and G(u) are m-component vectors and where A and B are the
Jacobians of F and G with respect to u.

The 2-4 Kreiss-Oliger finite difference scheme is the following:

ui, ui, + -x --Fi+z’ +gFi+l,t-5Fi-x, +-Fi-z,

I
(1.2)

u,, +__..__ (F,+, -F/_,)-g(F/+2, -2Fi+x, +2F/_x, -Fi-z,tc)

+ (Gi,+-Gi,-)--(Gi,+z-2Gi,+ +2Gi,--Gi,-2

* Received by the editors May 8, 1980, and in revised form September 23, 1980. This work was
supported in part by the Air Force Office of Scientific Research (NAM), the European Office of Aerospace
Research, AFSC, United States Air Force, under Grant AFOSR 78-3651, and in part by NASA Contract
NASI-14101 and Contract NASl-15810 at ICASE, NASA Langley Research Center, Hampton,
Virginia 23665.

t Department of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel.
Department of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel, and Institute for

Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, Virginia
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The second term in each of the square brackets serves as a "correction" term to the
regular 2-2 leap-frog method and modifies it into a 2-4 scheme, i.e., second order
accurate in time and fourth order accurate spatially. The initial value (linear) stability
condition for algorithm (1.2) is

1
(1.3) At<

(p(a)) +(p(B)\AX
where p(A) and p(B) are, respectively, the spectral radii of the coefficient matrices
A =A(u)=F/du and B=B(u)=G/u, which are assumed to be simultaneously
symmetrizable. The factor D equals 1.372 (=((),/4); see (2.6)).

We now seek to modify (1.2) in order to improve (1.3). The best we can hope for is
to achieve the one-dimensional stability conditions, namely

At 1 At 1
(1.4) A< and <.

p(A)D p(B)D

2. The moifie scheme an its staMRty. If we introduce the differencing and
averaging operators, respectively

8xql,k ql+l/2,k --ql-1/2,k, 8ql,k qLk+l/2--qLk-1/2,

.q, ()(q+z, + q_z,), q, ()(q.+z +q,-z),
then the scheme (1.2) takes the form

u, =U,k +2 &. 1--8 Fi,+2 8 1-8 G,.

Next we review briefly how one establishes the stability limits of (2.1); this will facilitate
the treatment of the modified algorithm to be introduced later. If we define a new vector

(’)

then the linearized version ot the two-level finite difference equations (2.1) becomes the
following single level system:

n+l -8)u, +21(I- )u,,u, v, +21(I
(2.3)

or equivalently,

n+l U],k 2AxS(I 2 y) Uj,k(2.4) Wi,k
Vi,k I Vk

where A,=AAt/Ax and Ar=BAt/Ax. Fourier transforming (2.4) we get the
amplification matrix

(2.5)

where

(2.6)

M=[2i(axf(a)+a,,f(B)) Io]I

f(z) 2z41- z 2 (1 + 32-z 2), -1 _-< z _-< 1,

and a sin (:/2),/ sin (r//2), and r/being the dual Fourier variables of the space
coordinates x and y.



428 SAUL ABARBANEL AND DAVID GOTTLIEB

It may be shown that the stability requirement for M is equivalent to demanding
that

(2.7) p(_C)< 1,

p(_C) being the spectral radius of _C A(At/Ax)f(a)+ B(At/Ax)f(fl). We then get

1
<(2.8) At

[(p(A)__x/+\-(p(B))AyJD
where

(2.9) D=maxlf(z)]=[(z=(-)/4)= 1.372.

The most general modification of (2.1) which maintains the fourth order spatial
accuracy and still leaves the algorithm with a compact 5 5 grid support (/" + 2, k + 2) is"

n+l n--1 (A) (12’22/4 /) 4y)Ui,k Ui,k +2 tZxBx 1--g6x ---i-6x6y ---’6y ---62x6 Fi,k

+2

The amplification matrix again has the form

G=
I

where, now,

0= A[2c (1 a .)/2 (1 +-a2-ya2/32 __j4

__
+Ay[2B(1 B2)/2 (1+fl2 Tf12 2 2+ V 4)].

The stability requirement becomes
2 /2

-T2O(Ax)I I. ix- .11 +2 22 4

I1 -e +vB2 1.

For optimal stability it is required that, in contradistinction to (2.8), p(A) lID and
p(Ar) lID. We ask whether under these constraints there indeed exists a triplet
(T, e, v) such that inequality (2.11) is still valid for all I 1, < 1, It can be shown that if
any member of the triplet (, e, v) vanishes one cannot get the stipulated optimal
stability (1.4). We found no analytical way to determine a stabilizing triplet. However,
we verified numerically that the convenient triplet

32

is appropriate in that it leaves the inequality (2.11) valid under the stipulated optimal
stability conditions (1.4).

Thus, the modified Kreiss-Oliger 2-4 leap-frog scheme takes the form

+1 n-1 (A.xt) ( 121221641_ 2 4)U,k Ui,k +2 6,,tZ 1--g6x--6x6y g y+g6xy
(2.12)

2 4
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Writing out explicitly the effect of the differencing and averaging operators 8,
in (2.12), one obtains

n+l n-1 l(At Fi+2,k +F]+2,k+l --Fi+2,k +Fi+2,k-1 -F/+2 k-2u, u, +/[- +

+F+,+ +2F+,+ +2F+, +2F+,_ +F,_
F_,+ 2Fi_,+ 2F_, 2F_,_ F_,

_
+F,+ -Fi,+ +F, -F,_ +F,_

(.3)

+ [- G+,+ + G+,+-G,+ +G_,+-G_,+

G,++ G+,+ +2G+,+ + 2 +2G_,+ + G_,+

G+,_ 2G+,_ 2G,_ 2Gi_,_ Gi_,_

+G+z,_ Gi+,_ + G,_ Gi_,_z + G"-z,- ].

If we want to emphasize the "modifying" terms which were added to the regular 2-4
scheme, we may rewrite (2.13) as follows:

2F+,ui, u, +_,.__Fi, F_, [F+, +2F_, -F_,]

+[-F+,+a +F+,+-F_,+ +F,+
2F]_+F+,+ +2F+,+ ,+ -F_,+ -6F+,

+ 6F’/-,k + Fin+2,k-1 -t- 2F.i"+,k- 2Fi"- l,k- Fin-2,k-

--F.i+2,k-2 + Fjn+l,k-2 --Fj-l,k-2 + Fj-2,k-2
l

(2.14)
a],l-2G,_+ G"i,+l Gi,_ -[Gi,+2 2Gi,+ +2

1
a/+2,k+2+[- +G/,/2 +Gi_,/-G_2,+

+ Gi+2,+ +2G+,+ 6Gi+ +2Gi%,+ + G"]-2,k+1
Gi+,_ -2Gi+,_ +6Gi,_1 -2Gi_,_ i_2,_

+a.i+z,-2-Gi+,-2-Gi-l,- +Gi_2,_2

Note that even though (2.13) and (2.14) look much more complex than (1.2) one
still realizes the benefit of the increased stable time step. This is true when the flux
vector evaluation is costly in terms of machine time, because all the additional fluxes
have already been computed at the neighboring points. This can be best seen by defining
the following vectors"

u, =(1-8 2 4 8,)ui,,
(2.15)

**u, =(1-8 2 4 ,8)u,.
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In terms of u* and u** we can construct a different version of the modified 2-4 scheme
so that it takes the same form as the standard one (1.2), namely,

.+1 .-1 (At)[ 1 4 .. 4 .. 1 ]Ui,k Ui,k + -x --F,+z,k +’F,+,--Fi_l,k +F,-2,k
(2.16)

(Avt)[ 1 4**. 4,.._**. 1 ]+ +

*" ’**" V(u") and similarly G.; G(u*" **" **"’where F. F(ui.k ), i,k i.k ), G/,k G(Ui.k ).

From (2.15) one can show that (2.16) is equivalent to (2.13) (or (2.14)) to fourth order in
space in the nonlinear case. The stability of (2.16) is the same as that of (2.14) since for
linear problems they are identical. Notice that the number of flux evaluations is now the

nsame for the modified and the standard 2-4 schemes. The dependent vectors ui. and
**n

Ui,k are evaluated in terms of the neighboring points using only additions of u In
particular,

ULk /gj,k "" Uj+l,k+2 -[" Uj,k+2 U]-l,k+2 "- U]+l,k+l
(2.17) + 2U,k+ + Ui-,k+ + Ui+l,k- + 2Ui,k-

-1- Ui-l,k-1 U]+l,k-2 -[- U.i,k-2 Ui-l,k-2

and

bli,k ’Uj,k -’1- Uj+2,k+l "[- Uj+l,k+l -1" U.i-l,k+l Uj-2,k+l

(2.18) -- lg ]+2,k -[- 2 + 2U + UUj+l,k ]-l,k ]-2,k

Ui+2,k-1 -[- Ui+l,k-1 "1- Ui-l,k-1 Uj-2,k-1 ],

Notice that, from a computational point of view, (2.17) and (2.18) can be carried out by
observing that certain neighboring points keep appearing together, and therefore can be
lumped together to reduce the number of additions and hence making for a more
efficient program.

The original Kreiss-Oliger 2-4 scheme [3] is nondissipative. Our modification
leaves it so, since the additional higher order terms all affect only the imaginary part of
the amplification matrix. In order to make the scheme dissipative, one may use the same

n--1artificial dissipation term they used, namely in equation (2.12) replace Ui.k by
[i+(to/64)(83 3 3 3 n--1

x/z + 8 y/z y)]Ui,k For small to the stability condition hardly changes.
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GENERATION OF. BODY-FITTED
COORDINATES USING HYPERBOLIC
PARTIAL DIFFERENTIAL EQUATIONS*

JOSEPH L. STEGER" AND DENNY S. CHAUSSEES;

Abstract. Grid generation equations formulated as hyperbolic partial differential equations are solved
numerically to generate body conforming meshes. This grid generation procedure can be efficiently used to
generate smoothly varying grids in which the user has good control of the grid clustering. Two-dimensional
results are presented for typical external aerodynamic applications.

Key words, numerical methods, grid generation

Introduction. A procedure for generating body-fitted orthogonal grids has
recently been advanced by Graves 1] which has as its origins a scheme developed some
years earlier by McNally [2]. In this procedure [1] normals are constructed from the
initial distribution of points on the body surface to an adjacent control plane or level
line. Normals from this level line are then projected to another adjacent level line, and
in such a way normals are ultimately formed between all of the level lines contiguously
spaced between the body and the outer boundary. The number and location of the
prespecified level lines control the radial-like grid spacing.

At first glance the McNally-Graves procedure may appear to be analogous to
generating a grid by marching the Cauchy-Riemann equations away from an initial
distribution of points on the bodyma procedure that would be improperly posed. Their
grid generation scheme, however, requires that grid lines be constructed subject to a
constraint of orthogonality; and, in addition, the normal-direction grid increments meet
prespecified level curves. Thus, the normal-direction grid increments have an essen-
tially specified length. In this paper we show that the McNally-Graves procedure subject
to these constraints can be interpreted as an initial-value problem for two nonlinear
partial differential equations for grid generation. Furthermore these equations are
shown to be hyperbolic and are thus properly posed for the given initial data.

The interpretation of the grid generation algorithm of McNally and of Graves as, a
hyperbolic partial differential equation grid generation scheme is advantageous in two
ways. For one, it puts this procedure on a comparable theoretical basis to the elliptic
grid generation procedures of [3]-[6]. Of more importance, though, the interpretation
of the grid generation problem as a set of constraints that forces the solution of
hyperbolic partial differential equations can ultimately lead to further generalizations
and new algorithms. In this regard we have also developed a new scheme in which the
mesh generation equations are governed by the constraints of orthogonality and cell
volume. The governing equations are again nonlinear and hyperbolic, and because cell
volume is specified the coordinate transformation Jacobian is positive and finite. Thus,
a nonsingular grid is ensured in all but extreme cases where "shock-wave-like"
discontinuities can occur.

1. Analysis of hyperbolic grid generation schemes. The task of generating the
exterior mesh about an arbitrary closed boundary curve such as the one illustrated in

* Received by the editors March 21, 1980, and in revised form August 15, 1980.

" Department of Aeronautics and Astronautics, Stanford University, Stanford, California 94305.
5; NASA Ames Research Center, Moffett Field, California 94035.

431



432 JOSEPH L. STEGER AND DENNY S. CHAUSSEE

Fig. 1 is considered. Here the outer circumscribing boundary is not specified; it only
need be sufficiently far removed from the inner boundary. Such a grid generation
problem is frequently encountered in external aerodynamic applications where a far
field solution can be specified.

rt=0
r 0 x, y SPECIFIED max

x

(a) (b)

FIG. 1. Schematic of grid mapping procedure.

As in [3]-[6], partial differential equations are sought which produce smoothly
distributed grid lines of constant : and r/(see Fig. l a) such that mesh lines of the same
family do not cross or coalesce. In this way a one-to-one mapping will exist between the
grid in the physical plane and the specified grid in the computational or transform plane
(Fig. l b). The distribution of grid points on the body is specified, while the outer
boundary curve is required to be sufficiently far removed from the interior curve.

A. Arc length scheme. Generalizing on the constructive-like grid generation
procedure developed in [1] and [2], we propose that the and r/coordinate lines satisfy
a constraint of orthogonality, i.e.,

(la) V" 7r/= O,

or in the transform plane,

(1 b) xx, + yy, 0.

Moreover, the distance between levels of r/= constant lines is constrained by some rule,
i.e., in the physical plane

(2a) (ds)2 (dx)2 + (dy)2
or

(2b) (ds)Z (xd+ xn dn)2 + (y,d+ Yn drt)z,
where As---- ds/dl is specified by the user. For convenience a uniform grid is specified in
the computational plane with d/dq 1. Expanding (2b) and using (lb) gives

(3) x + y +x +y (As2.

Equations (lb) and (3) comprise a system of nonlinear partial differential equations
with initial data in r/. As shown below, local linearization of this system of equations and
subsequent analysis reveals that the equations are hyperbolic and can thus be marched
in r/from initial data along the body, rt 0 of Fig. 1.
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Let ; x x and 37 y yO, where x and yO denote a known near solution state;
then term by term linearization of (lb) and (3) proceeds, for example, as

xcc (x +)(x +)
0~._ + + o(a )

(4) xx. o + x(x x). + x(x x)
0 0 0 0

X tiXn 4- XnX XIX n.

The resulting locally linearized system corresponding to (lb) and (3) is then found
to be

n Y x x y x xxn+Lxo. y, Y 1/2{(As)2+(x)+(x)2+(y)2+(y)}Y Y
OF

(5) Ar +Brn f.

If o o o oxyn -xny (which is also the transformation Jacobian) is unequal to zero, then B-exists. Furthermore, if B-A has real distinct eigenvalues, the system is hyperbolic and
is therefore well posed for initial data in (cf. [7].) The characteristic equation of B-A
is

2 0 0 0 2(6) (xny ,) 0,--xy

which clearly has real distinct roots. If 0 o o oxy n x ,y 0, the mapping from x, y to , is
no longer one-to-one.

Depending on the body shape, the distribution of points along the 0 body
boundary and how s is specified, good results can be obtained by using (5) to generate
x, y grid points in the transformed plane. We can consider the scheme of McNally and
Graves’ extension of it as a particular solution algorithm of (5), in which s is chosen in
an indirect way so that certain level line constraints are met. In Graves’ work in meshing
re-entry aerodynamic shapes, excellent results are obtained for closed bodies without
reverse curvature. The same algorithm does a poorer job for bodies with regions of both
positive and negative curvature.

B. Cell volume scheme. To better ensure a nonsingular mapping from x, y to , ,
an alternate set of hyperbolic grid generation equations was formulated. The condition
of orthogonality is again imposed. Instead of specifying a grid length increment,
however, a grid cell volume (i.e., area in two dimensions) is specified. If a finite grid cell
volume is specified, the transformation Jacobian should be nonsingular as

(7) dx dy (xey, xnye) dd J- dd.
In our numerical implementation = 1, so the Jacobian determinate will
approximately equal the physical cell volume, x y.

An alternate set of grid generation equations are thus given by

(8a)

(8b)
or

(9a)

.n nx J,

xxn + YYn 0,
1(9b) xyn xny = V.

Here V represents the grid cell volume (actually area) and is user specified.
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The linearized form of (9) is found to be

o
o -x y -y xJ yYn V+V

which is again of the form

(11) Art +Br =.
Here B- exists if x +y 0, while B-A is found to be a symmetric matrix. A
symmetric matrix has real eigenvalues, so again the system is hyperbolic and is suitable
for marching in .

A hyperbolic grid generation algorithm and applications. A grid generation
algorithm is developed from (9) by specifying a rule for choosing V and by solving
numerically with specified initial data along the body surface. In our procedure a
noniterative implicit finite difference scheme is used which is centrally differenced in :
and which is first order accurate in the marching direction r/. An unconditionally stable
implicit finite difference scheme is selected, so that any incremental spacing in r/can be
specified just so long as solution accuracy is maintained.

Let A: At/= 1 such that r/= k- 1 and j- 1. To second order numerical
accuracy (11) can replace (9) and be differenced as

(12) ri,k+ --ri.k +B-A ri+,k+-- ri-,+ B_fi k+l + ee(iAj)2r k,
2

where coefficients x, y, x o and V of (10) are evaluated at the previous level k"
e.g., (V)/ V. The term (ii)2ri, is an added, fourth order numerical dissipation
term. The terms x and yOn are obtained by solving (9), that is,

o 0
o yV

(13a) xn (x)2 + (y)2,
0 o

o xV(13b) Yn (x)" + (y)2’
while x and y are obtained from central differences

(14a) xo Xi+x, -xi_,

"- 2

(14b) yO Yi+I,/ Yi-I,I

That the nonlinearity of the equations is maintained is clearly evident from (13a) and
(13b).

For a specified cell volume V and initial data, the difference equations (12) are
easily solved for each new k + 1 index by inverting a block tridiagonal, with 2 x 2 blocks,
for all points in j. The nonlinear implicit finite difference algorithm used here is more
thoroughly described, for example, in [8]. There the interested reader can find
extensions for three space dimensions, higher order accuracy, and a discussion as to why
numerical dissipation is added to the algorithm.

Various ways of defining the cell volumes are possible, but a simple procedure over
which the user has fairly good intuitive control has been devised. Define polar
coordinates, 0 and R, with variable spacing in 0(:) and R(r) about a circle whose
circumference is the arc length of the body to be meshed. Distribute points on this circle
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with exactly the same arc length spacing with which they are defined on the body. This
determines 0j O (:). Along the radial lines pick a desirable spacing Rk R (r/). In many
aerodynamic applications, for example, an exponential clustering is used:

Rk Rk-1 + (R2-R1)(1 + e)k-2, k 2, 3, 4,.

with e, R1 and R2 specified. The polar grid lines then define reference cell volumes,
Vj*,k (gEk/l--gEk)(Oi/l--O-)/4 which can be used to define V.,k.

.5 5O

a) Overview. b) Grid detail near corner.

FIG. 2. Viscous grid generated about typical aircraft-fuselage cross section.

5.O 1.5

Y Y

-5.0 -0.5
-_.0 X .0 -0.5 X 1.5

a) Overview. b) Grid detail of blade.

FIG. 3. Inviscid grid generated about highly cambered airfoil or turbine blade.

The grids shown in Figs. 2 to 5 were generated by combining the above cell volume
Vi*,k with another reference cell volume, V,k, which is defined precisely like V*,k but
with 0j uniformly spaced. The cell volume is then written as

V=V*+(1-a)V’, c (l-e)k-2.
Grids suitable for both inviscid and viscous flow calculations were generated. The

viscous flow grids (Figs. 2 and 4) are distinguished by the use of extremely fine r/-grid
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1.5 0.50

X 0.25

a) Grid detail near body. b) Grid detail near leading edge.

FIG. 4. Viscous grid generated about highly cambered airfoil or turbine blade.

FIG. 5. Grid generated about symmetric airfoil.

spacing at the body. In all cases the grid spacing in r/near the body is uniform and is
essentially equal to the specified value R2-R1. Thus, very good control of grid line
spacing is maintained near the body. Away from the body, the spacing in r/can distort
significantly from Rk. In Figs. 3 and 4 the convex curvature on the lower surface tends to
force the grid lines to coalesce, but since V j-1 is finite, the spacing in r/is forced to
grow rapidly and thus a singular grid (J 0) is avoided in all but very severe cases. This
feature is inherent to the specified volume scheme and is its most advantageous
property. The grid generation procedure here is very fast, and is typically equal to about
one iterative sweep of a line relaxation method used to generate a grid with elliptic
equations.

Once the grid is generated, transformation metrics can be evaluated by a differenc-
ing scheme that is compatible with or identical to the differencing scheme used for the
physical quantities. As noted in [9], exact evaluation of the metric quantities need not
lead to the most accurate numerical solution of the physical problem, but many
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numerical schemes are enhanced if the grid has smooth variation. We remark that the
use of orthogonal grids does not offer any computational advantage to our particular
flow solver technique [9]. Consequently, we prefer to generate the gr.id by usilag a
low-order accurate numerical scheme, as this enhances smoothness. If orthogonality is
an advantageous property, however, one could generate the grid using higher-order
accurate differencing in the marching direction than what was used here (cf. [8] for such
schemes). As an alternative, one could also ensure orthogonality by using the existing
procedure to generate a much finer grid than what is required, and then discard
unwanted intermediate grid points. Even with use of the current procedure in a
calculation such as shown in Fig. 2, the departure from orthogonality as measured by
{21xx, + yy,l/[(x + y)+(x2 + y2)]} is everywhere less than 4%. The grid shown in
Fig. 3 has a similar departure from orthogonality save for those points immediately
adjacent to the leading and trailing edges. There the measured error at several points is
as high as 20%.

Conclusions. By interpreting previous work, hyperbolic grid generation pro-
cedures are formulated in the style of the elliptic partial differential equation ,schemes

and are used to form body-fitted meshes. For problems in which the outer boundary is
not constrained, the hyperbolic scheme can be used to efficiently generate smoothly
varying grids with good stepsize control near the body. Although only two-dimensional
applications are presented, the basic concepts should extend to three dimensions.
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DISTRIBUTION OF QUADRATIC FORMS IN NORMAL RANDOM
VARIABLES---EVALUATION BY NUMERICAL INTEGRATION*

S. O. RICEf

Abstract. The problem of calculating the distribution function of a general quadratic form in normal
random variables is examined. Two numerical integration methods for inverting the characteristic function
are presented. Both make use of paths of integration that pass through, or near to, a suitable saddle-point. It is
assumed that a computer is available for the calculation of functions of complex variables and for the
performance of various matrix computations. Approximations for special cases are stated and examples are
given.

Key Words. probability distribution, quadratic form, numerical integration

1. Introduction. The distribution of the quadratic form

(1) y . ajkZiZk, ajk aki,
]=1

where the z’s are correlated normal random variables, has been extensively studied. A
survey of the subject is given by Johnson and Kotz in [1, Chapt. 29]. Here we shall be
concerned with the problem of calculating the distribution of y by using numerical
integration to invert the characteristic function.

When we set A equal to the matrix (aik), (1) can be rewritten as

(2) y=z’Az,

where z is the column matrix (z.) and z’ is its transpose. Let the probability density
of z be

(3) (z, z2, ", z.) (2r)-"/al v1-1/: exp [- 1/2(z )’ V-(z )],

where V is the covariance matrix, vI is its determinant and : is the column matrix of
the means 1, 2," ", :,. By using matrix theory Johnson and Kotz [1] show that the
characteristic function G(it) E[exp (ity)] is, with u it,

(4) G(u) exp{ 2 )- } uX)-1/w[(1-2uh -1] fi (1 2
j= 1=

Here hi is the jth eigenvalue of the matrix VA and toi depends upon V, A and s in the
manner shown in Appendix A. The values of hj and toi are real. Throughout the paper it
is assumed that h >_- A2 >--" ->- h,, and that no hi is zero.

It can be shown that the distribution of y is the same as that of the random variable

(5) x( W,. wj):,
where the W.’s are mutually independent normal random variables with unit variance
and zero mean.

* Received by the editors August 9, 1979, and in revised form September 15, 1980.
t Department of Applied Physics & Information Science, University of California, San Diego, La Jolla,

California 92093.
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The integrals that we desire to evaluate are

e -uy+’(u) du,(6) p(y) / ,

(7) O(y) p (y’) dy / ,oo

-uy+,(u) du

where p(y) is the probability density of y, the path of integration in (7) is indented
towards the right at u 0 and we have set

b(u) In G(u)
(8)

[1/2toj2 (1 2uAj)-I 2 1/2 In (1- 2uAi)],COj
j=l

in which arg (1- 2uA)= 0 at u 0.
A number of methods of calculating p(y) and Q(y) are discussed in [1]. Recent

papers aimed at obtaining numerical results have been published by Davies and by Sheil
and O’Muircheartaigh. Davies [2] is concerned with the numerical integration of an
integral equivalent to (7), and Sheil and O’Muircheartaigh [3] give an algorithm for the
calculation of p(y) and Q(y) that is based on an infinite series of central ,2 distribution
functions. Reference [3] treats the case of positive definite forms and a forthcoming
paper by Davies [13] is concerned with the more general case.

When the integrands in (6) and (7) decrease rapidly, numerical integration
along a path parallel to the imaginary u-axis becomes feasible. This method is described
in 3. When Q(y) is not close to 0 or 1, the method becomes similar to the one proposed
by Davies [2].

If the integrands in (6) and (7) decrease slowly, as when n is small, straightforward
numerical integration becomes costly. Grad and Solomon [4] and Slepian [5] overcame
this difficulty (for definite quadratic forms and : 0) by using contour integration to
express p(y) as a sum of tractable integrals. Their work was extended by Johnson and
Kotz [1] to obtain similar sums when the quadratic form (1) is indefinite and : 0.

In 5 we present a different method of dealing with the slow convergence. The
path of integration is tilted in such a way that the constant amplitude oscillations of
exp (-uy) are converted into exponentially damped oscillations. This method works
well for general quadratic forms when lYl is not too small. An example is given in 6.

The appendices contain auxiliary information regarding the computations. The
items listed are either known or are straightforward extensions of known results.

2. The initial point uo.and the saddle-point ul. Let the paths of integration in (6)
and (7) be displaced (but not far enough to pass over any of the points u 1/(2Aj))so
that the paths run from u0-i to u0 + i, where u0 is a point on the real u-axis. Then,
from the symmetry of $(u) about the real u-axis,

(9) p(y) Real
1 f u+i e -uy+’(u) du,

"iTl uo

(10) Q(y) Real
1 f Uo+iOo e-Uy+Ct,(u) du

Uo>0.
7rl., uo //

When u0 < 0 the contribution (-1) of the pole at u--0 must be added to the right-
hand side of (10).
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A good choice of u0 is the appropriate saddle-point ul of exp [-uy + b (u)], i.e., the
appropriate root of

d(u)
(11) Y= du

Differentiation of the expression (8) for 4(u) shows that the right-hand side of (1t) is
the case 1 of

(12) UU (U) . 2[toj/!(1 2uAj)-- + 1/2(I- 1)!(1-2uA)-](2A)/.

If y is equal to E(y), u is zero. When A1 > 0 and a, < 0, U runs from 1/(2A,) to
1/(2a ) as y runs from -oo to +oo. When both and a,, are positive, u runs from -oo to
1/(2a ) as y runs from 0 to +oo.

When y is arbitrary the corresponding u can always be obtained by solving (11)
numerically. However it is not necessary to know Uo exactly because (9) and (10) are
suited to numerical integration even if Uo is only close to u. One way of obtaining a
good value of Uo is to first calculate a short table of dqb(u)/du for values of u lying in the
range of u x. A table of this sort is equivalent to a table of solutions of (11) and can be
used to obtain an estimate of the u corresponding to a given y. This estimate of ul can
then be used as the Uo in (9) and (10).

3. First integration method--path parallel to imaginary u-axis. When the inte-
grand decreases rapidly and Uo is close to u 1, the trapezoidal rule can be applied directly.
The first step is to calculate a suitable value of Uo as discussed in 2. Then the change of
variable u Uo + ibv converts (9) and (10) (with the help of (7)) into

(13) p(y) I Real [ ()e-UY+(u)] dv,

I 0, uo>0} I ](14) O(y)= , Uo=0 + Real u- e-+’() dr, u =uo+ibv.1, Uo<0

We shall take b to be

[42 ]x/z(15) b "(U0)
where 4,"(u0) is the value of (d/du)=cb(u) at Uo.

Two forms of the trapezoidal rule are available, one in which the integral of f(v)
from v =0 to oo is approximated by h[1/2f(O)+f(h)+...] and the other in which it is
approximated by h[f(h/2)+f(3h/2)+...], h Av being the spacing. When applied to
either (13) or (14) the errors in the two approximations are of about the same magnitude
but of opposite sign. Since the second form is more convenient for O(y), we shall base
the numerical integration upon the equations

(16)

(17) O(y)

p(y) h Y. Real- e -’’+4"(u) -El,
n=O

1 +exp [2ZrUo/(bh)] [ b 1 _,+,(,)]+h Y Real---e -E2,
n=O "/r U

u Uo + ibh (n + 1/2),
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which follow from (13) and (14). The error terms E1 and E2 and the first term on the
right in (17) are discussed in Appendix C.

To use (16) and (17) we ignore E1 and Ez and compute the sums for several
descending values of h. When b has the value given in (15) good first trial values of h are
h 1.0, 0.5, 0.25. Selection of a truncation point is aided by the fact that lexp [-uy +
b (u)]l usually decreases steadily.

When u0 0 (16) and (17) can be used efficiently for values of y such that O(y) is
not close to 0 or 1. Equation (17), with Uo 0, b 1 and a different method of choosing
h, is equivalent to the one used for numerical integration by Davies [2].

4. Example illustrating the method of 3. To illustrate the numerical integration
method discussed in 3 we consider a characteristic function used by Dillard and
Rickard [6] in connection with a detection problem. For their problem, our function (8)
for b (u) becomes

N

(21) b(u)= Y. [Ck(1--2Uhk)-l--Ck--ln(1--2Uhk)],
k=l

where

kr ] k=l,2, N.(22) hk=2+2cos (N+I)

We shall take N 25 and Ck 0.2, k 1, 2, , N.
The first step is to determine values of u0 to be used in (16) and (17). We can either

set u0 ul where Ul is the saddle-point obtained by solving y=4,’(u) (eq. (11))
numerically, or we can obtain Uo ul from a short table of $’(u). We shall use the
second method and calculate a table of the first and second derivatives of $(u) for
values of u that lie in the range of Ul. From 2 this range is -o < u < 1/(2A 1) 0.1255.
Typical entries might be:

(23)
U

6’(u)
O"(u)

0.08
295.679

5998.8

.03
152.214

1394.5

0.0
120.000
828.2

-0.05
89.811

441.4

-0.20
52.682

140.3

The entry for u 0 shows that

(24)
E(y) b’(0) 120.0,

Var (y) b"(0) 828.2.

The entry for u =0.08 shows that ul =0.08 is the saddle-point of exp [-uy +4,(u)]
when y 295.679. Furthermore, if we take Uo to be 0.08 in (16) and (17) for p(y) and
Q(y), the parameter b is given by

[ 2 ]1/2 [ 2 ]
1/2

b"(Uo) 5998.8 =0.0183.

Substituting these values of u0, y, and b in (16) and (17) (with E1 and E2 deleted) and
performing the summations gives the first four columns in Table 1.
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TABLE

M

1.0 12
0.5 24
0.25 48

Uo 0.08, y 295.678

p(y)

.4804 5093 (-6)

.4813 2785 (-6)

.4813 2788 (-6)

.5630 9403 (-5)

.5639 1427 (-5)

.5639 1429 (-5)

O(y), y 52.682

Uo -0.20

.9986 7186

.9986 8994

.9986 8994

u0=0.0

.9694 8460

.9986 8807

.9986 8994

Here M is the number of terms used in the summations.
In 3 it was mentioned that numerical integration using (17) with Uo 0 works

well provided Q(y) is not close to 0 or 1. The last two columns in Table 1 show that
Q(52.682)=0.9986 8994. It is seen that the performance of (17) using Uo=0 is
beginning to deteriorate (compared to that obtained by using Uo= u 1), but it is still
quite good.

Calculations using Uo u in (16) and (17) for other values of y show essentially the
same rate of convergence as in Table 1.

The asymptotic approximations for p(y) and Q(y) stated in Appendix F were
computed for the values of b’(ul) y listed in (23). The values given by the approxima-
tions agree with the numerical integration values to within at least three significant
figures in all of the cases.

5. Second integration method---tilting the path. When n is small the integrals for
p() and O(y) usually converge slowly. In this case, if y 0, we can transform the
integrals (9) and (10) by setting

u Uo + sv, du/dv s,

(1 + ix/)
--, y>O,

Y(25) s
(1 i4’), y<0.

Y

Jordan’s lemma shows that we can take v to run from 0 to o. The value of s stated in
(25) causes the new path of integration in the u-plane to make an angle of 60 with the
real u-axis so that now the absolute values of the integrands decrease exponentially.
The further transformation (see [7, VII),

(26) v exp (x- e-X), v(1 + e-X),
dx

and elimination of v puts the integral (9) in a form suited to evaluation by the
trapezoidal rule"

(27) p (y) Real s_ I_ exp [-uy + b (u) + x e-X ](1 + e -x) dx,

(28) u Uo + s exp (x e-X),

where s is given by (25).
Dividing the integrand in (27) by u gives the corresponding integral for Q(y) when

Uo>0 (when Uo<0, the integral is equal to Q(y)-1).
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These integrals for p(y) and Q(y) are suited to machine calculation because it is
easy to get u from x. When the trapezoidal rule is used for several decreasing values of
h Ax, the convergence to the exact values is quite rapid if y is not too small. Good first
trial values are h 0.3, 0.15, 0.075, with truncation at x +3.3. If Y. In (1 2uhj) in the
expression (8) for b(u) is calculated by first writing it as In P(u) and then calculating
P(u) [-I (1 2uAj), care must be taken to get the correct value of Im [In P(u)].

6. Example illustrating the method of 5. Suppose that we want to calculate the
probability density of y 2z:z2, where z: and z2 are normal random variables with
respective means 3, 5, variances 1, 4 and correlation coefficient 1/2. Then

(29) A=[0 10], V=[ 1 ] [35]1 =
The formulas of Appendix A yield the matrices

1 x L’AL=
.,/. 0

from which we get

: =3, ,. -1,
(31) 2 121 2

(.01 12 092 --.
The function b(u) that we have to work with is obtained by setting these values in (8)
with n 2.

The first step in the numerical evaluation of (27) for p(y) and its mate for Q(y) is to
calculate a set of values of u0. As,in 4, we elect to use the method based on a table of
b’(u) for values of u that lie in the range of the saddle-point Ul. From 2 this rangeis
1/(2A2) =-0.5 <ul < 1/(2A1)= 0.166. Typical entries might be

u 0.10 0.05 0.0 -0.30 -0.35
(32)

b’(u) 195.6 64.9 32.0 0.87 -1.996,

where, for instance, u: =0.10 is the appropriate saddle-point of exp[-uy +b(u)]
when y 195.6.

Suppose that we are interested in calculating p(y) and Q(y) for y 100 and
y 0.005. From (32) we see that Ul for y b’(Ul)= 100 lies between 0.10 and 0.05.
Since good numerical integration results are obtained even if Uo is only close to u l,

we arbitrarily choose Uo=0.07. Similarly for y=0.005 we choose u0=-0.32.
When we use these values of Uo in (28) and apply the trapezoidal rule to (27) and its
mate for Q(y), we get the values shown in Table 2.

TABLE 2

.3

.15

.075

.05

.0375

N

23
45
89
133
177

p(100)

.3593 73 (-3)

.3594 02 (-3)

.359402(-3)

O(lOO)

.4257 12 (-2)

.425734(-2)

.4257 34 (-2)

p(.OOS)

.6894 50 (-2)

.624253(-2)

.6335 14 (-2)

.6335 13 (-2)

.6335 13 (-2)

Q(.005)

.1323 01 (-1)

.709408(-2)

.7157 60 (-2)

.715228(-2)

.715228(-2)
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Here we have used the form h[...+.f(-h)+f(O)+.f(h)+...] of the trapezoidal rule
with h Ax and truncation at x +3.3. N is the number of points used.

The values of h 0.05 and 0.0375 used for y 0.005 in Table 2 show that values of
h smaller than the recommended 0.3, 0.15, 0.075 are necessary when y is small. As lY[
increases, the larger values of h suffice. For example, at y 0.87 the values of p(y) and
Q(y) computed by using h 0.15 and h 0.075 (with u0 =-0.30) agree to within six
figures, just as for y 100 (see the third and fourth columns in Table 2).

When p(y) is computed by numerical integration for a number of values of y and
the results plotted, the curve that is obtained resembles the curve of a simple unimodal
probability with E(y)= 32 and Var (y) 384 (see Appendix B) except for something
peculiar at y 0. Reference to Appendix D shows that the peculiarity consists of a
logarithmic spike at y 0. Calculations based on the equations in Appendix D show
that when lyl is small

(33) p(y) -0.000524 In lY[ + 0(Y),

where 0(Y) is continuous at y 0 and O(0) 0.003537. Replacing O(Y) in (33) by 0(0)
and setting y=0.005 gives the approximation p(0.005)=0.006314. This is to be
compared with the "exact" value 0.006335 in Table 2.

Setting n 2 and m 1 in the equations stated in Appendix E shows that when

(34) p(y) 0.000625y -1/2 exp [ 1.833yl/2-],
(35) p(y)O.OOZOl(-y)-/:Zexp[O.5(-y)/:z+],
The error in (34) is about ten percent at y 100.

The asymptotic approximation for p(y) stated in Appendix F gives three accurate
significant figures at y 20, and its accuracy increases as y increases beyond 20.

2Appendix Acalculation of A and o. The values of A and o needed in (4) and
(8) can be calculated (see [1]) by first decomposing V into the product V =LL’
(Cholesky decomposition) where all of the elements of L lying above the principal
diagonal are zero. Then A is the jth eigenvalue of L’AL and o can be obtained by
squaring the ]th element in

(A.1) oo P’L-atj.

Here P’ is the transpose of the orthogonal matrix P formed by setting the eigencolumns
(eigenvectors because L’AL is symmetric) side by side.

The calculation of L can be avoided at the cost of dealing with unsymmetrical
matrices by using the fact that Aj is also the jth eigenvalue of VA and that

(A.2) to (/’th element in the row :’ V-l/) (]th element in the column P- ),

where/ is the square matrix formed by putting the eigencolumns of VA side by side.

Appendix B---eumulants. The kth cumulant of the distribution specified by the
characteristic function (4) is [1]

(B.1) Kk 2k-(k- 1)! (kwj + 1)A
i=l
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In particular K1 is the expected value of y and/2 is its variance. We also have

(B.2) nk 2k-lk!’A vA)k-I / 2k-l(k 1)! Trace (VA)k,
which can be expressed as a multiple sum by using the rule for matrix multiplication.
Equation (B.2) can be proved with the help of (A.2) and VA-/A/3-1 where A-
diag (h 1, hE,. ’, An).

Appendix C--the trapezoidal rule in 3. Equation (17) for Q(y) can be obtained
by first assuming Uo>0 and rewriting (14) as

(C.2)
--1-h E f(nh)- E’ O(k) e -’k,

k

where the prime on ’ indicates that the term for k 0 is omitted. When we write Q(k)
as 1 -[1 Q(g)] in the terms for k >0, we can sum exp (-qk) from k 1 to and get

(C.3) Q(Y)
(1 e)+ h ,=-E f(nh) k=E (Q(-k) e ok [1 Q(k)] e-k)

If we start with Uo<0 instead of Uo>0 we again get (C.3) (Q(y) in (C.1) and (C.2) is
replaced by Q(y)-1 and Q(k) in (C.2) by Q(k)--1).

When h/2, e becomes -exp [2Uo/(bh)] and (C.3) can be put in the form of
(17) in which E2 is equal to the second summation in (C.3).

When Uo 0 and b 1, the real part of (C.3) becomes an equation given by
Davies [2].

An expression for E in (16) for p(y) can be obtained by differentiating E2 with
respect to y, or directly from the Poisson sum formula (see VII of [8]). The result is

( ) -2uk/(bh)(c.4) = E’ (-)p y- e
k=-

If we set 8 0 in (C.3) it becomes

O(y)=l_eq h eReal -e
n=0

(c.5

2 (O(-)e -[1 O()] e-),

Q(Y) - u u=,o+ib(,.,+)
(c.)

=- f(v) dv,

where t is an arbitrary real parameter and f(v) denotes the integrand in the first line.
Let

$k y 2rrk/ (bh ),

q 2zr(uo + ib)/(bh).

Consider the Poisson sum formula in which the k 0 term is the integral (C. 1). It can be
put in the form

1 1 /i2vk
Q(y)=h E f(nh)- f(v)expk h

dv
h k
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where nowq=2ruo/(bh), U=uo+ibhn ande,=lifn>0andeo When Uo0
both 1/(1- e q) and the n 0 term in (C.5) become infinite, but in the limit their sum
becomes

(C.6) 1/2 + [E(y) y ]bh/(2 rr).

Equation (C.5) for O(y) corresponds to the form h +f(h)+...] of the trapezoidal
rule in the same way as (17) corresponds to the form h[f(h/2)+f(h/2)+...].

Appendix D--behavior of p(y) near y = 0. Let E, (no relation to E, in Appendix
C) be defined by

(D.1) E, --<[AA2"’" hnl-1/2exp gcoi
/=1

Then, near y 0:
(a) When n 2 and h > 0, h2 < 0,

1
(D.2) p(y) --E2 In [y[ + O(y),

where (y) is continuous at y 0 and has the value

E2[ t4 1(k-1)!(2k)-- (X k +xk)](D.3) (0) In -0.5772... + +

at y 0. Here 0.5772... is Euler’s constant, x A/B, and

a wxh 71/2 o2A2]-1/2 B (h 71 + [h2[-x)/2
One derivation of (D.3) proceeds by" (i) using (5) to express p(y) as a convolution

integral, (ii) integrating by parts to bring out the In [y] term that appears in (D.2) and
(iii) expanding the remaining integral in a series after setting y 0 and using the fact that
the integral of exp (-u) In u from u 0 to m is equal to Euler’s constant.

(b) When n 3 and ha > 0 but h2 and h3 are <0,

(D.4) p(y)= (2)_1/2E3 { ,
-y /, y>0

+O(Y)’

where O(y) and its first derivative are continuous at y 0.
(c) When all of the hi’s are positive and y is small and positive,

(D.5) p(y)= 2-"/2y("-2)/2E,/F(n/2)+ O(y"/2).

The leading term is the first term in a convergent power series given by Johnson and
Kotz [1].

Appendix Ebehavior ot p (y) near y =. Let h be positive and of multiplicity
m so that hi=A2 h>h+ah+2’’ .h,. Also let

x=y(2hx)-a, M 2
wi, ai 1-hih,

i=1

[ 11 ] -1/2 2(E.1) C (2h)- exp [a exp (i/ai)], m<n
i=m+l

C=_2hl_-lex_()p $o9
i=1

m n,
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Then, as y - oo,
(m-2)/4

e-XI(m/2)_l [2(xM)1/2]

where I(m/2)--1[ is a modified Bessel function. Special cases are

(E.3) p(y) --> Cx ("/2)-1 e-"/F(m/2), M O, x --> o.

(E.4) p(y)__> C()
(m-2)/4 exp [-x + 2(xM)1/2] 1/2

2,1rl/2(xM)l/4 (xM) -->

Expression (E.2) can be obtained by noting that the path of integration in the integral
(6) for p(y) can be deformed so that when y is large most of the contribution arises from
the region around u 1/(2A 1).

Let A,, be negative and of multiplicity m. Then as y --o, the behavior of p(y) is
given by (E.2), (E.3), and (E.4) with x, M, aj, and C redefined as

(E.5)

x y(2A,)-1, M toj, aj 1 AA,1,
j=n-m+l

2 exp (o/ai)].C (-2h.)- exp oi H [0;1/2 2

1=1 1=1

Appendix F--asymptotic-like approximations. When most of the contribution
to the integrals (6) and (7) (with paths of integration deformed so as to pass through u 1)
comes from the region around Ul, approximations to p(y) and Q(y) can be obtained
from asymptotic series given by Daniels [9] and Lugannani and Rice [10].

Let denote the value of (d/du)(u) given by (12) with u ul. Also,

Ol (’l!12/2 ),

1
(F.1) =(u/),

Then the approximations are

(F.2)

where

fl=--Uly+(Ul).

p(y) (2 x-l/2 [1502"/T(]92) er[1 k2 3-- 304)

+(2310 252004 + 560305 + 280 806)],

Q(y) =1/2 erfc (4---)+(Ao-Bo)+(AI-B1),

erfc (x) 2"rr -1/2 Jx e-t2 dt,

(F.3) Ao p,(2"rr)-1/2 efl, Bo efl/(27r 1/24-fl),
A1 -Ao[tx 2 + 3/x03 + (03 3 04)], B1 Bo/(2fl),

and /:fl has the same sign as u 1. When y -, E(y), u - 0 and both Ao and Bo become
infinite. However Ao-Bo remains finite and we have

(F.4) Q[E(y)] 1/2- 03/(2 zr) 1/2.



448 s.o. RICE

The Chernoff bound for Q(y) can be expressed in terms of fl as

(F.5) erl> [ Q(y) if y>E(y)]1-Q(y) ify<E(y)

Another type of asymptotic approximation suited to the integrals (6) and (7) has
been given by Helstrom [11]. His approximation makes use of continued fractions.
Grenander, Pollak and Slepian [12] have given an approximation for p(y) when n is
large, VA is a Toeplitz matrix and toj is zero. Their approximation is in the form of an
integral. Its derivation makes use of a result due to Szego regarding the eigenvalues ofa
Toeplitz matrix.
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A NUMERICAL METHOD FOR COMPUTING THE SHAPE OF
A VERTICAL SLENDER JET*

JOHN STRIKWERDA" AND JAMES GEERt

Abstract. A numerical method is presented for computing the shape of a vertical slender jet of fluid
falling steadily under the force of gravity. The problem to be solved is fomulated as a nonlinear free boundary
value problem for the cross-sectional shape of the jet. The numerical method of solution treats the boundary
conditions of the problem as a pair of nonlinear hyperbolic pseudo-differential equations to be integrated in
the stream-wise direction. The original differential equation appears as an auxiliary condition. This
formulation is shown to be well-posed. The numerical method is found to be stable and second-order accurate.
Computations are presented for jets issuing from several different orifice shapes. The numerical method of
solution appears to be new and may be applicable to other nonlinear free boundary value problems.

Key words, free boundary value problem, finite difference method, fluid jet, hyperbolic equations,
potential flow

1. Introduction. We present in this paper a numerical method which we have used
to determine the shape of the free surface of a slender jet of fluid falling vertically in the
presence of gravity. The flow is assumed to be a steady, three-dimensional potential
flow. The solution procedure determines the cross-sectional shape given the shape and
velocity profile at a particular height (e.g., at an orifice from which the jet emanates).
Surface tension and viscous effects are neglected. The mathematical formulation of the
problem leads to a fully three-dimensional, nonlinear boundary value problem for
Laplace’s equation, for which the boundary of the flow is also unknown. For the case of
a slender jet, however, Tuck [11] and Geer [2], [3] derived equations to describe the
first approximations to the cross-sectional shape and velocities of the jet. The problem
of determining the shape is thus reduced to solving a nonlinear two-dimensional
problem in the cross-sectional plane of the jet. Both Tuck and Geer gave an exact
solution to this problem for a jet with an elliptical cross-sectional shape (see also Green
[5].) To date no other exact solutions have been found.

The purpose of this work is to present in some detail the method we have
developed to solve numerically the associated nonlinear free boundary value problem
for jets which fall vertically from an orifice of a specified shape. The problem is
formulated in 2 and then transformed into a form more suitable for numerical
integration. In 3 through 5, we describe the numerical method that we have used to
integrate the problem outlined in 2.

In 6 we present the results for three of the different orifice shapes for which our
calculations were made. These shapes are an ellipse, a rectangle and an equilateral
triangle. The accuracy of our method is discussed in 7, while the well-posedness and
stability of the method are discussed in 8.

The numerical method presented here appears to be new and may be applicable to
other three-dimensional free boundary value problems. The usefulness of most existing
numerical methods for solving free boundary value problems is restricted to one and
two dimensions (see Wilson et al. [12]).
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2. Formulation of the problem. Let the velocity potential of the jet be denoted by
=(r, 0, z; e) and let the shape of the free surface of the jet be described by

r 5(0, z; e) (see Fig. 1). Here r, 0 and z form the usual (nondimensional) cylindrical

5e(O, z e

FIG. 1. Sketch of a vertical slender.let, with an indication of the coordinate system.
The locus ofcentroids of the cross-sections of the jetform a straight line (in the direction of
gravity), which we choose to be the z-axis. Then r, O, and z form the usual cylindrical
coordinate system, surface of the iet is denoted by 5t’(0, z e ).

coordinate system, with the positive z-axis pointing vertically downward in the direc-
tion of gravity. The parameter e, the slenderness ratio of the jet, is the ratio of a typical
radius of the jet to a typical length along the jet and is defined precisely by Geer [2]. The
boundary conditions at the free surface are the kinematic condition of no flow through
the surface and Bernoulli’s equation with constant pressure. For small values of e, Geer
[2] has shown that and 5t’ are given by

(2.1) = }(l + z)3/z + e zc (tc, O, z) + O(e3),
(2.2) 5t’= S(O, z) + O(e),

where b and S satisfy the conditions

1 04 1 024 1 )-1/2,(2.3) Oz4 +- --+rZ (1 + z
Or2 r Or -- 2

z>0, O<-r<$(O,z),

with

(2.4) 0____ 1__ 0S 04_ (1 + z)1/
OS

Or Sz O0 00- Oz

and

+ $-2 + 2(1 + z) 1/2 0__ 0
Oz

holding on r S(O, z). Equation (2.3) follows from Laplace’s equation for the potential,
while (2.4) and (2.5) result from the substitution of the perturbation expansions (2.1)
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and (2.2) in the boundary conditions. Thus, we see that O must satisfy the two-
dimensional Poisson equation (2.3) in the cross-section of the jet, while (2.4) essentially
prescribes the normal derivative of O at the boundary of the cross-section. Equation
(2.5) is the additional condition which is needed to determine the free surface. In
particular, it is an easy exercise to show that an initially circular jet with a uniform
velocity profile has cross-sections which remain circular and decrease in area as the jet
accelerates.

To compute & and S, we transform the problem (2.3)-(2.5) into a form that is
somewhat easier to deal with numerically. We first note that we can easily find a

particular solution to’(2.3), and consequently we write & in the form

(2.6) & -(1 + z)-a/2r2 + ,
where satisfies the homogeneous version of (2.3), i.e., Laplace’s equation. Both and
$ are presumed known at z 0. We then introduce a new independent radial variable p,
related to r by

r
(2.7) P=S(O,z)"
Thus, r is stretched in a nonuniform manner, but the unknown boundary r $(0, z) is
mapped onto the known boundary p 1. We also define the new dependent variable
R(O,z) by

(2.8) R(O, z)=1/2S(O, z)2(1 + z) a/2.

in terms of the independent variables p, 0 and z, and the dependent variables 0(P, 0, z)
and R (0, z), (2.4) and (2.5) can be written as

OR 2) Og,
(2.9) 0-- (1 +/3 pp-/3 0--’

(210) 4R 0--0 (0p)
2

(0-)
2 3 RE

Oz
(1 +/32)

4 (1 + z)2’

where

los 1 1 OR
S 00 2 R 00

These equations hold for O 1, 0 <-0-<_ 2rr, and z > 0. The differential equation (2.3)
then becomes

(2.11)

(1+/32) 1 0 (O_,) O/? 104, 1 024, 1 024,- 2 2/3-
p

P OOp Op p 002 p OpO0

002, 0p<l, z 0.

=0,

As a consequence of equations (2.3)-(2.5), we find the integrability condition

(2.12) R (0, z) dO constant 2rrM,

which expresses the constant mass flux in the jet.
Thus, we seek solutions to (2.9)-(2.11) for 0 and R in the region 0 _-< p -< 1, z > 0.

Once and R have been found, & and S can be recovered using (2.6) and (2.8).
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3. Method of solution. In this and the next two sections, we shall describe the
method we have devised to solve the problem formulated in 2. In particular, in this
section we will present the underlying motivation for our method as well as the specific
finite difference formulas we use. Details of the method we use to solve Laplace’s
equation will be discussed in the next section, while our treatment of possible dis-
continuities (e.g., corners) in the jet profile shape will be presented in 5.

Instead of attempting to solve the differential equation (2.11) subject to the
auxiliary conditions (2.9)-(2.10) and (2.12) (as in a classical approach), we proceed in a
different manner. To begin, we temporarily think of both $ and R as functions of z and
0, defined only on the boundary p 1. Then, in this context, we may regard equations
(2.9)-(2,10) as a system of two nonlinear hyperbolic pseudo-differential equations for 4’
and R, with z being the time-like variable and 0 the spatial variable. These equations
are hyperbolic because the first-order symbol of the linearized system has purely
imaginary eigenvalues (see 8). They are "pseudo" differential equations because the
operator O/Op is a nonlocal operator on O, when considered as defined only on p 1.
However, the "auxiliary" condition (2.11) which holds for p < 1 serves to define O6/Op
in terms of , and R on the boundary. Condition (2.12) is then a conservation law of the
system.

In order to obtain a numerical approximation to the solution of our problem
formulated in this manner, we use a finite difference scheme defined on the grid points
as follows:

0i- (i- 1)A0, 1,..., N,

(3.1) Pi 1-(j-1)Ap, j 1,...,M,

Zn n AZ, n=0,1,2,3,...,

where AO=2rr/(N-1), Ap= 1/(M-l) and Az is chosen to satisfy appropriate
stability and accuracy criteria (see 7 and 8). Note that 01 0, 0u 2rr, Zo 0, pl 1
and pM--0. We then use the MacCormack scheme [8] to solve (2.9)-(2.10). In
particular, if we define the vector w(0, z) by w= (R, g,)T, then (2.9), (2.10) can be
written as

0w
F z, w,(3.2)

Oz --where the form of the vector F can be determined from the right-hand sides of
(2.9)-(2.10). We employ the forward and backward difference operators D/ and D_,
respectively defined by

Wi+l WiD+w"
A0

(3.3) D_w’ Wi --Wi-1

A0

WT’-w(Oi, Zn).

Then the forward-backward MacCormack scheme we use is given by the following
two-step formula:

.,,+a Dog,,,);(3.4) (predictor)" Wi W -- AzF(z,, Wi, D+wi,

(3.5) (corrector)" {Wi -" Wi -- AzF(z,+l, ti D_fv. DoOi }.
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Here DoO’ is an approximation to O0/Op on p 1 at 0 0i and z z,, which we shall
describe below. In order to maintain symmetry, the forward-backward MacCormack
scheme is alternated with the backward-forward scheme, which uses backward
differences in the predictor step and forward differences in the corrector step. Also, it
was found that the conservation law (2.12) was satisfied more closely when the quantity
/3 in (2.9) and (2.10) was approximated as

D+/-R/(R, +R,+

and this form was used in all the calculations given here.
The term Do’ in (3.4) and (3.5) is computed by first solving for an approximation

to the solution 0 of (2.11), with 0’ specified on the boundary. The approximation is
given by

(3.6)

Here, Oi,i Oi",i 0(0, Oi, z.), and

(3.7)

D+Ri
Ri +Ri+l

Ai=l+ i+ + -i+ -Bi-
AO

In (3.6) and (3.7) we have used second-order accurate difference approximations to the
derivatives of and R. Equations (3.6) are solved by successive overrelaxation ( 4).
Once i.j is determined, the term DoO’ is computed as

(3.8) DoO’]
2Ap

which is a second-order one-sided approximation to
Equations (3.1)-(3.8) describe our numerical scheme to solve the problem of 2.

For each z step, equations (3.6) are solved twice, once corresponding to the predictor
step (3.4) and then again for the corrector step (3.5). The fact that our scheme is
formally second-order accurate will be shown below. In 7, the second-order accuracy
of our method is confirmed by the results of several numerical experiments.

We conclude this section by showing that the scheme given by (3.4-(3.5) is
formally second-order accurate. To do this, we note that if w is a smooth function of z,
then by Taylor’s theorem

(AZ )2
(3.9) W(Zn+I)_.W(Zn)q_Az

OW
(Zn)_lr. 2 "+- O((AZ)3)

Oz 2
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Let A0 and Ap be proportional to Az, and for convenience set

Then, from (3.2),

0W
(3.10)

0z

w w(1, O, z.),

p+/- D+/-w

qn Do(1, 0, zn),

7=(z,w.,p".,q).

own
(z)= F(z., w", --, Doh’) 1/2{F+ + F_}+ 0((Az)2)

and

(3.11)

Az 02---w--w (z.)= Az --0 {F(z., w", p, q")+ O(Az)}
OZ 2 OZ

OF_ OF_
Az+

Oz Ow

OF_ OF
+Ap"+ +/-q"+O((A)),

where Aw wn+l-wn, etc.
If /n+l is defined by the right side of (3.4), i.e., the predicted value of wn+l, and

then

(3.12)

.+1_ D_@"+I and 4.+1

5w" Cv"+ -w" + O((az):),
Ap"_ O"+a_ -p" + O((hz)2),
Aq"=gl"+l-q" +O((Az)2).

Substituting (3.10)-(3.12) into (3.9), we obtain

W(Zn+I) W(Zn) +7F+ + Az
0F OF
+("+-w")

Oz Ow

which is equivalent to (3.4)-(3.5) and shows that the scheme is formally second-order
accurate.

4. Solution of Laplace’s equation. To use the difference scheme (3.1)-(3.8) to
advance the solution from z z, to z z,+l requires solving the difference approxima-
tion (3.6) to Laplace’s equation for both the predictor and corrector steps. The values of
O and ,+1 in the interior (i.e., p < 1) are used with formula (3.8) to compute DoCk
and Do+x, respectively, which are the approximations to the normal derivative of at
p=l.

The difference approximation (3.6) to Laplace’s equation is solved by point
successive overrelaxation (SOR) using the natural ordering of grid points. The SOR
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algorithm is given by
,k+l .,k .,k+l .,k .,k .,k

i,i --i,i +i{Aipi(Pi-1/2(ti,i-1 -i,i )-Pi+l/2(ti,j -i,i+1)) Ap
,k+l .,k .,k .,k -,k+l[A-Cipj(4’i,-I -6i,+l)(2ap)- +(6i+a-26i,j --It i_l,j/\z..0)-2

,k+l .,k+l .,k .,k(4.1) -p{Bi+[6i+,.- ,- 6+1,+ + 6i,+

+ Bi_[.,k+ .,k + .,k,_ _,_ 4,,+ +,,+]}(2ap ao)-},
j=l,..’. ,N-l, j=2,... ,M-l,

where, to simplify notation, we write 6i,’.k for the kth iterate for either 6i,i or ,i The
iteration parameter a3 is given by

(4.2)
Ai(p/Ap)2 + (1/A0)2’

where

2
(4.3) to

1 + 2.4r-/2(1 + z)l/4alo
andM is defined by (2.12). Formula (4.2) is a normalization, dividing the standard SOR
parameter to by the absolute value of the coefficient of 4’i, in the approximation (3.6).
Formula (4.3) giving the SOR parameter to will be discussed later in this section. The

nlcoefficients Ai, Bi+/- and Ci are functions of R or/ and are given by formulas (3.7).
.i,’,k+lThe value of o.,k/l at the origin, i.e., ,,M was determined from the values at the

.i,.,k+lneighboring grid points, ,-1, by means of the formula

N-1 1,k+l .,k+l (Ai+G).(4.4) 6i, E (Ai + Ci)6i,-
i=1

Formula (4.4) is derived by integrating Laplace’s equation (2.1!) over a disc of radius e
centered at the origin. This gives

(4.5) e (1 + fl (e, O) dO + (e, O) dO O.

If e is taken to be Ap and the integrals are approximated by sums while the integrands
are approximated as

and

I[li,M_ -’[- li,M

then (4.5) yields

N-1 N-1

(4.6) 2 A;(4,;,M-a ;,1 + 2 C;(;,M- + 4q,t) 0.
i=1 i=1

Here, as in (3.7).,

A,=l+fl2, Ci-(Oi).
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Since i.M is independent of 0i and

1 Ci-- l(Ui+l_Ui
i=1 i=1 \Ri+l + Ri

Ri -Ri-l-Ri + Ri-1/
A0-2 0,

(4.4) follows easily from (4.6). Note that (4.4) is formally second-order accurate, as is
the approximation (3.6).

After (4.1) and (4.4) were applied for < N, the periodicity conditions

(4.7) j,k.+l 4,?, +x, 1 =</" <M=

were imposed. The iterative procedure given by (4.1)-(4.4) was terminated when
certain convergence criteria were satisfied. These criteria will be discussed later in this
section.

As noted at the beginning of this section, the approximation to Laplace’s equation
must be solved twice to advance the solution by one z-step. Solving these difference
equations is the most time-consuming portion of the algorithm. By using linear
extrapolation to obtain the initial iterate for the predictor step, the solution time was

tn+l,0reduced dramatically. In particular, for the predictor step, the values of ,.i, the
starting values for the iteration, were obtained as

(4.8) "n+l,0 n--1
11i,] 20i,i Oi,] 1," , N, ] 2, ", M

.,n+lfor the interior values. The values of ,i, on the boundary wcrc given by (3.4). For the
corrector step the initial iterates were taken to be the values of the predicted potential in
the interior, i.e.,

bn+l,0 tn+l(4.9) .,.i, =.,.i. i=l,"’,N, j=2,.",M.
./,n+lThe values of ,i, on the boundary are, of course, given by formula (3.5).

For both the predictor and corrector steps the SOR procedure was terminated
when the relative change between iterates measured in the/2-norm was less than a
small parameter e, i.e., when

Then we set

/n+l n+l,ki,] i,]

and similarly for 0n+l, For the computations described in this paper e was taken to be
10-5. The number of iterations to compute either ,/1 or 0n+l was restricted to be less
than 250. When this limit was achieved, the last iterate was taken to be the solution.
This limit was encountered only for z Az (and sometimes for 2Az) when I1 711= and II011=
were very small, or for larger values of z when the solution was no longer well-behaved
due to lack of resolution ( 6). Since for our examples the potential 0 is zero at z 0, the
condition (4.10) is not very appropriate for small values of n.

Typical values for the number of SOR iterations required to solve for the potential
are given in Table 1. Column (a) gives the number of iterations when the linear
extrapolation (4.8) was used for the predictor step and column (b) gives the number of
iterations when the initial values for the predictor step were the values of potential at
the previous values of z, i.e.,

(4.11) ,?,,+1.0
’ i,] O i,]"

Note that the total number of iterations per step using (4.11) is more than five times that
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TABLE
SOR iterations for several values of z for a rectangle 81 31, Az .1.

a. Linear extrapolation (4.8) b. Previous value (4.11)

Iterations Iterations
Predictor/Corrector Predictor/Corrector

1.0 75 75 >250 48
2.0 22 23 >250 26
3.0 13 13 >250 16
4.0 12 11 247 12
5.0 14 12 217 15
6.0 14 13 181 15
7.0 14 13 147 17

required when the linear extrapolation (4.8) is used. This reduction in time more than
justifies the extra storage required to keep the values of

The formula (4.3) for the iteration parameter to was obtained in the following way.
The difference equations (3.6) are a second-order approximation to Laplace’s equation
on the region r<-S(O, z) with a nonuniform grid given by (3.1). For the usual second-
order accurate five-point difference approximation for Laplace’s equation on a regular
mesh, Garabedian [1] showed that the optimal iteration parameter for SQR is given
approximately by

2
(4.12) to

+

where h is the mesh width and k is the first eigenvalue of the Laplacian on the domain
being considered. He also pointed out that the value of kl can be estimated from below
by the Faber-Krahn inequality

1/2

where A is the area of the domain.
In the present case, the cross-sectional area A varies as a function of z and is given

by

A 2r(1 + z)-/,
where r is defined by (2.12). Thus we have

kT (1.2)x//-1/(1 + Z)1/4.

Using this as an estimate for k in (4.11), we find

2
1 + 1.2/r-/2(1 + z)l/4h

In the present context it is not clear what value should be given to h. On intuitive
grounds it was taken to be proportional to Ap. Moreover, the Faber-Krahn inequality is
sharp for circular domains and is less accurate for elongated and nonconvex domains.
Thus, the quantity klh in formula (4.12) was estimated by multiples of/aAp and, after
some experimentation, it was found that 2klAp or klAp worked very well in most of the
computations considered in this paper.
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5. The treatment of corners. The scheme (3.1)-(3.8) was used to compute the
shape of jets whose cross-sectional shapes contained corners or cusps. Examples of such
jets are those which emanate from rectangular or triangular orifices. In this section we
will examine the finite difference approximation to the solution in the vicinity of such
corners.

For this purpose, consider a corner such as that illustrated in Fig. 2 and assume that
R and 0 are symmetric about the corner, that is,

R (0o + 0) R (0o- 0), 6(0o + 0) 4,(00- 0),

a b

FIG. 2. Examples of the placement of gridpoints near a corner.

where 0o is the angular coordinate of the corner. At such a corner OR/O0 and 0/00 will
change sign, i.e.,

OR OR
0(0o+0= -(0o-0),
00 (0o + 00 -(0o-0),

and OR/O0 will be discontinuous. (Recall that R is related to the shape function S by
(2.8).) However, notice that these discontinuous quantities appear in (2.9)-(2.10) only
as products or squares (recall that/3 (1/2R)(OR/O) so that the right-hand sides of
(2.9)-(2.10) are continuous at a symmetric corner. In order to obtain accurate solutions
for jets having such corners, it is essential that the finite difference scheme properly
portray this behavior of the differential equations.

Consider, for example, the term (OR/O0)(O/O0) Which appears in (2.9). Assume
that the grid is as shown in Fig. 2a, with the corner grid point having index i. The
discontinuous change in sign of OR/O0 at the corner is reflected in the change of sign
between D+Ri and D_R. Similarly, D+Oi and D-0 are of opposite sign. Thus

(5.1)
OR O___._1/2(D+R,D+O + D-R,D-Oi),
O0 O0

which is an accurate approximation to the continuous function (OR/O0)(OO/O0) on the
boundary. Similarly, the squares of/3 and O0/O0 are approximated well by the average
of the squares of the one-sided differences. In fact, if R and 0 each have one-sided
second derivatives at the corner that are continuous and one-sided third derivatives
(which may be discontinuous but bounded), then the above approximations are
formally second-order accurate. We note, however, that the central difference approx-
imations to OR/O0 and O0/O0 about the corner point vanish and thus give inaccurate
approximations. Also, if the grid points are placed symmetrically about the corner
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without having a grid point at the corner, as in Fig. 2b, then for those grid points nearest
the corner the approximation (5.1) will not be accurate. Central differences will not be
accurate in this case either.

Consider now the treatment of these terms in the MacCormack scheme (3.4)-(3.5)
when the grid is as in Fig. 2a. As noted above the approximations such as (5.1) are
formally second-order accurate at such corners if R and satisfy appropriate condi-
tions on their one-sided higher derivatives. This implies that (3.10) and (3.11) are valid
and, hence, that the MacCormack scheme is formally second-order accurate even at
such corners (see also 7).

Laplace’s equation in the form of (2.11) also contains the terms/3 2 and (O/Op)
((00/00)). The particular form of differencing for these terms in the difference
approximation (3.6)-(3.7) was chosen in light of the above considerations. Therefore,
one would expect that the approximation (3.6)-(3.7) is more accurate than if centered
differences were used for the derivatives with respect to 0.

6. Examples. Several examples of thin streams falling vertically through an orifice
of a specified shape were calculated using the scheme outlined in the previous sections.
We present here three of these examples. These and other examples are discussed in
more detail elsewhere (see Geer and Strikwerda [4]). For each example the initial
conditions were 4=0 and R(O, z), i.e., S(O, z), specified at z =0. Note that the
condition 0 0 at z --0 corresponds to a jet that is emanating with a uniform velocity
profile. Thus, in the notation of 3, we set z 0 O i,j 0, andR R(Oi), where R(O)
was specified by one of the following"

1. An ellipse, R 1/2(.25 cos2 0 +sin2 0)-1, where the semi-axes of the ellipse are 2
and 1 (Fig. 3).

2. An equilateral triane, R
o 1/2 min/=o.1,2 sec2 (0 2zrl/3) where the length of

the side of the triangle is 243. (Fig. 4).
3. A rectangle, R= min (sec2 0, 4 csc2 0), where 2 and 4 are the lengths of the

sides of the rectangle (Fig. 5).

FIG. 3. Cross-sectional shapes at several values of z for a let with an initial shape of
an ellipse.

For each example the origin was located at the center of mass of the shape as
required in the derivation of the basic equation (2.3)-(2.4) (see Geer. [2]). The
corresponding figures show cross-sections of the jet as several values of z.
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z=0 3 6

7

2

FIG. 4. Cross-sectional shapes at several values of z for a iet with the initial shape of
an equilateral triangle, with side of length 2/.

FIG. 5. Cross-sectional shapes [or a jet with the initial shape ofa rectangle with sides
of length 2 and 4.
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The primary purpose of the first example, the ellipse, was to check the accuracy of
the numerical scheme. The numerical solution was compared with the analytic solution
presented by Geer [2]. The calculation of this analytic solution involved only the
straightforward numerical integration of nonlinear ordinary differential equations, and
consequently we assumed that this solution is known exactly.

Fig. 3 shows the cross-sectional shape of the jet at various values of z. At z 0, the
ellipse had an aspect ratio of 2. As z increased, the shape of the jet became less
eccentric, was nearly circular at about z 4.9 and then assumed an elliptical shape with
the direction of the major and minor axes exactly interchanged with those of the original
axes. The cross-sectional shape became more and more elongated as z increased. At
z 14.0, the numerical solution with N 101, M 31 and Az .1 agreed with the
analytic solution to within 1% relative error in the 12- and/1-norms, and to within 2%
relative error in the maximum norm.

In all of our examples the computations terminated when the outward moving
portions became sufficiently elongated so that they could no longer be resolved
adequately by the uniform grid used for the angular coordinate. The numerical
break-up of the solution occurred soon after the last cross-section shown in each case.
The conservation law (2.12) was satisfied to within .5% relative error in all the cases
shown here.

The other examples had for initial shapes an equilateral triane (Fig. 4) and a
rectangle (Fig. 5). The initial length of a side of the triangle was 243 units, while the
sides of the rectangle were 4 units and 2 units. In these examples, for small values of z
the cross-sections decreased in area, but maintained essentially the same shape. In
particular the discontinuities in the slopes at the corners were propagated for some
distance in z. For larger values of z the shape became nonconvex as those portions of
the surface that had been corners "buckled-in". Those portions of the surface that had
originally been the sides formed the new extremities of the cross-sectional shape. For
the case of the equilateral triangle the extremities all extended outward as z increased.
For the case of the rectangle the major extremities extended outward and the minor
extremities moved slowly inward. The numerical break-up of these cases occurred
along these outward moving extremities as noted above.

We point out that the results for the equilateral triangle are consistent with those of
Bidonediscussed by Rayleigh [9]; i.e., "... a vein issuing from an orifice in the form of a
regular polygon, of any number of sides, resolved itself into an equal number of thin
sheets, whose planes are perpendicular to the sides of the polygon." (See also Rayleigh
[0].)

However, Rayleigh [9] implies by the sketch of the cross-sections of the equilateral
triangle that the triangle assumed a hexagonal cross-section. Our calculations did not
produce such a shape and we presume that this discrepancy is due to mistaken
observations near the point where the cross-section was circular.

The example with the rectangular initial shape was run with N 81, M :31 and
Az- 0.1. The triangular shape was run with N--61, M :31 and Az- 0.1. In these
examples, the values of N was chosen so that a grid point would be at or very near the
corner of the original shape.

7. Numerical accuracy. As shown in 3 and 5, the finite difference formulas used
to approximate the system of (2.9)-(2.11) are all formally second-order accurate.
Moreover, in the numerical calculations the parameter Az and the convergence criteria
for the SOR iterations were all chosen with the purpose of maintaining the second-
order accuracy. Nonetheless, it must be demonstrated that the overall scheme is in fact
second-order accurate.
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A series of computations was made to determine the accuracy of the scheme. As
noted in 6, an alternative procedure can be employed to determine the shape of the jet
when the jet emanates from an elliptical orifice. This alternative procedure requires
solving a nonlinear ordinary differential equation of second order for the aspect ratio.
This equation was integrated using a fourth-order Runge-Kutta method with a small
step size. Because of the high accuracy employed, the numerical solution of this
equation was assumed to be exact for the purposes of this comparison.

The difference scheme given by (3.1)-(3.8) was used to compute the shape of the
elliptical jet (with the initial data given in Example 1 of 6) up to z 10.0 for various
values of N and M. The z-step, Az, was chosen as 10/(N-l) so that integrating the
finite difference scheme to z 10 required N-1 complete steps. The SOR con-
vergence parameter e was 10-5, while the values of N were 21, 41, 61, 81 and 101 and
the values of M were .3(N- 1)+ 1.

The results are displayed in Table 2 for the errors measured in the 12- and
maximum norms. The last two columns give the change in the logarithm of the error

TABLE 2
Analysis of the error and accuracy of the method for elliptical jets.

N- 12 error max error 12 order l order

20 5.36 x 10-2 2.00 x 10-1

40 1.16 10-2 2.93 >( 10-2 -2.21 "2.77
60 5.15 10-3 1.12 10-2 -2.00 -2.37
80 2.89 10-3 5.93 10-3 -2.01 -2.21
100 1.85 10-3 3.74 10-3 -2.00 -2.07

divided by the change in the logarithm of (N- 1) for successive values of N; i.e.,

log (.0116)-log (.0536)
log 40- log 20

-2.21, etc.

The closeness of these entries to -2 indicates that the overall method is second-order
accurate. The/2-norm errors listed are relative errors, i.e., the/2-norm error divided by
the/2-norm of the solution.

Comparisons were also made to study the effect of the placement of grid points on
the computation ot jets with corners. As discussed in 5, the placement ot grid points
as shown in Fig. 2a should be more accurate than that shown in Fig. 2b. In those cases
without a grid point at the vertex (Fig. 2b) the discontinuities in the tangents were
smeared out almost immediately; otherwise, the solutions are similar to those seen in
Figs.. 4 and 5. We emphasize that for such shapes we have no means of ascertaining
which solution is more accurate. However, in view of the analysis given in 5, it would
appear that the results are most accurate when a grid point is at or very close to the
vertex of the corner.

We note also that the symmetry of the results shown in Figs. 3-5 is not imposed on
the computations but results only from the initial symmetry at z 0. By alternating the
forward-backward MacCormack scheme with the backward-forward scheme, asym-
metric discretization errors are presumably minimized. However, in runs with the
elliptical jet using only the forward-backward scheme, the accuracy and symmetry were
not severely affected.
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$. Well-posedness of the problem. We will now discuss the well-posedness of the
system of equations (2.9)-(2.11). In particular, we shall derive a necessary condition to
insure that the growth rate of small perturbations to the solution of (2.9)-(2.11) is
bounded. We will then indicate how, by a similar analysis, we could demonstrate the
stability of our numerical scheme.

An analysis of the well-posedness of the system (2.9)-(2.11) is necessary because
the original problem, before the perturbation in the slenderness ratio, is an elliptic
problem. Solving such a problem by marching in any particular direction is not a
well-posed method. It must then be shown that to solve (2.9)-(2.11) by marching in the
z-direction is a well-posed problem.

To begin our analysis, let (R, ) be a smooth solution of the system (2.9)-(2.11) and
consider another solution (R, ) of this system of the form

(8.1) R =/ +2n//, 4, 47 + rt47.
Here is a perturbation parameter, and (2,)represent small perturbations in
and , respectively. Thus, to investigate the well-posedness of the system (2.9)-
(2.11), we shall first determine (to first order) the system of equations satisfied by (, ).
We shall then show that this linear system is well-posed if a certain scalar quantity
a a (0, z) is nonpositive.

In order to determine the equations satisfied by (, ), we substitute (8.1) into
(2.9)-(2.11), expand the resulting expressions in a Taylor series about =0 and then
set the coecient of n in each equation equal to zero. In this way we obtain the
following system of equations’

(8.2) 2 0 0 g0+(20_0) 0 20,
00 0o

Oz
(l +)

Op 0000 * (l + z)

(2) 1 a2 2fil a:( +fibl a
p

P bOp Op O0 p OpO0
(8.4)

( 1 O (O) 1 2.]0 10502=-2 #; p
p Op OO/ +p Op 002’

where =(1/2R)(OR/O0). Here (8.2)-(8.3) hold on p= 1, while (8.4) holds for
0p<l and 0 02.

We now wish to examine the behavior of (, ) in the neighborhood of a point
(0o, Zo) on the boundary p 1. We are particularly interested in the behavior as a
function of z of solutions (, ) which have high frequency components in the angular
variable 0. Thus, we shall consider solutions whose initial values at z Zo are of the form

(o, zo) eRo(O),
and similarly for where w is a positive praeter and l is a function of 0. We will then
construct a formal asymptotic series for (R, ) in positive powers of 1/w. This approach
is similar to that of Lax [7].

It is a result of the analysis that powers of w to half-integer powers enter the
expansion in a natural way. Thus, we look for solutions to (8.2)-(8.4) of the form

(8.5) fi ei(dx+l/Zlx/z) E Ri/2(O, z)w -v2,
]--0
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(8.6) --e ’(’zl’+a’’/21’/2) {19"’k’+"’/2k’/2ti/2(O,Z, 19)Wti/2(O,Z, 19)}to -i/2,
i=0

where to >>1 and ll(O,z), ll/2(O,z), k(O,z), k/2(O,z), Rj/2, j/2 and /2 are all
functions to be determined. The first term in the brackets in the expansion (8.6)
represents a solution of the homogeneous version of (8.4) (i.e., (8.4) with/ ---0), while
the second term represents a particular solution of this equation corresponding to R
given by (8.5).

Substituting the expansions (8.5) and (8.6) into (8.4) and equating coefficients of
like powers of to results in the relations

(8.7) 0 g Ro, ,12 g R/2,

and

1 011/21 Ol
ki/2 if >0,(8.8) k 1 i/ 00’ 1 -i/ 0O ’-=

and

1 0l/21 0ll
kl/2 if <0.(8.9) kl= l+i/

In the following we will assume without loss of generality that 011/00 is nonnegative,
since by taking the complex conjugate of (8.5) and (8.6) we obtain a solution of similar
form with Ol/O0 of opposite sign.

We now substitute the expansions (8.5) and (8.6) into (8.2) and (8.3) and equate
like powers of to, using the relations (8.7) and (8.8). The terms containing first powers of
to give the equations

2RRo
\ Oz ’ (90 / Oo 0--

2R0o \-z ’ -ff/= 0,

where , (B(O0/Op)-(OO/OO))/2R.
From this we conclude that $o =- 0 and

(8.10) --10____. A --10_.__. 0.
0z 00

1/2The terms with to give the equation

Ol
h 0I/.___.2 011 Jl/2(8.11)

Oz O0 2Jq O0 Ro
Equation (8.10) is similar to the eikonal equation of geometrical optics, and in

particular it shows that l which is initially real will remain so, being constant along the
characteristics given by

dO
+, (O, z) O.
dz

Thus this system has real characteristics as do hyperbolic systems. From (8.11) we see
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that ll/2 will not be real unless 1/2/Ro is purely imaginary. If

Im 11/2(Z, O) < O,

then from (8.5) we see that the amplitude of the solution will grow as

e-tO1/2 Im 11/2

and thus the initial value problem for (8.2) and (8.3) will be ill-posed in the sense of
Hadamard (see Kreiss [6]).

From the zeroth order terms in to we obtain the relation

(8.12) 0- \--o/ eRa,

where
0$ 05 3 / 0 1 0/0

a =a -2---- )2 ---1-
Op O0 Oz 4(l+z Op Oz R Oz Op

Thus, we see that if c is nonpositive then 1/2/Ro will be purely imaginary and the
amplitude of the solution will not grow with to, while if a is positive then the high
frequency perturbations will grow exponentially as e’/21m I/21. Thus, it is a necessary
condition for well-posedness that a be nonpositive.

In the numerical experiments the quantity a was approximated using (formally)
first-order accurate one-sided differences. It was found that this approximation to a was
negative throughout most of the computation. At those values of z for which the thin
sheets were not being adequately resolved, a became positive. However., the solution
was not smooth, so that the computation of c may have been so inaccurate as to be
meaningless.

It appears then that the system of equations (2.9)-(2.11) is well-posed for each of
the examples considered here, at least for those values of z for which the solution has
been computed. We conjecture that it is well-posed for all values of z. We believe that
the break-up of the numerical solution is purely a numerical phenomenon caused by
inadequate resolution, and not caused by a loss of well-posedness of the differential
equations.

As a demonstration of the similarity of our system to hyperbolic systems, we
numerically integrated the system with the initial data of Example 2 from z 0 to z 2
and then integrated back to z -0. The initial conditions were recovered to within the
numerical accuracy of the method. Thus this system is reversible as are hyperbolic
systems.

Finally, we offer the following comments on the stability of the difference scheme
which is described in 3. As in the above discussion of the well-posedness of the
differential equations, all that can be done is to analyze the stability of the linearized
problem. The analysis of the stability of the linearized system mimics the above analysis
of the well-posedness although it involves more complicated algebraic expressions. The
amplification factor of the von Neumann analysis corresponds to the factor

i(tol +tol/211/2)e The actual details of the derivation are omitted in the interests of brevity.
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SOLVING FINITE DIFFERENCE APPROXIMATIONS TO
NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS

BY A HOMOTOPY METHOD*

LAYNE T. WATSONt

Abstract. The Chow-Yorke algorithm is a homotopy method that has been proved globally convergent
for Brouwer fixed point problems, classes of zero finding, nonlinear programming, and two-point boundary
value problems. The method is numerically stable, and has been successfully applied to several practical
nonlinear optimization and fluid dynamics problems. Previous application of the homotopy method to
two-point boundary value problems has been based on shooting, which is inappropriate for fluid dynamics
problems with sharp boundary layers. Here the Chow-Yorke algorithm is proved globally convergent for a
class of finite difference approximations to nonlinear two-point boundary value problems. The numerical
implementation of the algorithm is briefly sketched, and computational results are given for two fairly difficult
fluid dynamics boundary value problems.

Key words, homotopy method, Chow-Yorke algorithm, globally convergent, two-point boundary value
problem, finite differences, fixed point computation, nonlinear equations

1. Introduction. For the user of mathematical software, the ideal subroutine is a
black box. The user specifies the problem and perhaps an error criterion, and the
routine returns an answer and perhaps an indication of whether or not the error
criterion was (likely) met. Such software exists for eigenvalues and eigenvectors, linear
systems of equations, nonstiff initial value problems, and one-dimensional quadrature.
For the first two areas, the sophistication and ease of use of EISPACK and LINPACK
are well known. For the latter two areas, relieving the user of the burden of choosing
step sizes or mesh points was a tremendous advance. The state of affairs with regard to
nonlinear systems of equations is much more primitive, however. Although there is a
huge amount of theory on nonlinear systems (for example, [14]), there is not software
yet which approaches the black box ideal. Almost all the theory concerns locally
convergent methods, which place the (sometimes extremely difficult) burden of choos-
ing a good starting point on the user. Some of the recent quasi-Newton (or least change
secant update) methods are robust and efficient, but the inescapable fact is that they still
require good starting points (which is often not sufficiently emphasized). For example,
with a Brouwer fixed point problem x f(x), where f maps some ball into itself, a fixed
point exists, but the better quasi-Newton methods converge (as they are designed to
[31], [32]) to a local minimum of [[x-f(x)ll. Typically economics and fluid dynamics
problems have many such local minima nowhere near the fixed point, so a good starting
point is essential.

A globally convergent algorithm (one that produces the correct answer regardless
of its starting point) would seem to be the best foundation for nonlinear equations
software. A globally convergent algorithm for nonlinear equations sounds too good to
be true. Actually, for Brouwer fixed points and a very large class of nonlinear systems of
equations F(x)=0, there are at least three distinct globally convergent algorithms.
Because these algorithms are grounded in topology and differential geometry, were
not discovered and advocated by numerical analysts and were inefficient in their early
implementations, they are not widely known or understood by numerical analysts. The
excellent survey by Allgower and Georg [1] is an attempt to remedy that. The three
algorithms are based on simplicial approximations (Eaves-Saigal [6], [12], [15]),
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retraction mappings (Kellog-Li-Yorke [9]), and a parameterized Sard’s theorem
(Chow-Mallet-Paret-Yorke [4], [28]). Details can be found in the original references
or [1]. This paper concentrates on the Chow-Yorke algorithm [27], the only one of the
three that is both numerically stable and easy to understand.

The idea of the Chow-Yorke algorithm, various aspects of which have been around
for a long time [1], [2], [5], [7], [8], [10], [11], [13], [14], is to track the zero curve of the
homotopy map

p(h, x) hf(x) + (1 h)(x a)

emanating from h 0, x a until a zero of f(x) is reached at h 1. Superficially this
resembles standard embedding [5], but there are two important differences. Here h is
not the embedding parameter, but is a dependent variable just as x. Hence h can
increase and decrease along the zero curve, and need not increase monotonically from 0
to1 (as in standard embedding techniques). Furthermore, there are never any "singular
points" along the zero curve, and turning points pose no special difficulty [28].

To be useful the Chow-Yorke algorithm must be globally convergent on the types
of problems people actually solve. It has been proven globally convergent for Brouwer
fixed points [4], the nonlinear complementarity problem [29], convex optimization
problems with nonnegativity constraints [26], and some two-point boundary value
problems via shooting [30]. Actually, the mathematical theory proves global con-
vergence with probability one (i.e., it can fail only for starting points in a set of Lebesgue
measure zero), but that has no practical significance since the exceptional set is nowhere
dense. The intent of this paper is to prove the global convergence of the Chow-Yorke
algorithm for the finite difference approximations to a class of nonlinear two-point
boundary value problems, sketch the essence of the Chow-Yorke algorithm and give
some numerical results for two fluid dynamics problems. The intent here is not to prove
very general theorems, but merely to justify the application of the Chow-Yorke
algorithm to finite difference approximations of simple two-point boundary value
problems. The computational results are on problems to which the theory is not
obviously applicable.

Some theoretical results are presented in 2. The proofs rely heavily on theorems
and descriptions published elsewhere, but at least the necessary facts are stated here.
Section 3 sketches the numerical algorithm, which is described in detail in [28].
Computational results are given in 4. They are described in detail to make it clear
exactly what equations were solved and what the numerical experiments were.

Notation. E denotes n-dimensional Euclidean space; xi denotes the ith
component of a vector x s E; the inner product xty is simply written xy.

2. Theory. Consider first the simple two-point boundary value problem

(1) y"(x)-f(x, y(x), y’(x)), 0-<x _-< 1,

(2) y(0) y(1) 0,

where y(x) is a scalar function and f(x, u, v) is C2. General boundary conditions and
y(x) a vector will be considered later. Partition the interval [0, 1] into n + 1 equal
subintervals of length h 1/(n + 1), let xi ih, 0,.. , n + 1, Y/be an approximation
to an exact solution y (x) at xi. The following standard finite difference approximations
will be used:

(3) y"(xi) =y(xi+l)-2y(xi)q-y(xi-1)h2 /O(h2),



HOMOTOPY METHOD FOR FINITE DIFFERENCE APPROXIMATIONS 469

(4) y’(x,)
y (x,+)- y (x,_)

+ O(h2),
2h

(5) y’(xo) =-3y(x)+4y(xl)-y(x2) - O(h2),2h

(6) y’(x,+l) =y(x"-l)-4y(xn)+3y(xn+l) +O(h2)
2h

Substituting (3), (4) into (1)-(2), neglecting terms of order h 2 and replacing y(xi) by Yi
results in

(7)

where

G( Y) AY + h2Fh y) o,

2 -1 0
-1 2 -1
0 -1 2

and Fh(Y)=f(xi, Yi, (Y+x-Y_l)/2h), i= 1,... ,n. Thus the two-point boundary
value problem (1)-(2) is approximated by the nonlinear system of equations (7). A
homotopy method is used to solve (7). The following lemma from [29] will be useful.

LEMMA 1. Let F:En-E be a C2 map such that for some r>O, xF(x)>-_0
whenever Ilxll r. Then Vhas a zero in {x E" Ilxll-<- r}, and]or almost all a E", Ilall < r,
there is a zero curve y of

p,, (A, x) AF(x)+ (1 A)(x a),

along which the Jacobian matrix Dpa (A, x) has full rank, emanating from (0, a) and
reaching a zero of F at A 1. Furthermore, y has finite arc length if DF(Y) is
nonsingular.

The function Pa [0, 1) X E --> E in Lemma 1 is the homotopy map. It is important
to note that: (1) A need not increase monotonically along the zero curve 3’; (2) the
Jacobian matrix of the homotopy map has full rank at every point along 3’ (this feature is
convenient but not crucial to the success of a numerical method; see [35]); and (3) y is
guaranteed to reach a zero of F with probability one.

THEOREM 1. Let Fh( y) in (7) be a C2 mapping, and suppose that

Fh
(8) lim <9

For W E", define pw" [0, 1) x E" E" by

pw(X, Y)= XG(Y)+(1-X)(Y- W).

Then for almost all W E them exists a zero curve y of Ow, along which the Jacobian
matrix Dpw(A, Y) has full rank, emanatingfrom (0, W) and reaching a zero YofG (at
A 1). Furthermore, ifDG(r) is nonsingular, then 2’ has finite length.

Proof. By Lemma 1, it is sufficient to prove that YG(Y)>= 0 for all Y sufficiently
large. The matrix A in (7) is symmetric and positive definite with smallest eigenvalue
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2(1--COS zr/(n + 1))-->9.5/(n + 1)2=9.5h 2 (for n ->4) [5]. By hypothesis, there exists
r > 0 such that lie (Y)II_-< 9.411YII for YI[--> r. Now for YII->- r,

(9) YG(Y) YAY + h2 YEa (Y) (9.5h =)ll YII h 211 YI1(9.411YII) -. lh11YII2 > 0

from the symmetry of A and the Cauchy-Schwarz inequality.
COROLLARY 1. If the condition (8) in Theorem 1 is replaced by limllYil_,ol[Fh( y)ll/

IIYIl<= c < for o< h < ho, then there exists hl>O such that Theorem 1 holds for
0<h<hl.

Proof. For n large enough, the smallest eigenvalue A 2(1- cos zr/(n + 1)) of A
can be made arbitrarily close to zr2/(n + 1)2 r2h 2 from below. Also for YI[ sufficiently
large, liEh Y)ll <= (C + )11 Eli < 11YII. Therefore for n and I1Yll large enough, zr

2h 2 >
AI>(C+5)h 2, which when used in (9) gives the desired result, n large enough
translates to h small enough, so the theorem holds for 0 < h < hi. l-q

COROLLARY 2. The conclusion of Theorem 1 holds if f(x, u, v) in (1) is a C2

mapping and bounded.
Consider now the differential equation (1) with the general boundary conditions

C[ y’(0)[ [Olly(O)+tx12Y’(O)q’-ot13y(1)-bo14Y’(1)]= [bl] b,(10)
/y(1)/ a2y(O)+ay’(O)+a23y(1)+a4y’(1)J b2
Ly’()J

with rank C 2. Making the finite difference substitutions (3)-(6) in (1) and (10) leads
to a system of equations of the form

(11) G(Y) Ahy+ h21h (Y) 0,

where Y=(Yo,"’, Y,+I) t, Aa is a matrix of order n +2 representing the linear
differential operator and boundary conditions, and Fh is a nonlinear operator arising
from the nonlinear term of (1). See Fig. 1.

FIG. 1. Detail for equation (11).

-1 -hbl

-hb2

The following two lemmas are from [30].
LEMMA 2. Let g :E - E" be a C2 map and define pa ’[0, 1) E" E" by

pa(h, y) hg(y) + (1-h)(y- a).

Then for almost all a E" there is a zero curve T ofp emanatingfrom (0, a) along which
Dp(h, y) has full rank.

LEMMA 3. If the zero curve 3’ in Lemma 2 is bounded, it has an accumulation point
(1, 7), where g(7) 0. Furthermore, ifDg(9) is nonsingular, then T has finite arc length.

=0
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THEOREM 2. Let Fh (Y) in (11) be a C2 mapping, and suppose that G satisfies one
of the following:

1) there exists r > 0 such that Y-W and G(Y) do notpoint in opposite directions for

2) there exists r > 0 such that YG(Y) _-> 0 for IIYll- r;
3) Ah is positive semidefinite (yAhy _-> 0 for all Y), and there exists r > 0 such that

YF 0 for IIYll- r,

For W En+2, define pw [0, 1) x En+->En+2 by

pw(A, Y) A G(Y) + (1 A )(Y W).

Then for almost all W En+2, {IWll < r, there exists a zero curve T ofPw, along which the
Jacobian matrix Dpw(h, Y) has full rank, emanatingfrom (0, W) and reaching a zero

of G (at h 1), Furthermore, ifDG(r) is nonsingular, then y has finite arc length.
Proof. It is sufficient to prove the theorem under condition 1), since 3) implies 2),

which in turn implies 1). Condition 1) says that pw # 0 for 0 _-< h < 1 on the surface of the
ball IIYll_-<r. Therefore T, if it exists, must lie entirely within the ball [IYll_-<r. The
existence of for almost all W and reaching A 1 follows directly from Lemmas 2
and 3 above. The finite arc length of for DG(r) nonsingular also follows from
Lemma 3.

COROLLARY 1. Suppose the matrix Ah in (11) is positive definite and f(x, u, v) in
(1) is a bounded C2 mapping. Then the conclusion of Theorem 2 holds.

Proof. f bounded implies Fh in (11) is bounded, and therefore h2yFh (Y) O
Let /= minllvll= yAhy> 0. Then YG(Y) yAhy+ h2yFh (Y) _-> llYII= / o(llYII) > 0
for IIYll large enough, which is condition 2) in Theorem 2.

COROLLARY 2. If f(X, U, V) in (1) is a bounded C2 mapping and the boundary
conditions (1 O) are of the form

y(0) bl, y(1) bE,

then the conclusion of Theorem 2 holds.
Proof. By Corollary 1, it is sufficient to show that the matrix Ah in (11) is positive

definite. With these boundary conditions,

1 0 0

-1 2 -1
0 -1 2

2 -1 0

-1 2 -1
0 0 1

and

n--1
yAhy Yo2 Yo Y1 + Yx2 + Y’. Y/+I Y/)2 + r2. y,, y.+1 + y2. +1 > 0

i=1

for Y#O.

Condition 1) in Theorem 2 is the most general situation in which the homotopy
method is guaranteed globally convergent. However, it is virtually impossible to verify
in practice, with a few notable exceptions [29]. Condition 3) is easier to verify, but is
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frequently not satisfied for practical problems. For most practical problems the homo-
topy method works very well, even though the above theory is not directly or
demonstrably applicable.

Finally, consider the case where y(x)= (yl(X), , y,(x)) in (1) is an m-dimen-
sional vector function. Let yk be an approximation to the exact solution yk(Xi) and
y (y(l,..., y(,) E,n. Then the matrix in (7) becomes a block diagonal matrix
with each diagonal block the same as A in (7), and Fh(y) is defined accordingly. The
proofs of Theorem 1 and its corollaries are valid for the vector case also, so

THEOREM 3. Theorem 1 and its corollaries are valid ]’or the two-point boundary
value problem (1)-(2), where y(x)=(yl(x),..., y,(x)) is an m-dimensional vector

function and Y, A, Fh y) in (7) are defined as described above.
The vector case with general boundary conditions (10) is not so easy, because there

are many ways of forming the matrix Ah in (11). The most advantageous way to merge
the boundary conditions with the finite difference matrix to form Ah depends on the
problem. Without being more specific, assume Ah in (11) is formed in some reasonable
way, and that Fh (Y) is defined accordingly. Here Y Ere(n+2). The proof of Theorem 2
carries over to the vector case, but not necessarily the corollaries’ proofs, since they
depended on a specific structure in Ah. Hence:

THEOREM 4. Theorem 2 is validfor the two-point boundary value problem (1), (10),
where y(x)= (yx(x),’’’, y,(x)) is an m-dimensional vector function, C is a 2m x 4m
matrix of rank 2m, and Y, Ah, Fh (Y) in (11) are defined such that (11) is a consistent
approximation to (1), (10).

The boundary condition approximations based on (5), (6) are just one of many
possibilities, and there was no particular reason for that choice. For example, adding an
extra point to the left of zero or staggering the mesh points around zero and then using a
central difference approximation for y’(0) could have been done.

3. Algorithm. The general idea of the algorithm is apparent from Theorems 1
and 2" just follow the zero curve y emanating from (0, W) until a zero Y of G(Y) is
reached (at h 1). Of course it is nontrivial to develop a viable numerical algorithm
based on that idea, but at least conceptually, the algorithm is clear and simple. The
numerical algorithm was described in detail in [28], and various aspects and appli-
cations of it are in [20]-[30]. [27] contains computer code for the algorithm. Since the
algorithm has been thoroughly described elsewhere, only a brief outline of it and how it
differs from standard continuation will be given here. The homotopy map is

pw(h, Y)=AG(Y)+(1-A)(Y- W),

which has the same form as a standard continuation or embedding mapping. However,
there are two crucial differences. In standard continuation, the embedding parameter h
increases monotonically from 0 to 1 as the trivial problem Y- W 0 is continuously
deformed to the problem G(Y) -0. The present homotopy method permits h to both
increase and decrease along 3’ with no adverse effect; that is, turning points present no
special difficulty. The second important difference is that there are never any "singular
points" which plague standard continuation methods. The way in which the zero curve 3"
of pw is followed and the full rank of Dpw along 3" guarantee this. Observe that Lemma
2 guarantees that 3" cannot just "stop" at an interior point of [0, 1) x E.

Parameterize 3" by arc length s so h h (s), Y Y(s) along 3". Then

Pw(h (s), Y(s)) 0
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and

(12) pw(A (s), Y(s)) O,
ds

dA dY

If we take

(14) A (0) 0, Y(0) W,

the zero curve 3" is the trajectory of the initial value problem (12)-(14). When A () 1,
the corresponding Y(g) is a zero of G(Y). Thus all the sophisticated ODE techniques
currently available can be brought to bear on the problem of tracking 3’ [17], [18].

ODE software requires (dA/ds, dY/ds) explicitly, and (12), (13) only implicitly
define the derivative (dA/ds, dY/ds). This can be calculated by finding the kernel of the
n (n + 1) matrix

DOw(A (s), Y(s)),

which has full rank by Lemma 2. It is here that a substantial amount of computation is
incurred, and it is imperative that the number of derivative evaluations be kept small.
The recommended techniques for these calculations are given in [3], [28].

Remember that tracking 3" was merely a means to an end, namely a zero I7" of
G(Y). Since 3" itself is of no interest, one should not waste computational effort
following it too closely. On the other hand, since 3" is the only sure way to I7, losing 3" can
be fatal. The tradeoff between computational efficiency and reliability, and some
practical advice based on computational experience, is also in [28].

4. Numerical results. All the results reported here were obtained on an IBM
370/158 using a double precision version of the code FIXPT in [27]. FIXPT was
compiled with the FORTRAN H extended compiler, and the answers were obtained
accurate to 8 places unless otherwise mentioned. The execution times are in seconds.
The examples here are intended to show the performance of the algorithm on realistic
problems, and that the homotopy method works even though the theory in 2 is not
obviously applicable.

The first example concerns the motion of a fluid squeezed between two parallel
plates with prescribed normal velocity. The equations are [19], [30]:

S(nf’" + 3f" + mff"-]f’") f4),
f(o)=f"(o)=o, f(1)=1, f’(1)=0,

rn 0 (axisymmetric case).

With x f, x2 f", the second order formulation is

X X2

XX"2 S(’l’lX + 3X2--X1 2),

x(0) 0, x(1) 1,

x(0) 0, x(1) 0.

Note that the boundary conditions are unbalanced. This was handled by relating x, x,
x, and x at 7 1. The nonlinear system G(Z)= 0 corresponding to (7) is given in
Table 1.
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The dimension of the nonlinear system is NEQ 2n + 1. Take S =-4.226. Start-
ing from W 0 with n 4, the algorithm required 2.25 seconds of CPU time and 118
Jacobian evaluations, with an arc length of 20.0547. Starting from zero for larger n is
expensive because most of the components of the solution are large, resulting in a very
long zero curve y, and demonstrating nothing other than the global convergence. The
results are shown in Table 2, with these starting points:

W=(O, O, 1, 1,-1,-1,-1,-1, 2) (n =4)

W= (3 0, 3 .5, 3 1, 3 -.5, 6 -1, 2) (n =9)

W= (3 0, 4 .5, 7 1, 3 -1, 3 -2, 4 -4,-2, -1, 0, 1, 2) (n 14)

W= (3 0, 6 .5, 10 1, 4 -1, 5 -3, 5 -4, -3,-2, -1, 0, 1, 2) (n 19).

TABLE 2.
Squeezing of a fluid between parallel plates.

n 4 9 14 19

NEQ 9 19 29 39
CPU time 2.0 11.37 27.11 63.39
Jacobian evaluations 108 139 118 127
arc length 8.1771 11.8233 6.0622 4.4201
x2(1 2.7033820 2.1986139 2.1178779 2.0902818
extrapolated values 2.0303579 2.0532891 2.0548011

2.0561555 2.0553051
2.0552484

The extrapolation was based on an asymptotic expansion in powers of h2, which
should hold since all the finite difference approximations were O(h2) accurate [5]. The
last extrapolated value compares well to the exact solution x2(1)=f"(1)--2.05514. (It
is known that centered difference methods may have difficulties on such problems [33],
[34].)

In [30] this squeezing problem was solved by the same code FIXPT, using instead a
nonlinear system, equivalent to the original problem, defined by shooting. The shooting
approach produces more accurate solutions than the finite difference method here, and
it also yields the first and third derivatives throughout the interval, which the method
here does not. The only difficulties with shooting (on this problem) are instability and
the magnitude of the solution (which involves higher derivatives), both due to the
pronounced boundary layers [19]. The shooting approach took 53 seconds on an
Amdahl 470 V6. Allowing for the different machines, the CPU times for the shooting
method in [30] and the finite difference method here are comparable. Since the shooting
tchnique in [30] is more accurate, yields more information, is easier to program, and
has approximately the same execution time as the finite difference method here, it is
clearly preferable (for this squeezing problem).

In many fluid dynamics problems, the boundary layers become more pronounced
as certain parameters increase [20], [21], [22]. As these parameters increase, shooting
becomes more and more unstable. In extreme cases shooting completely fails, because
unless it is started right at the correct initial conditions the solution to the differential
equation becomes so large that the ODE solver never reaches the other end of the
interval. An example of such a problem is in [20]. Frequently a stretching trans-
formation alleviates the problem, but this doesn’t help if there are multiple boundary
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layers whose locations change as the parameters change (as in [21], for example). Other
possibilities are collocation and multiple shooting [5], but these were not tried. Shooting
completely fails on the following problem, for the aforementioned reasons.

A model of the polar ice cap is given by the equations [22]:

R (f’f"-ff’") f(4) + yk’,

R (f’k fk’) k"- yf’,

R (gf’-fg’) g" + vh + B,

g (gk -fh ’) h"-

f(O)=-l, f(1)=-/, f’(O)=f’(1)=O,

k(0) k(1) g(0) g(1) h(0) h(1) 0.

With X1 f, X2 f", X3 g, x4 h, x5 k, the second order formulation is

X X2,

X" X2= R(x -xx,)-yx’5

x R(x3x{-xx;)-yx4-B,

xg R (x3x5 xx) + "yx3,

x’ R (xx5 XlX’) + "yx,

x(O)=-l, x(1)---/, x(O)-x(1)=O,

X3(0) X3(1) X4(0) X4(1) Xs(0) xs(1) 0.

The unbalanced boundary conditions are handled as in the previous problem. Let
z (xl(h),"’, xl(nh), X2(0), , X2(1), x3(h),’’’, x3(nh), x4(h)," ", x4(nh), xs(h),

TABLE 3.

Finite difference equations for polar ice cap problem (part 1).

2zl Z2

--z+2z2--z3

--Zn-2 -b 2Zn-1 Zn

--Zn-1 q- 2zn
--8Z q- Z -1- 2h2z.+l
--Zn+ -[- 2Zn+2 Zn+3

--Zn+ t" 2Zn+3 Zn+4

--Z2n-1-1- 2Z2n Z2n+l

--Z2n - 2Z2n+l Z2n+2

z._l 8z. + 2h2Z2n+2
222n+3 Z2n+4

--Z2n+3 -b 2Z2n+4 Z2n+5

--Z3n + 2Z3n+l Z3n+2

--Z3n+l d- 2Z3n+2

h2z.+2 +
’h2Zn+3

h2z2n
h2z2n+l +/3

-7

(hR/2)((z2 + 1)z.+2- z(z.+3- z.+l))-(rh/2)z4.+4
(hR/2)((z3- z0z.+3- z2(z.+4- z.+2))- (3,h/2)(z4.+5- Z4n+3)

(hR/2)((z. z.-2)z2. z.-’-l(z2.+ z2,-1)) (’yh/2)(zs.+2-
(hR/2)((-/3 z.-0z2,+ z. (z2.+2- z2.)) + (rh/2)z5.+

-7/3
(hR/2)(z2.+3(z2 + 1)- ZlZ2n+4)-’yh2z3n+3-t

hR/2)(z2.+4(z3 zl)- z2(z2.+5 z2,+3))- rh2z3.+4- Bh

(hR/2)(z3.+l(z. z.-2) Z.-l(Z3.+2- z3.))- yh z,.+ Bh

(hR/2)(z3..2(-[3 --Z.-1)+ z.z3.+l)-’yh2z4.+2-Bh2
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,xs(nh)). The finite difference equations are listed in Tables 3 and 4. The
dimension of the nonlinear system is NEQ 5n / 2.

TABLE 4.

Finite difference equations ]:or polar ice cap problem (part 2).

2Z3n+3 Z3n+4

--Z3n+3 -[- 2Z3n+4 Z3n+5

--Z4n nt" 224n+l Z4n+2

--Z4n+l q" 2Z4n+2
2Z4n+3 Z4n+4

--Z4n+3 q- 2Z4n+4 Z4n+5

--ZSn / 2ZSn+l ZSn+2

--ZSn+l "" 2ZSn+2

Rh2(z2,,+z4,,+ z (za,+4/2h )) + yh2z2,+
Rh2(z2.+4z,,,+4- z2(z3,+5 z3,+3 )/2h) + vh2z2,,+4

Rh 2(z3,,+1z5,+ z,,- (z4,,+2 z4,,)/2h) + yh

Rh2(za,+2zs,+2 + z, (z4, x/2h)) + vh2z3,+2
(hR/2)((z2+ 1)z4,+3-zz4,+4)+(’h/2)(z2+ 1)

(hR/2)((z3- z)z4n+4- Z2(Z4n+5 Z4n+3)) + (’yh/2)(z3 z)

(hR/2)((z. z.-2)zs.+ z,,-(zs.+2 z5.)) + (yh/2)(z, z.-2)
(hR/2)((- z,,-)zs. +2 + z,zs,+) + (yh/2)(-/ z,_)

=0

Table 5 lists the results corresponding to these starting points"

W=0 (n =4)

W (-1,-.5, 0, .5, .5, 3 * 1, 2, 30, 20, 10, 5, 0,-2,-4, -6, -8, -10,-11,

18 0, 0, 6 -.5, 2 0) (n 9)

W (-1, 3 * -.5, 0, 3 .5, 3 1, 2 1.5, 2, 20, 17, 12, 7, 2, 0, -1, -2, -4, -6,

-8, -9, 4 -11, 28 0, 2 0, -.2, 8 * -.5, -.1, 2 0) (n 14)

W (-1, 4 -.5, 3 0, 3 .5, 3 1, 3 1.5, 2 2, 23, 3 * 20, 10, 5, 0, -1, -2, -3, -4,

-5, -6, -7, -8, -9, 5 -11, 38 0, 3 0, 3 -.5, 3 -1, 3 -.6, 3 -.3,

3 * -. 1, 0) (n 19).

TABLE 5.
30, / --2, B .5.

n 4 9 14 19

NEQ 22 47 72 97
CPU time 18.4 114.8 483.7 1153.9
Jacobian evaluations 155 138 176 179
arc length 38.80661 18.47349 17.41116 20.33562
if(0) 26.924488 23.570686 23.185378 23.068960
extrapolated values 22.452752 22.877132 22.919280

22.930180 22.933329
22.933539

For 3’ R 20 shooting is successful, although with difficulty. For 3’ R > 25 (and
/--2) shooting completely fails. An interesting note is that shooting succeeds for
3’ > 25, R > 25,/3 _-> 0, but becomes progressively worse as/3 decreases. As might be
expected, the finite difference approach is impervious to the values of y, R and/.
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Table 6 lists the results for a different set of parameters with starting points:

w=0 (n =4)

W (-1, -.5, 0, 2 * .5, 3 * 1, 2, 25, 20, 10, 5, 0, -2, -4, -6, -8,

2 * -10, 27 * 0) (n 9)

W= (-1, 3 * -.5, 0, 3 * .5, 3 * 1, 2 * 1.5, 2, 23, 20, 14, 7, 2, 0, -1, -2, -4,

-6, -8, -9, 4 -11, 42 0) (n 14)

W= (-1, 4 * -.5, 3 * 0, 3 * .5, 3 1, 3 1.5, 2 2, 23, 3 20, 10, 5, 0, -1, -2, -3,

-4, -5, -6, -7, -8, -9, 5 -11, 57 * 0) (n 19).

TA3LE 6.
y 1, R 50,/3 -2, B .5.

n 4 9 14 19

NEQ 22 47 72 97
CPU time 17.4 141.3 546.8 1225.3
Jacobian evaluations 141 165 194 186
arc length 39.40252 13.53256 19.01427 22.85432
f"(1) -10.525653 -11.197161 -11.299751 -11.337634
extrapolated values -11.420997 -11.381823 -11.386341

-11.376926 -11.387847
-11.388575

For 3’ 1,/3 =-2 shooting begins to fail around R 20, but the finite difference
approach handles R 50 with no difficulty, requiring only slightly more time than for
R =30.

5. Conclusion. Three conclusions can be drawn from 2 and 4. First, the
Chow-Yorke algorithm is theoretically applicable to the finite difference approxima-
tions to simple nonlinear two-point boundary value problems, and practically appli-
cable to a much wider class than the present theory indicates. Second, the homotopy
method is indeed globally convergent, and the code in [27] requires no jiggling of
parameters and starting points to make it work. Third, and this observation has been
made before [26], [28], the homotopy method levels the difficulty of problems. Trivial
problems take almost as much time as extremely difficult problems. Whenever a
quasi-Newton method does converge to the correct answer, the quasi-Newton method
is usually at least an order of magnitude more efficient than the homotopy method. The
question, of course, is how to know when a quasi-Newton method will work. For
nonoscillatory well-conditioned problems Saigal and Todd’s accelerated simplicial
algorithm [16] is much more efficient than the Chow-Yorke algorithm, but the final
verdict is not in yet. One final note" The differential geometry foundation of the
Chow-Yorke algorithm is very powerful, and has been used to generate globally
convergent nonlinear homotopies for problems on which the simplicial algorithms fail
[253.
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FITTING EMPIRICAL DATA BY POSITIVE SUMS
OF EXPONENTIALS

AXEL RUHE

Abstract. Least squares and maximum likelihood fitting of a positive sum of exponentials to an empirical
data series is discussed. A characterization in terms of a convex moment cone is used, to develop a globally
convergent self-starting algorithm. The sensitivity of the results to errors in the data and during the
computations is also discussed. Numerical tests are reported.

Key words, exponential sum, curve fitting, nonlinear least squares, maximum likelihood, moment

problem, semi-infinite programming, Gauss-Newton

1. Introduction. In this contribution, we set out to solve the problem"
Problem 1. Given a series of observations (’i, r/i), i= 1, 2,..., n, find a set of

positive masses Ok 0, k 1, , p, and decay rates a <- A </2" /p I, such
that

P

rli Y’. ak exp (--AkZi).
k=l

This is one of the most important, difficult and frequently occurring problems of
applied data analysis. Classical examples are radioactive decay [17], [22], compart-
mental models [4], atmospheric transfer functions [23] and all types of diffusion
processes.

We consider two kinds of fitting, weighted least squares and maximum likelihood.
In the latter case, it is assumed that the r/i follow Poisson distributions, and maximum
likelihood corresponds to least squares weighted by the approximation (see [17] and
Appendix).

In several application areas, the restriction to positive coefficients is natural; ak
can, e.g., stand for masses of elements in a mixture. Mathematically, it corresponds to
the assumption that the r/i are observations of a completely monotonic function [12],
and it has been shown that stronger statements on the unicity of best approximations
can be made with an assumption of positive coefficients [2]. Without this assumption,
the coefficients can grow beyond bounds and generate polynomials (see [19]).

We continue this contribution in 2, by discussing a mathematical characterization
of the best solution to Problem 1. It is based on a discrete Laplace transform, and was
apparently first pointed out by Aigrain and Williams [1]. Its usefulness for giving a
self-starting algorithm, which determines the number of terms p itself, was pointed out
by Cantor and Evans [4], who developed a sublinearly convergent algorithm which is
further discussed in [6] and [23]. Kammler [12] uses the Aigrain-Williams charac-
terization to approximate completely monotonic functions, and treats also the
continuous case, when the ordinary Laplace transform enters the characterization. The
close relation to the moment problem (see [13]), and to dual pairs of semi-infinite
programs [10] is evident. In fact, if the L1-norm is used instead of least squares, we
arrive at a linear semi-infinite program (see Gustafson [11]). Various ways of applying
Fourier and Laplace transforms to this problem have been attempted by practitioners
(see, e.g., [22]).

In 3, we discuss perturbation theory. It is well known that the parameters are
badly determined by the data; see, e.g., the treatment by Lanczos 14],,where it is shown

* Received by ttie editors April 8, 1980. This work was partially supported by the Swedish Natural
Science Research Council under grant F-3471 and the U.S. Public Health Service under grant HL-17731.

Institute of Information Processing, University of Umet, S-901 87 Umet, Sweden.
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how several different exponential sums can approximate the same data series equally
well. We show that whenever one of the exponentials can be well approximated by a
sum of the others, the matrices occurring in our algorithm become ill-conditioned, as
well as the minimum point. Though bad, this is a very straightforward kind of
ill-conditioning, which can be detected by means of the closeness of the exponents and
the size of the coefficients. A better-conditioned parametrization is obtained if one
uses divided differences, as explained by Osborne [16] or Evans et al. [6]; we will,
however, not discuss such reparametrizations further here.

In 4, we describe the algorithm we have used. It contains two phases, one discrete
when the exponents Ak are localized to appropriate intervals, and one continuous when
they are adjusted to their optimal values. The discrete phase is treated by a standard
routine for nonnegative least squares 15].

In the continuous phase, we can use our knowledge of the derivatives to develop a
stable Newton-like method, which converges quadratically towards a global minimum.
Note that our algorithm, which is the perturbation method of Wedin [18], is in all
essentials equivalent to successive Hermite interpolation on the transformed problem
[12], or the Prony approach as described by Osborne [16].

We conclude in 5 by relating results for a few numerical examples, both artificial
and arising from practical applications.

Before entering into the details, let us make clear that the characterization we use is
a mathematical one. We obtain the maximum possible number of terms p beyond which
no improvement can occur for the given data. It is a surprising fact that this number is
often quite low, but yet the sum may contain terms of no practical interest. We postp6ne
a discussion of the statistical question, whether a given data series really warrants being
approximated by an exponential sum of a certain length, to a later occasion. It is
conceivable that techniques like cross validation (see [5], [24]) could resolve such
questions.

From now on, we will use the following vector notation to describe our problem.
An italic letter will denote a column vector whose elements are the corresponding
Greek letter. We will thus have the vectors

y= a= l=

and introduce the special variable vector

(exp (--At1))e(h)
exp (_h.n)

and matrix

E(l) (e(A ), , e(X,)).

We will use (diagonally) weighted scalar products

(X, Y)W := YTwx 7liO-)ii,
i=l

W diag (oi),

and weighted Euclidean vector norms

1/2IlXllw := (x, X)w
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Let be a closed subset of the real line from which the exponents Ak may be taken. In
Problem 1, it is the interval

but we will allow for more general sets. We denote by 0 the set of ordered vectors

Now we get the following compact formulation of our problem:

(1.1) Minimize IlY E(/)a .
>=O,t 5"o()

In the weighted least squares case we have

W diag (/i)-2,
while in maximum likelihood we use

W diag (r/* )-2,
where y* E(l)a is the approximation.

For and W fixed, we see that (1.1) is a linear least squares problem and we denote
its solution by

(1.2) a E(/) vy,
using the notion of a weighted pseudo-inverse.

2. Mathematical characterization. In this section we will start by showing that the
set of admissible approximations form a convex cone in R n. We then get a charac-
terization in terms of supporting hyperplanes, and arrive at a dual formulation by
performing a discrete Laplace transform. Our approximation problem is then trans-
formed into a one-sided interpolation problem, and we find a close resemblance to the
Gaussian quadrature problem.

Regard (1.1) as a geometrical problem in R n. y is an arbitrary vector, and the
approximation

(2.1) y*=E(l)a

is a positive linear combination of the p basis vectors e(A 1), e(A,), y* is thus a point
in the convex cone generated by all e(A), A ’. In order for y* to be a best weighted
least squares approximation, the difference y- y* must be the normal to a supporting
hyperplane of the cone, that is,

(2.2) (y y*, e(A))w -<- O, A g.

We see that equality occurs for A =/k, k 1, .., p, since (2.2) is then a row of the
normal equations to determine the a coefficients, our task is now to determine so that
(2.2) is negative in the rest of g’.

Let us study (2.2) as a function of A and define

(2.3)

(2.4)

(2.5)

n(A) (y, e(A))w,

r/*(A) (y*, e(A))w=(E(1)a, e(A))w Y. akk(A),
0k(A) (e (;tk), e(X))w.
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The p, r/, r/* and qk are the discrete Laplace transforms of r, y, y* and
respectively. Now (2.2) means that we seek an r/* that interpolates a given r/ from
above, and that we use basis functions qk taken from a family of functions depending on
a continuously varying parameter

We note that we can pair together properties of our original approximation
problem and properties of the transformed problem:

Original problem Transformed problem

Normal equations to determine a given
Cone behind supporting hyperplane
Limit point of cone

Interpolation of r/by r/* in A1, , Ap

Osculatory interpolation
’Y/’(/k) "f/*’(/k), k 1,..., p

We see immediately the close relation to the moment problem [13]; in fact, we have a
semi-infinite programming problem [10] with a quadratic objective function. At most
p <= (n + 1)/2 masses are positive; in case of equality our approximation interpolates the
data, which are sampled from a completely monotonic function.

3. Perturbation theory. In this section, we will compute the first two derivatives of
the least squares objective function, and see how they are expressed in terms of the
discrete Laplace transform. These derivatives determine the sensitivity of the solution,
l, a, to perturbations in the data, y, and we will relate this sensitivity to a well-studied
mathematical approximation problem.

Derivatives of the objective function. Let us denote the (weighted) least squares
objective function by

,(x) 1/2(f(x), f(x)), 1/2fw,

f= y-y* y-E(/)a.

Expand (3.1) into a Taylor series up to second-order terms;

(3.2) (xo+h)=(Xo)+hrJrW+h
i=1

where J (Jacobian) and G are matrices of first and second derivatives evaluated at
x xo. In our case, they are first derivatives"

(3.3) A diag (),

E(/)’ (e’(A 1),""", e’(A)),
e’(3.4)

making the gradient,

(3.5)

jrwf [-(y y*, e(Ak))W,

k=l,. .,p

-(y y*, e’())wa]w

k=l,. .,p
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where p is the discrete Laplace transform of the residual defined in (2.3). Obviously, the
gradient is zero whenever r/* interpolates r/ osculating, as stated in the previous
section.

Now study the first term of the Hessian, and get the elements of the four parts as

(e(A.), e(Ak))W (e(A), e’(Ak))Wak ](3.6) H =jTwj
(e’(Ai), e(Ak))Wai (e’(Ai), e’(Ak))WaakJ’

each part having indices j, k ranging from 1 to p. Now the properties of the discrete
Laplace transform imply that

(e (Ai), e(Ak))W Ck(Ai)= i(Ak),

(e(i), e’(Xk))W ()= (Xk),

(e’(X), e’(X))w (X) ’
in terms of the basis functions Pk defined in (2.5) and their first two derivatives. The
condition of this first part of the Hessian determines the part of the sensitivity of a and
that depends on the parametrization.

The part of the sensitivity that is independent of the parametrization is determined
by the curvatures of the f surface, as explained’in [18] or [20]. To get them, we study the
second term of the Hessian, first by looking at the second derivatives

Ofi [ 0 --diagk (e’(k)) ]Gi--Oxi Ox----- --diagk (e’(Ak))i --diagk (e"(Ak))iOZk

with each block a p p diagonal matrix, and derivatives of e(A) defined as in (3.4).
Summing up the n components, we get

H2 . fiwiG’i
i=1

[ 0 -diag(y-y*,e’(Ak))W J(3.7)
-diag (y y*, e’(Ak))W -diag (y y*, e"(Ak))WOtk

_[ 0

-diag p’(Ak)
-diag ,,p’(Xk) ]

-diag p (Xk)akJ’

in terms of the first and second derivatives of the transformed residual p defined by
(2.3).

We see that at a stationary point only the lower right block is nonzero, which
simplifies the analysis of curvature significantly, as well as the algorithmic development.

Curvatures of surface. At the global optimum, where rt* interpolates from above,
it is true that p < O, and thus p"(Ak) < O, making all the eigenvalues i of the curvature
eigenvalue problem

(3.8) ( fiwiGi)x tc(jTWJ)x

nonnegative. This means that the second part of the Hessian dampens the effect of a
perturbation on the parameters, and we can be content with a perturbation analysis
based on the Jacobian only. On the other hand, note that at a local optimum (p < Pmax)
there will be negative curvatures, and then the nonlinearity of the surface will increase
the effect of perturbations.
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From the expansion (3.2), we see that if we disregard the second term H2 of the
Hessian, a perturbation 6y to y causes a first-order perturbation

h (JTwJ)-IJTW6y
to X. In the nonweighted case

h J+
with the first factor only depending on the exponents A 1, , Ap and the second only on
size of h.

Condition of Jacobian. From (3.3), we see that J can be factored

J=-[E(l) E(/)’]
0

with the first factor only depending on the exponents A ,. , A,, and the second only on
the coecients

The dependence on a is simple enough, small coecients cause a nearly singular
J, those A which correspond to small a being exceptionally sensitive.

To see the A influence, we estimate the singular values of the first factor. Let us
first study the first half of it, since it is of independent interest in that it determines the
sensitivity of a, with kept fixed.

Condition when decay rates are fixed. The smallest singular value of E(l) is given
by

(3.9)
0() min

Ilall==

A closer look at the vector p Ea reveals that it has the elements

rri y a e-’, rr(ri),

where rr is an exponential polynomial with normalized coefficients. The better we can
approximate 0 by such an exponential polynomial, the smaller trp (E) becomes and the
worse-conditioned our approximation problem is. We do not intend to do a complete
study of the approximation properties of exponential polynomials, but will limit our
discussion to a simple case which we believe to be illustrative.

Assume that the exponents hk are equidistant, starting at zero,

(3.10) Ak =(k-l) 6.

Then rr(r) will become an ordinary polynomial

(3.11) rr(r) ak e -x" Olkk-1

(3.12) :=e--,
where ,e ]= [y, 1]= (0, 1].

The lower bound
and the spacing between the exponents 6, will be the critical quantity here.

The minimal property of the Chebyshev polynomials implies that,

1
(3 13) min ]lEa Iloo <-

Ilatl,=l T-1(3 + V)/(1-3,)
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and so by (3.9) and inequalities between different norms,

(3 14) trp(E) <-
T-1(3 + V)/(1- V)

Since the Chebyshov polynomials grow fast outside [-1, 1 ], we see that trp (E) must be
small indeed when p is large or 6’n small. Note that this value is largely independent of
the spacing of the sampling points ri; an unhappy choice may make it even smaller. The
only way to obtain an improvement is to increase the length of the sampling interval rn.

We have computed Crp(E) (3.9) for some representative cases and compared to the
bound (3.14), and list the result in Table 3.1. Note that (3.14) is not too far away from
(3.9) in the equidistant case, while cases where only few Ak are close are considerably
better-conditioned.

Singular values o

Number
Separation

0.1

0.5

1.0

10.0

of terms

P

TABLE 3.1.
Jacobian matrix. Computed values corn

Condition for fixed
estimated

(3.14)

1.58E-2.36E-3

3.32E-5

4.52E-7

7.07E-4.75E-2

3.00E-3

1.84E-4

1.22
1.42E-1

1.56E-2

1.65E-3

1.12
4.67E-9.26E-2

1.78E-2

Bared to theoretical estimates.

computed
rI(EE’) tr2p(EE’)

Condition for varying Ak
estimated

(3.15)

5.7E-6 2.53E-4

2.5E-7 1.21E-8

0 5.46E-3

0 2.39E-7

6.2E- 6.31E-3

1.2E-6 7.53E-6

0 8.47E-9

0 9.22E-2

4.1E-3 2.51E-2

2.0E-5 1.19E-4

1.1E-7 5.30E-7

0 2.29E-9

5.2 3.5E-2

1.3E-3 3.61E-2.4E-5 8.88E-2

2.5E-7 2.12E-2

computed
o’I(E) trp(E)

6.3 9.56E-2

7.6 1.45E-3

8.5 2.04E-5

9.4 4.67E-7

5.8 4.28E-6.6 2.91E-2

7.0 1.84E-3

7.4 1.12E-
5.4 7.34E-5.9 8.63E-2

6.1 9.42E-3

6.3 9.87E-4

4.6 1.12
4.6 2.32E-4.6 3.83E-2

4.7 4.85E-3

7.1
8.5
9.5

10.0

6:5
7.2
7.6
7.9

6.0
6.4
6.6
6.7

2.16
5.2
5.2
5.2

Condition, varying decay rates l. Let us now turn our attention to the entire
Jacobian, taking care also of the sensitivity of the exponents Ak. We now seek an
estimate of

o’2p([E(1) E(1)’])= min II(EE’)xll2.
Ilxl12--

We make the same assumptions (3.10), (3.11) on Ak and ’i, note that

e’(Ak)i --rie(Ak)i

holds for the ith components and see that each element of p (EE’)x is now

71"i E Olk e-Ak’ri --Ak’"--Ti [3ke ’,
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approximating f(r) r by a quotient of two exponential polynomials. With the change
of variables (3.12), we note that

making

r=ln

7/" 7r1()-- In zr2(:),

with zrl and rr. two ordinary polynomials of degree p- 1, normalized in the 2-norm.
The smaller ]lpll is, the better we can approximate the logarithm by a rational function on
the interval [3,, 1], 3’ e -".

It has been shown (see [7]) that

(3.15) O<kl <-r"(f’I)exp
I

<-k2,

where

rn (f, I) inf sup I(x) r(x
r(x) x.!

r(x) is a rational function of degree n, C(I) is the Green capacity of’set I and region
where f is not analytic, and kl, k2 are suitable constants. In our case, f(x)= In (x),
n p 1, I [% 1], and [9] gives

c(I)
k(1-3,)
,rk (V)

k(m) := Io [(1 t2)(1 mt2)]-1/2 dt, a complete elliptic integral.

For a short sampling interval, it is true that

1
C(I) 3, 1,

In 1
SO

2n) 3,)-2n-(1-exp
C(I)

We will thus get the estimate

tr2p ([E l)E )’]) x/-p (1 3,)2p-1).
When 3’ approaches 1, this gets small much faster than the bound (3.14) for the first half.
The sensitivity of the nonlinear problem of determining a, for p terms is as large as that
for determining a only for 2p terms. Some sample values of the estimate (3.15) (k 1)
compared to actual values of o2p([EE’]) are given in Table 3.1.

4. Algorithmic approach. In this section, we will describe the algorithm we have
used and discuss its efficiency. Precisely like other semi-infinite programming
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algorithms, it consists of three phases; we will start by stating the complete algorithm,
and continue by discussing the three phases separately.

Algorithm.
1. Determine number of terms p, and starting value of by discretization of

the set
2. Determine the optimal that gives osculatory interpolation.
3. Verify that residual p _<-0 in . If unsuccessful, start phase 1 with a finer

discretization, or make an error exit.
The main work in the first phase is done by a nonnegative linear least squares

solver, and rounded up by pairing together some of the grid points.
Algorithm 1.
1. Form a grid over 8’"

t=(;t,... ,;t).
2. Solve the linear problem, with W diag (r/i)-2 in the weighted case,

min Ily- tz(/)allw.
a>=0

At most n of the cry. will be >0.
3. Condense clusters of exponents,

A (k) ;--

where rk and Sk are defined by

The vector

Olrk-- O)

will have p _-< n.
The grid may be equidistant or not. Ideally it should have about three points for

each final exponent, and thus be finer where the exponents are expected to be clustered,
most often in the lower end of the set ’. Evans et al. [4], [6], make successive
refinements of the grid in interesting parts of the interval, until the Ak have been
bracketed to sufficient accuracy. Too fine a grid will cause excessive demand on
computer time and storage.

For the linear problem, we used the standard approach described in the text book
by Lawson and Hanson 15], algorithm NNLS (nonnegative least squares). Upon exit, it
makes sure that (2.3)

p(,) =< 0, G,

with equality for at most n j’s, where Aj > 0. Generally, the interior points occur in pairs;
single points and larger clusters are indications that the grid is too coarse. Some plots of
the transformed residual p(A) are given in Figs. 5.2, 5.4, 5.5 and 5.6 below.

In the normal case, we will get

(n+l)
2

and most often a much smaller p (see the examples in 5).

t<o>=(xo>,...

OlrkOlrk+l tXSk > 0, Os/+l 0.
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The second phase is started at/co), and gets a starting a o) by solving a linear least
squares problem. We have used both a least squares and a maximum likelihood criterion
in phase 2, while phase 1 can only be performed for least squares. However, we assume
that the data are at least as good as allowing our ML algorithm to start at a weighted
least squares solution. In the least squares case, the problem is linear in a, making a
separable approach usable [21], [8], while in ML it is not. We choose to describe the ML
variant; the least squares one differs only in trivial details.

Since we expect phase 1 to have delivered a reasonably good starting approxima-
tion and have first and second derivatives readily available (3.5), (3.6), (3.7), we could
conveniently use the Newton method. However, a close look at the second derivatives
(3.7) shows a better alternative. Our concern is to keep the iteration matrix close
enough to the Hessian, but still positive definite. The (1, 2) and (2, 1) blocks of HE
(3.7) will shift the eigenvalues downwards and are zero on convergence, so removing
them from the iteration matrix makes it more positive definite. The (2, 2) block will be
nonnegative at the global optimum, but can contain large negative elements when we
are on the way. Replacing the diagonal elements by their absolute values, we obtain
three objectives. First, we can solve each step as an augmented least squares problem,
second, we get a Marquardt-type stabilization and third, we get quadratic convergence
when approaching the global minimum. It might be of interest to note that removing the
(1, 2) and (2, 1) blocks corresponds to the perturbation method, introduced by Wedin
[18] as the parametrization independent variant of Newton’s method but never tried
before in practice, while the other approach of retaining (1, 2) and (2, 1) but removing
the second derivatives in (2, 2) was described in [21] but neither tried nor recom-
mended.

Let us now give the algorithmic formulation of phase 2.
Algorithm 2. (Compute a maximum likelihood solution a, starting at l).
1. Start with l- from phase 1, and compute

a :=E(/)vy, yS:=E(l)a, x:=(a, l) r.
2. For s O, 1,... until convergence"
2.1. Compute a) f:= e-y/y {objective function/elementwise division}.

b) J := diag (y/ (yS2))[E l) E(1)A] {Jacobian, see (3.3)}.
c) G := diag [(f y/(yS2))TE(l)"A] {part of Hessian, see (3.7)}.

2.2. Solve linear least squares problem

min {step h}.

2.3. If IIJhll < tolerance then convergence.
2.4. Update x+1 := x +/xsh {line search to determine/xs}.
3. Now x (a, l) is the solution;

y* y is the best approximation.
We have chosen not to clutter up the description with details on the constraints. A

coefficient ak which hits zero is a signal of failure, and causes restart of phase 1. An
exponent hk which is at a limit point of the set (see (1.1)) is kept fixed, and the
corresponding column of the Jacobian is removed.

The task of the third phase is to verify that the transformed residual (2.3) is
nonpositive throughout ’. We have simply discretized 8’ with a grid and tested:

Algorithm 3. (Verify that p(h)=< 0 on 8’).
1. Form grid (ho," , hi,. ., h).
2. If (y- y*, e(hi))w <--0 then success.
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It is a nontrivial task to determine that the grid is fine enough; we refer the reader to
Gustafson 10].

5. Numerical examples. We have implemented the algorithm described here as an
APL program which we have run on an IBM 5100 computer at the University of
California, San Diego and a CDC Cyber 172 computer at the Ume University
Computer Center.

In phase 1, we used a translation of the routine NNLS from [15]. We used both
equidistant spacing and a grid with

Aj o + (- o) e -(m-i)/d, j 1,’’’, m,

starting with m 10, d 1, and continuing if necessary with m 20, 40,..., d
2,4,....

This logarithmically spaced grid is in many cases the most natural one to choose,
since the exponents often get clustered around zero. The program for phase 2 was run
with tolerance set at 10-7 in Algorithm 2 of 4.

We will report results here from runs on a few data series, all listed in Table 5.1.
Two of them are artificial and six empirical.

We start with listing results for the classic data series given by Lanczos [14, p. 276].
The first run was with equal weights to 1, which should correspond to the original
setup of Lanczos. When we tested the interval (c,/3) (0, 10), a grid of m 10 was too
coarse to get started on phase 2. A grid of 20 points localized the two pairs of A values
(0.82, 1.35) and (3.68, 6.06). Phase 2 needed 7 steps to converge to seven decimals of
accuracy towards

(1, 2) (1.808852, 4.571956).

Though the residual is

Ily y*][ 1.07 10-2,
the test of phase 3 indicated that this was a local maximum. (Lanczos gets (1.58,
4.45) with Prony’s method.) The algorithm restarts with m =40 and gets the new

intervals (1.35, 1.74), (3.68, 4.72) and the endpoint A -10. Four steps of phase 2
converge towards

(1.547288 4.35606, 10),

and weights

a (0.735203, 3.6596791, 0.067805);

now the residual is slightly smaller,

I1 - y*l12 1.03 10-2,
and phase 3 indicates successful termination.

The second run on the Lanczos data used the weights toi ,/.-2, which is the set
most often used for a weighted least squares aproach. Then the endpoint A 10 did not
show up, and we got the same starting intervals from phase 1 as before. The final
exponents,

l= (1.75656, 4.54746),

were reached after 3 iterations in phase 2, this time with a program using c-g
acceleration [20] instead of the second derivatives as described in 4.



492 AXEL RUHE

TABLE 5.1.
Data series ]’or which results are reported.

LANCZOS BOLIDEN BOLIDEN 3

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

1.05
1.1
1.15

2.51 0 0
2.04 0.1543 0.1808
1.67 2.5 0.075 3 0.09973
1.37 5 0.05417 5 0.07222
1.12 10 0.03528 10 0.0486
0.93 15 0.02861 15 0.03611
0.77 20 0.02472 20 0.02861
0.64 25 0.02333 25 0.02472
0.53 30 0.0225 30 0.02111
0.45 40 0.02122 40 0.01806
0.38
0.32 BOLIDEN 2 BOLIDEN 4
0.27
0.23 0 0
0.2 2.25 0.1087 0.1278
0.17 5 0.056 3 0.05361
0.15 10 0.03397 5 03667
0.13 15 0.02717 10 0.0208
0.11 20 0.0216 15 0.01486
0.10 25 0.01902 20 0.01139
0.09 30 0.01821 25 0.01014
0.08 40 0.01712 30 0.009167
0.07 40 0.008
0.06

EVANS GV ASTRA 2 ASTRA 3

0

2
3
4
5
10
30
60
150
300
400
50O

1,000
1,500
2,000
3,000
4,000
5,000
6,000

0.9399
0.8853
0.8356
0.7904
0.7492
0.5921
0.3518
0.2655
0.1655
0.112
0.1016
0.09714
0.0905
0.08607
0.08187
0.07408
0.06703
0.06065
0.05488

0
0.033
0.083
0.17
0.25
0.333
0.5
0.75

1.5
2
2.5
3
4
5
6

29.655 0 22.583
45.716 0.03 37.34
40.323 0.08 33.961
28.868 0.17 25.534
24.643 0.25 24.013
20.05 0.33 17.405
14.81 0.5 13.934
10.869 0.75 9.039
7.674 6.933
4.136 1.5 4.176
2.776 2 2.947
1.587 2.5 1.886
1.135 3 1.37
0.511 4 0.691
0.294 5 0.412
0.2 6 0.24
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The third run computed the maximum likelihood (w =E(1)a) estimate of the
exponents as

/= (1.74990, 4.54551),

after 5 iterations with the algorithm described in 4.
We plot the Lanczos data together with its LS approximation in Fig. 5.1. The lower

curve represents the first term of the sum. We show also the transformed residual (2.2)
in Fig. 5.2, first after phase 1 where we see that pairing of points for successive
refinements of the grid, and then after phase 2 where we see the osculating interpolation
phenomenon.

C3

C3

o

L

C)

0 .2 ,t .Ig .8 .0 1,2

Another artificial data series, given by Evans et al. [6], has a rather different
appearance, because it has three widely different decay rates. Four iterations of phase 2
produced the ML estimate

(1.0000.10-4, 9.9914 10-3, 9.9954 10-2),
a (0.099999, 0.29981, 0.60017)

for the exponents and coefficients, which agrees with the function that generated the
data to 3 decimals. The transformed residual is now, however, not negative, so the
approximation is not optimal. Adding one term corresponding to the right endpoint of
the A interval gives the optimal approximation, differing from this one only in its 5th
decimal.

FIG. 5.1. Data points y, marked as crosses, and approximation y*, drawn as curve, for Lanczos data series.
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LAMBDA LAMBDA

FIG. 5.2. Transformed residual p(A) for Lanczos data. a) After discrete phase, weighted least squares. Grid

points marked by squares. Interpolation in grid points Ak with positive coefficients . b) After continuous phase,
maximum likelihood. Osculatory interpolation in abscissae Ak.

The first empirical data series describes retention of penicillin in the blood, and was
supplied by the Astra drug company. A compartment model approach leads to a sum of
exponentials. Now the model is not entirely adequate, which is indicated by the fact that
the first sample, r/1 < r/2, corresponds to the increase in concentration just after
administration. This should be represented by a negative term with a fast rate of decay.

The results for the two series ASTRA 2 and ASTRA 3 are summarized in Table
5.2 We see that, although the test on the transformed residual indicated that more terms

TABLE 5.2.
Summary of results for empirical data series.

Series p residual exponents

ASTRA 2

ASTRA 3

BOLIDEN 1
2

1.43 0.90517
2 0.47 0.59165 2.0986
3 0.39 0 0.94446 3.2732

1.27 0.83700
2 0.44 0.59734 2.4285
3 0.44 0 0.70868 2.7516

4 0.019 0.035252 0.15634 0.33062
4 0.045 0 0.12055 0.70273
3 0.025 0.00548 0.10219 0.72566
4 0.028 0.00961 0.1627 0.72194

2.6749
8.2892

10.843
3.392
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are needed, no significant drop in the residuals occurs after p 2, in spite of the fact that
the exponents are changed quite a bit. Some selected plots are given in Fig. 5.3. The
transformed residual indicated that the global optimum is not yet obtained, probably
depending on the inadequacy of the model. The weird fact is that phase 1 gives no
indication of the need for more terms. This phenomenon certainly merits further study.

ASTRA 2 ASTRA 5 P= .5 TRANS RE.S Do

LAI’IBDA

FIG. 5.3. Selected plots ofAstra data series.

The second set of empirical data describes a batch flotation process and was
supplied by the Boliden mining company. Results are given in Table 5.2 and a selected
plot in Fig. 5.4. It is evident that these data behave in quite a different way from the
Astra series. Now the first point r/1 is large, forcing a fast decaying term the exact
position of which is virtually undetermined. A notable fact also is that four terms are
needed, forcing the function to nearly interpolate the data. One might speculate over
the nature of the errors.

The results of the empirical data indicate that a study of suboptimal approxima-
tions is certainly of interest, but then certain precautions have to be inserted into the
algorithm to avoid convergence to local minima.

Appendix. Derivation of the maximum likelihood estimates for Poisson dis-
tribution.

Observed count rates for radiation quanta, such as X-rays, photons or neutrons,
are theoretically distributed as Poisson distributions (see [17])

p(y)
(exp (-yo)y)

y
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c3
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X’ )( X

0 0 20 0

x

FIG. 5.4. Selected plot o[ Boliden data series.

Suppose y is described by the model

y yo + e, e errors,

y0 [o(0), 0 parameters (a, in our case);

we get the log likelihood function for a series of observations y (y, , y) as

log L(y, O)=.,[--fk(O)+ y log f(O)-log y!],
k

is the model function at time &).
The derivative is now

0 log L(y, O) Ofk(O)
00

--t- Ykoo, f(o)

1 (o)

Equating this to zero, we get ML I(OML) satisfying the equations

1 [ Of,(O)] =0, i=l,...,p.
fk(O)

(Yk --fk(O)) O’Oi O=ML
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These equations are conditions for a minimum of

W diag (fk (0)-2).

Noting that y* f(ML), we get the ML weighting discussed in the paper.

Acknowledgments. This work was started while the author was visiting the
University of California, San Diego, and he owes much of the style of the presentation
to discussions with W. B. Gragg and John Evans. He has also had clarifying discussions
on mathematical and statistical aspects with Johan Karlsson and Jacques de Mar6.
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EQUIDISTRIBUTING MESHES WITH CONSTRAINTS*

J. KAUTSKYt AND N. K. NICHOLS

Abstract. Adaptive methods which "equidistribute" a given positive weight function are now used fairly
widely for. selecting discrete meshes. The disadvantage of such schemes is that the resulting mesh may not be
smoothly varying. In this paper a technique is developed for equidistributing a function subject to constraints
on the ratios of adiacent steps in the mesh. Given a weight function f->0 on an interval [a, b] and constants c
and K, the method produces a mesh with points Xo a, xi+ xi + hi,/" 0, 1, .., n and .r,, b such that

xi+l hi+x]’-<c and ---<-<K for/=0,1,...,n-1.
xi K- h

A theoretical analysis of the procedure is presented, and numerical algorithms for implementing the method
are given. Examples show that the procedure is effective in practice. Other types of constraints on
equidistributing meshes are also discussed.

The principal application of the procedure is to the solution of boundary value problems, where the
weight function is generally some error indicator, and accuracy and convergence properties may depend on
the smoothness of the mesh. Other practical applications include the regrading of statistical data.

Key words, mesh selection, equidistributing mesh, ordinary differential equation, boundary value
problem, quasi-uniform and locally quasi-uniform mesh, adaptive method, smoothing constraint, optimal
mesh

1. Introduction. A number of adaptive mesh selection procedures which use
equidistribution techniques have recently been developed for solving boundary value
problems, (Ablow and Schechter [1], de Boor [3], Denny and Landis [4], Lentini and
Pereyra [8], Pearson [9], Pereyra and Sewell [10], Russell and Christiansen [11], White
12]). The objective of such procedures is" given a positive weight function defined on an

interval, find a partitioning of the interval such that the integral of the weight function
takes a given constant value over each subinterval; that is, such that the weight function
is "equidistributed" over the chosen mesh. Various weight functions have been used,
such as (i) a measure of the arc length of the solution to the boundary value problem, (ii)
an estimate of the truncation error in the discretization of the problem, (iii) an
approximation to the error between the discrete and the true solution of the problem,
and (iv) various transformations of the independent variable of the problem.

In many practical cases, it is necessary also for the chosen mesh to have certain
smoothness properties, and the mesh is therefore required to satisfy certain additional
constraints. The two most common constraints are"

(1) The ratio of the maximal to the minimal step in the mesh must be bounded
above by a given constant; i.e., the mesh must be quasi-uniform.

(2) The ratios of adjacent steps in the mesh must be bounded by given constants;
i.e., the mesh must be locally bounded.

The problem of equidistributing a function subject to the first constraint has been
completely solved (Pereyra and Sewell [10]). However, for many applications con-
straint (1) is often either too restrictive (for a small constant) or too weak (for a large
constant), and then constraint (2) is the more important one to satisfy. The purpose of
this paper is to give a theory for equidistributing meshes subject to the second
constraint, and to present a numerical algorithm for the explicit construction of such
meshes.

* Received by the editors February 8, 1980, and in revised form September 24, 1980. This research was
supported in part by the U.S. Department of Energy under contract DE-AS03-76SF00326 PA # 30.

t Flinders University, Bedford Park, South Australia 5042.
Department of Mathematics, University of Reading, Reading, England RG6-2AH.
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In 2 we introduce general notation and the theory for quasi-uniform meshes. In
3 we extend these results and develop a new theory for locally bounded meshes. In
4 and 5 the numerical procedure is described and applications to several examples

are presented, and in 6 some asymptotic results are discussed. The paper concludes in
7 with some remarks on further generalizations of the theory.

2. Notation and quasi-uniform meshes. In this section we introduce the necessary
notation and terminology. The known results for quasi-uniform meshes are refor-
mulated and an example is given to show that the standard solution need not be minimal
(i.e., the one with the least number of steps).

DEFINITION 1 Let f C/, the set of nonnegative piecewise continuous functions
on [a, b], and c > b

be a constant such that n (1/c)af s an integer. We say that the
mesh

7r: a=xo<xl<" "<xn=b
is equidistributing (e.d.) on [a, b with respect to f and c if

I’’+f=c for]=0,1,..., //--1.
xi

DEFINITION 2. With the same notation as in Definition 1, a mesh r is called
sub-equidistributing (s.e.d.) with respect to f and c on [a, b if, for nc >-f,

IxJ+’f<=c, /=0, 1,..., n-1
xi

is satisfied.
Clearly an e.d. mesh is s.e.d., and an e.d. mesh exists only if :f is an integer

multiple of c. The e.d. mesh is then the unique mesh which is s.e.d, with respect to f and c
and is minimal. If (n 1)c < :f< nc, for some integer n, then no e.d. mesh exists, and
there are an infinite number of minimal s.e.d, meshes with exactly n steps.

We now have two obvious observations.
LEMMA 1. Iff >= f2 on [a, b and zr is s.e.d, with respect to f and c, then zr is s.e.d.

with respect to f2 and c.
LEMMA 2. Ifthere are constants m andMsuch that 0 < m <f<Mon [a, b and if zr

is e.d. with respect to f and some c, then

max {hi}
/=0,1,...,n--1

min {hi}
1=0,1,...,n--1

M

where

hi xi+ xi, j 0, 1,. , n 1.

Proof. Note that max/hi <- c/m and mini hi >- c/M. The result follows directly.
DEFINITION 3. We call mesh zr quasi-uniform with respect to constant K if

max hi
_-<K.
min h

We assume that fe C+ ==>f(t)=max (f(t + ), f(t-)).
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We may now formulate and solve the equidistribution problem subject to the first
constraint.

Problem 1. Given f C/ and constants c > 0 and K -> 1, find a mesh which is
(1) s.e.d, on [a, b] with respect to f and c;
(2) quasi-uniform with respect to K.
THEOREM 1. (See Pereyra and Sewell [10].)
A solution to Problem 1 is the mesh rr which is e.d. on [a, b with respect to g and d,

where

1
g(t) max (f(t), p) with P -’ t[a.b]max {/(t)},

and

with n equal to the smallest integer such that nc >- g.
The proof that such a mesh satisfies the conditions of Problem 1 follows directly

from Lemma 1 and Lemma 2.
The idea ot this solution is to increase the given function f in such a way as to avoid

excessively large mesh steps which may arise from very small values of the function. We
refer to this procedure as "padding". Equidistribution with respect to the padded
function g, instead of the original function f, may of course increase the number of steps
in the mesh.

Solving a constrained problem by using a padded function leads necessarily to a
s.e.d, mesh with respect to the original function, rather than an e.d. one. Together with
the possible increase in the number of mesh steps, this is the penalty paid to satisfy the
smoothness requirement. Furthermore, since the padded function must be equidistri-
buted on the mesh with respect to some d =< c, in order to guarantee compliance with the
constraints, the actual bound on the integrals of the original function over each
subinterval of the mesh may be ’less than required.

Theoretically, it is easy to determine the e.d. mesh 7r with respect to the padded
function g and the constant d. The points of the mesh are simply equidistant points on
the inverse function [g-I-a, separated by distance d. The practical aspects of generating
the mesh zr are considered in 4.

The solution given by Theorem 1 is constructive, and is universal in the sense that it
can be constructed for any c > 0 and any given function f C+. However, this solution
need not be the unique solution to Problem 1, or even the minimal solution. Indeed,
consider the following example"

Example 1. Let f be equal to 1.0 on [0, 0.05], [1/2- 0.05, 1/2 + 0.05] and [0.95, 1], and
equal to 0.0 elsewhere on [0, 1]. We require a mesh on [0, 1] which is s.e.d, with respect
to f and c 0.1, and is quasi-uniform with respect to constant K 2. If we use the
solution of Theorem 1, then the corresponding function g is

g(t) max (f(t), 0.5), where | g 0.6,
J0

and we obtain the mesh

11
r" {0, 0.15, -0.05, 0.45, 0.65, 0.85, 1.0}
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with six steps. However, a solution is also given by the two step mesh

It is possible to construct other examples which are less artificial and which better
illustrate the difficulties, but these are considerably more complicated. This example
does suggest, however, that a general method which always produces a minimal solution
to the constrained equidistribution problem is unlikely to exist.

3. Locally bounded meshes. We now consider an extension of the concept of
padding to the solution of the equidistribution problem subject to the second constraint.
We make the following definition.

DEFINITION 4. We call mesh 7r locally bounded with respect to constraint K => 1 if

1 hi--<_-<K,-
K- hi-1

j=l,2,...,n-1.

Then the equidistribution problem becomes:
Problem 2. Given f s C/ and constants c > 0 and K => 1, find the mesh zr which is
(1) s.e.d, on Ia, b] with respect to f and c;
(2) locally bounded with respect to K.
With suitably chosen constants, a solution to Problem 1 is also a solution of

Problem 2; however, this solution would obviously be too far from a minimal one in
most cases. We therefore seek a suitable padding of the function f such that when the
padded function is equidistributed, the ratio of the consecutive steps in the resulting
mesh are bounded as required. Recalling the solution to Problem 1, we observe that
there the padding p is chosen so that the steps in the e.d. mesh along the padding are
constant and equal to the maximal length permitted by the constraint. It is therefore
natural with Problem 2 to seek a padding for which the equidistributing mesh has
adjacent steps with constant ratios equal to the maximum allowed. Such a function
exists and has the form p(t)= 1/(l+ht), where is an arbitrary parameter and h >0
depends on the required ratio K and on the e.d. constant c (contrary to Problem 1,
where the padding p depends only on K). The details are given in the following
theorem.

THEOREM 2. Let x, z > O, K > 1, c > 0 be given constants. Define

and

log K
C

p(t)
 lt-xl+z

Let xx < X2 < X3 be such that
2 I x3

p=
x2

and either x <- x or x3 <= x. Then

X3 X2

X2 --X1

if x <=x,

if x3<=x.
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Proof. Let ag h (xg x) + z. Consider the case x _-< x 1. By integration,

1 ai+l
c hlg i=1,2,

and from the definition of A, K -ag+l/ag. Then

x3-x2 a3-a2 Ka2-a2
x2-xl a2-al a2-a2/K

The case x3 <_- x is similar.
The padding required for a solution of Problem 2 is essentially the envelope of all

the curves of form p(t)= 1/(l+ht) which pass through points on the function to be
sub-equidistributed. It is actually defined in the form of a mapping of one nonnegative
function onto another, which must be examined in some detail in order to prove that it
provides the necessary solution.

DEFINITION 5. Let h be a given number. For any f C/ we define

G(f; t, ) f(7.)/(1 + ; It- zl/(z))
and the padding P(f) of f by

P(f)(t) max G(f t, 7.).
’[a,b]

We observe that the padding P([) is strictly positive on I-a, b], except in the case f-= 0.
Further properties of P(f) are given as follows:

LEMMA 3. P(f) >= f on [a, b ].
Proof. f(t)= G(f; t, t) and P(f)(t)>-G(f; t, 7.) for any 7. [a, b].
LEMMA 4. P(P(f))= P(f) on [a, b].
Proof. Consider gg(t) 1/(;tlt-zgl+d), i=0, 1, for some constants to, rl, do,

If go() g1() for some : -< to, then either go(t) gl(t) for all <-- s or go(t) < gl(t) for all
< s. Now let us assume that there exists to such that

P(P(f))(to) > P(f)(to).

From Definition 5, there exists 7.0 such that P(P(f))(to)=G(P(f); to, 7.0). By the
assumption, 7.0 to. Suppose 7.0> to. Also from Definition 5 there exists 7.1 such that
e(f)(ro) G(f; Zo, r). Now, since e(f)(o)= G(e(f); o, o)= G(f; zo, 1), if we let
go(t)=-G(P(f);t, o) and gl(t)=-G(f;t, 7.1), then go(t)=gl(t) at t==7.o. From the
result above, we then conclude that

O(P(f); t, 7.0) <- O(f t, 7.1) on [a,

and in particular, since to < 7.0,

P(f)(to) >-G(f; to, 7"1) G(P(f); to, 7.0)= P(P(f))(to),

which contradicts the initial assumption. The case 7.o < to is shown similarly. Therefore
we have P(P(f))<-P(f), but by Lemma 3 P(P(f))>-P(f) and the equality follows.

LEMMA 5. Let f C/ be such that P(f) f and let x [a, b]. Then
(1) f(t)>-G(f; t,x) for all t[a,b];
(2) f(t) <- 1/(-xlt-xl+ 1//(x)) for all t[a, b] such that It-x[<-_ 1/Af(x).
Proof. (1) is a direct result of the definition (and idempotency). To show (2), let

s [a, b] be such that It-x] <- 1/Af(x). This is possible since f P(f) is strictly positive
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on [a, b ], except in the trivial case. Then, by definition,

[(x)->_ x, t)- 1/(AIx-tl/ 1/f(t)).

Solving this inequality for f(t), under the assumption on t, gives the result.
The following theorem now establishes a solution to Problem 2.
THEOREM 3. Let h > O, f C+ and/*= P(f). Let rr be equidistributing on [a, b]

with respect to f* and some c > O. Then
(1) rr is s.e.d, with respect to f and c and
(2) for K e we have

1 hi--<----<= K, j=l,2,...,n-1.
K h.-1

Proof.
(1) Since f* >= f by Lemma 3, then r is s.e.d, by Lemma 1.
(2) Let xi-1, x, X/l be any three consecutive points of the mesh, and define

i- max (xi-, xe 1/,f*(xi)).
Define also

/(t)= 1/(h(t-xi)+ 1/f*(x,)) for t>,-1.
Let y l, Y2, Y3 be such that y2 xi and

IyY’+’ (t) dt c for ] 1, 2.

Obviously, since c is finite and [ is not integrable at its singularity, y > x- 1/hf*(xg).
Now f*= P(f*) by Lemma 4, and hence by Lemma 5

and

But, since _f* , c, we therefore have

and
Y2--Yl Xi--Xi-x hi-
y3- Y2 >-xi+-xi hi.

Finally, by Theorem 2, y3- Y2-" K(y2-Yl) and thus

K Y3- Y2 >= hi
yE-yl hi-1

The other inequality follows similarly by using the function

/(t)= l/(A(x,-t)+ 1/f*(x,)),

and the theorem is proved.
To obtain the mesh zr which sub-equidistributes f with respect to c, we pad f using

h (lOgb K)/d and equidistribute, the. padded function f* P(bf with respect to d, where
d (., f*)/n and n is the smallest integer such that nc >= ., f*. In practice we cannot
know exactly the constant d with which to pad the function before actually performing
the padding. However, if we apply the padding using A (log K)/c, and equidistribute
f* with respect to d -< c, then the mesh 7r is locally bounded with respect to a constant L
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satisfying

1 1
A=-logK= logL,

c 2
and therefore L-<_ K. The resulting mesh is thus s.e.d, with respect to f and c and still
locally bounded with respect to K, but the number of points in the mesh may be greater
than required to satisfy the criteria of the problem.

The solution given by this procedure is again constructive and universal, but it is
not necessarily minimal. Indeed, if f is the weight function of Example 1 (in 2) and
c 0.1, K 2, then the solution obtained has seven steps, while the two-step mesh
defined in 2 also satisfies the necessary constraints. In more realistic cases, where c is
sufficiently small with respect to a smooth weight function f, there is evidence, however,
that the procedure determines solutions with the minimal or close to the minimal
number of steps. Further discussion is given in 6.

4. Numerical algorithms. To find a s.e.d, mesh with respect to f and c which is
locally bounded with respect to K, we require two algorithms. The first produces the
padded function P(f), and the second performs the equidistribution.

The padding process is carried out in two sweeps of the mesh. First the interval is
searched in the forward direction. If at some point t* the function f decreases faster
than the padding function

g(t) =f(t*)/(1 + A (t- t*)f(t*))

fitted at that point, i.e., g >f for > t*, then the function f is replaced by g as long as this
padding dominates the function, that is, until some point is reached where g < f. These
steps are repeated for increasing until t- b is reached. Then the same procedure is
performed in the negative direction with

g(t) f(t*)/(1 a (t t*) f(t*)).

The equidistribution is also done in two steps; for given f and c, we first
approximate g(t) f(r) dr and then find the new mesh by inverse interpolation. The
points xj are given explicitly by

-1
xj=g (j. d), ]=0,1,...,n,

where g-1 is the inverse function of g, n is the smallest integer such that nc <= g(b) and
d=g(b)/n.

In practical applications the weight function f which is to be equidistributed is
generally given in discrete form; that is, we have the data Yi [(tj) given at m + 1 points ti
on the mesh

zr,: a t0<tl<"’ .<t, =b.

In the numerical procedures for implementing the padding and equidistribution
algorithms, we therefore replace the processes described by suitable discrete approxi-
mations. Given the data, the steps in the padding procedure are performed for values of

t only, and the padded function P(f) is returned in the form of a discrete data set
(ti, P(f)(tj)), =0, 1,..., rn. In the equidistribution procedure, a trapezoidal rule is
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used to determine g(tj) at each point tj of the original mesh 7r,. The result is exact for
piecewise linear functions f. For the inverse interpolation we may use linear or
quadratic approximations. The latter is exact for piecewise linear functions , since g is
then piecewise quadratic. Numerical results obtained with both linear and quadratic
interpolation indicate that slightly better solutions are given by the quadratic process, as
would be expected.

Higher order polynomial approximations may be used in both the integration and
interpolation procedures, but the complications introduced do not seem to be justified.
Low order rational approximations could also be used, for which the integration and
interpolation would be exact along the padding of the function. Another strategy for
improving the solutions is to repeat the equidistribution in the manner of an iterative
refinement. Both these techniques are investigated in another paper (Kautsky and
Nichols [7]).

Two simple Fortran subroutines (of about 30 lines each) have been developed to
implement the padding and equidistribution procedures. Numerical results obtained
with these routines are given in the next section. (Copies of the program codes are
available from the authors.)

5. Examples. Numerical solutions were obtained for test functions of the form

f(x) ao e -bx + ale bl(x-1) q- a2 e -b2(x-0"3)2

with various values of the coefficients ai, bi, 0, 1, 2, and x [0, 1]. Results are
presented here for two examples.

Example A. ao= 1.0, al= 1.5, a2=0.8,

bo= 30, bl 20, b2= 300;

Example B. ao al a2 1.0,

bo bl 80, bE 800.

The function values f(xi) were initially specified at 36 points:

x 0.02, f 0, 1,. , 20,

xi 0.4 + 0.05, /" 1, , 10,

x 0.9 + 0.02/’, /" 1,. , 5.

The functions were equidistributed with and without the padding for comparison, and
solutions were found for different choices of the equidistribution parameters K and c.

In Figs. 1 and 2, the original function and the padded function are shown for
Examples A and B with c =0.005 and two values of K (K 3.0 and K 1.5).
Summaries of the results obtained for various equidistribution parameters are given in
Tables 1 and 2. The number of points N in the mesh, the maximum step ratio R and the
maximum of the integrals of the function over each step,

Xi+l

INT max f,
O, 1,...,n-1

are shown for the equidistributing mesh without constraints (E) and for the equidistri-
buting meshes constrained with respect to the given K (K 3.0, K 1.5).
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TABLE
Example A

N
R
INT

c =0.005
E K=3.0

40 43
18.6 2.95
0.010 0.506E-2

K=l.5

49
1.53
0.503E-2

79
10.6
0.271E-2

c =0.0025
K 3.0 K 1.5

81 87
3.09 1.67
0.257E-2 0.255E-2

TABLE 2
Example B

N
R
INT

c =0.005
E K=3.0 K= 1.5

20 26 37
55.1 3.21 1.57
0.613E-2 0.530E-2 0.529E-2

c =0.0025
E K 3.0 K 1.5

39 45 56
59.3 3.17 1.786
0.053 0.266E- 2 0.263E- 2

From these results we conclude that the padding procedure successfully produces
sub-equidistributing meshes which are locally bounded. Furthermore, in these exam-
ples very few extra points are required to achieve this smoothness, and function values
can be obtained on the locally bounded mesh with very little extra expense.

We note that in the numerical approximation, the maximum of the local integrals
(INT) often exceeds c by a small amount. This occurs because the computation of the
integral of the function from the discrete data is not sufficiently accurate. We also
observe that the local bound K on the mesh ratios is not always satisfied precisely. This
is due to the fact that with the discretized data, the correct padding of the function is not
determined. In some areas a smaller padding than necessary is used, and at intersections
of the computed paddings, larger steps than acceptable are allowed.

The padding and equidistribution procedures were also tested on Example B with
initial data f(xj) given at 26 equally spaced points xj =. h, /" =0, 1,... 25, with
h 0.04. Essentially the same results were obtained as with the previously specified
initial data.

The use of the constrained equidistribution procedures in specific practical appli-
cations, including the solution of boundary value problems and the regrading of
statistical data, are described elsewhere (Kautsky and Nichols [6], [7]).

6. Asymptotic results and minimal solutions. In this section we examine the
behavior of the solution to Problem 2, given by the procedure of 3, for limiting values
of the parameters K and c, and compare the asymptotic solutions obtained with known
minimal solutions. This comparison provides an assurance of the effectiveness of the
solution procedure, and at the same time an indication of its limitations.

We observe that the solution of 3 is generated by equidistributing the padded
function P(]) with padding constant A (log K)/c. Two limiting cases occur:

(i) if either K 1 for fixed c, or c - c for fixed K, then A - 0;

and

(ii) if either K for fixed c, or c--,0 for fixed K, then A -.
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In the first case (i), it is easy to show that fC+ implies

lim e(f) M =- max f.
XO [a,b]

Obviously, equidistributing the constantM gives a mesh with n constant steps, where n
is the least integer such that nc >= (b a)M. Therefore, if c is fixed and K 1 in the limit,
we obtain a uniform mesh as required. If K is fixed, however, then for all finite c
sufficiently large (c >= (b-a)M), the mesh contains only one step, and the limiting
solution as c - is of no particular interest.

In the second case (ii), we have for [e C/

lim e(f)(t) ]’(t) for all [a, b ],

and if [ is continuous, the convergence is uniform. (For proofs, see Kautsky and Nichols
[5].) The limiting solution is, therefore, the same mesh as would be generated by
equidistributing the original weight function f without constraints. AsK o for fixed c,
this is clearly the mesh we expect to obtain, since for sufficiently large K, the constraint
should have no effect on the solution. Similarly, for fixed K, we expect the constraint to
be ineffective if c is sufficiently small. However, as c - 0, the number of steps in the mesh
becomes infinite. If f is continuous, the ratios of adjacent steps in the solution converge
to unity for any fixed K, and the constraint becomes superfluous, (although the mesh
does not become uniform in the usual sense); but, if f is discontinuous, the convergence
of P(]’) to [ is not uniform, and there may always be adjacent steps in the solution with
fixed ratio > 1. (See Kautsky and Nichols [5].)

We now consider minimal solutions to Problem 2 for extreme values of c and K. If
c is fixed and K 1, there is a unique minimal solution with constant step size and at
most n steps (where n is defined, as before, as the least integer >= (b a)M/c). For some
functions ]’, the number of steps in the minimal solution is exactly n, and the uniform
mesh obtained by the procedure of 3 as K 1 is therefore the minimal solution. (Of
course, it is always possible to construct functions [ for which a s.e.d, mesh with less than
n steps exists for a particular choice of c.)

In the case where c is fixed and K is sufficiently large, the mesh obtained by
equidistributing [ is itself a solution to Problem 2. This mesh has a finite number of steps
and some maximal ratio of consecutive steps, say K, and it therefore satisfies the
constraints for all K _-> K. This solution is also a minimal solution (unique if f/c is an
integer). The solution of 3, obtained by equidistributing P(f), clearly cannot be better
since P(f)>-_ f. However, we have shown that P(f) f, as K o, and it is possible for
certain f that P(f)= f when K Ko (Ko_-> Kz). The procedure of 3 then gives the
same (minimal) solution for all K _->Ko. On the other hand, it is also possible to
construct functions f such that P(f) f for any finite value of K, and in that case .the
procedure may give solutions with at least one more step than the minimal, even for
very large K.

In the case K is fixed and f is continuous, the mesh which equidistributes f similarly
provides a minimal solution to Problem 2 for sufficiently small c, since there then exists a
Co > 0 such that 0 < c <- Co implies K <_- K. Again, the method of 3 may give the same
or slightly worse solutions as c 0, depending on the function f. If f is not continuous,
however, the behavior of the e.d. mesh as c 0 is not uniform, and we cannot make any
deductions concerning the minimal solution itself.

We conclude that the locally bounded s.e.d, meshes obtained by the procedure of
3 are asymptotically minimal in certain circumstances, and behave in the limit for

extreme values of K and c as desired.
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7. Generalizations. We have investigated the problem of finding equidistributing
meshes subject to two constraints on the smoothness of the mesh. In 2, we discussed
quasi-uniform meshes where the ratio of the maximum to the minimum step in the mesh
was required to be bounded. In 3 we examined locally bounded meshes where the
ratios of adjacent mesh steps were bounded by a constant. Numerical methods for
implementing the theory were also given and shown to be effective in practice.

Other types of constraint are also of interest. We describe here some generaliza-
tions of the techniques developed for the first two problems, which can be used to treat
different forms of restrictions.

In Babuska and Rheinboldt [2], the concept of a (, y)-regular mesh was intro-
duced. Such a mesh satisfies

/. (m.ax hi) -<_ min hi.

Although the meshes discussed by Babuska and Rheinboldt are shown to be automa-
tically (/x, y)-regular for specified 3’ and some constant /x, it may prove useful in
practical applications to impose (/x, y)-regularity as a restriction with chosen values of
/z, y. A technique analogous to that of 2 can be employed in that case. A s.e.d, mesh
with respect to f and c which is (/x, y)-regular is obtained by equidistributing a padded
function g(t) (in the manner of Theorem 1) where g(t) max (f(t), p) and constant p is
now such that

p ’ =/xc-1 max f(z).
"r[a,b

The proof follows again from Lemma 1 and Lemma 2. We note that for 3’ # 1 the
padding function now depends on c. For y 1 this case reduces to Problem 1 with
K=I/u.

In the case where the weight function f is interable, but has a singularity (or near
singularity) in the domain a, hi, methods of paddin with respect to ma.f may
prove impossible or unnecessarily pessimistic. However, the solution methods remain
valid if, in the expression for the padding constant p, the factor max[a.b] f is replaced by
c/’r* where r* is such that -* -< r for any - > 0 with x/*f c. Thus s.e.d, quasi-uniform
or (/x, y)-regular meshes can be found even in the case of singular (integrable) weight
functions.

The locally bounded mesh introduced in 3 is a special case of the following
concept.

DEFINITION 6. Let s =< n be an integer and let/2,1,/2,2, ,/xs <- 1 be real numbers.
We say that a mesh zr is (s;/x 1,/z2, ’, tZs)-locally bounded if the following conditions
are satisfied for 1, 2, ., s:

/zi max (hi, hi+l,’", hi+i)<= min (hi, hi+l,"’, hi+i)

for all j -0, 1,. ., n -i- 1 (assuming the notation of Definition 1).
Obviously the locally bounded meshes of 3 are (1; 1/K)-locally bounded in

the above sense. Also the quasi-uniform meshes of 2 may be regarded as
(n 1; 0, 0,. ., 0, 1/K)-locally bounded meshes. The following lemma then holds.

LEMMA 6. Let an integer S <--_ n and real numbers tx 1, [d,2, t-l,s be given. Set

max ([.i) 1/i.
i=l,2,...,s

Then any (1; iz )-locally bounded mesh is (s;/xl,/-/,2, tzs)-locally bounded.
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As a corollary, an equidistribution problem subject to the mesh being
(s;/Xl,/z2," ,/xs)-locally bounded may be solved by the method introduced in 3.
Depending on s,/z l,/z2,’’’,/xs and the variations of the weight function f, such a
solution may lead to a mesh with more steps than necessary. However, because of its
simplicity and low implementation costs, we feel that in most applications this solution
would prove sufficient.
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A STABLE ALGORITHM FOR SOLVING THE MULTIFACILITY LOCATION
PROBLEM INVOLVING EUCLIDEAN DISTANCES*

P. H. CALAMAI, AND A. R. CONN,

Abstract. There is a rapidly growing interdisciplinary interest in the application of location models to
real life problems. Unfortunately, the current methods used to solve the most popular minisum and
minimax location problems are computationally inadequate. A more unified and numerically stable
approach for solving these problems is proposed. Detailed analysis is done for the linearly constrained
Euclidean distance minisum problem for facilities located in a plane. Preliminary computational experience
suggests that this approach compares favourably with other methods.

Key words, continuous location problems, nonsmooth optimization, numerical linear algebra

1. Introduction. Facility location problems are generally concerned with finding
the optimal location of a set of new facilities in a network of existing facilities. Over
the past few decades various forms of the problem have been developed and
addressed in the literature (see Francis and Goldstein [11 ]). In this paper we present
a stable method for solving the multifacility location problem involving Euclidean
distances. We assume that the feasible region is connected and that the parameters
are static with respect to time (for a discussion of the dynamic aspect of these
problems see Wesolowsky and Truscott [17]). In addition, we assume that the
problem is well formulated (Francis and Cabot [10] formally describe this and many
other properties of the problem).

Various approaches have been used in an attempt to efficiently solve this
location problem. One such method involves the use of a heuristic algorithm
described by Vergin and Rogers [14]. Unlike their approach, most solution
techniques guarantee optimality. Included among these are the convex programming
approach described by Love [13], the hyperbolic approximation method used by
Eyster, White and Wierwille [9], the pseudo-gradient technique described by Calamai
and Charalambous [3] and the subgradient algorithm presented by Chatelon, Hearn
and Lowe [5].

One property of this problem that causes considerable difficulty is the fact that
the objecti,ve function is not everywhere differentiable. This nondifferentiability
occurs whenever any new facility coincides with any other new facility or with an
existing facility. As a result, standard minimization techniques cannot be directly
applied. We overcome this difficulty by projecting onto a particular affine space in
which the current near zero terms stay unchanged and the remaining well-defined
terms can be decreased. Then, when we think we are optimal, we perform a linear
refinement step that makes the near zero terms exactly zero. Under mild and
suitable conditions we indicate that this technique converges to the solution of our
problem.

Another significant property of this technique is that it can be used for the
linearly constrained problem. Here we replace the constrained problem by a
sequence of unconstrained problems by using a penalty function due to Pietrzykowski
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Unix operating system. Final copy was produced on a Photon Econosetter.
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:l:Department of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G 1, Canada.
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[15] and Zangwill [18]. Using this method we are able to obtain a sequence of points
(optimal to the unconstrained penalty function) which converge to the desired
constrained optimum.. Prollem statement and delinitioas. The multifacility minisum problem
involving costs associated with Euclidean distances between facilities in 1q can be

T T ,T
stated as: Find the point x {x* Xn in Iqn to minimize

(2.1) f(x) v:k x: Xk / w: x: --Pell,
l<j<k <n j--1 i=1

where
n number of new facilities (NF’s) to be located.

m

__
number of existing facilities (EF’s).

xf (Xjl Xjq) vector location of NFj in Rq, j n.

Pi
T (Pil Piq) vector location of EFi in 1q, m.

Vjk nonnegative constant of proportionality relating the 12 distance
between NFj and NFk to the cost incurred, <j <k <n.

Wj Z nonnegative constant of proportionality relating the 12 distance
between NFj and EFi to the cost incurred, <j <n, <i <m.

x:-Xk (] x:c--xkl 2)1/2 Z 12 distance between NFj
c and NFk, <j <k <n.

x2-pell (
c=l

Xjc Pic 2) 1/2.. 12 distance between NFj
and EFi, <j <n, < <m.

In order to simplify the remainder of the discussion we set q 2 (i.e., all facilities
are in R2). Now if we let / (n2-n)/2 and r =rt+mn, and if we define the
constants

{O1 xr} {V12 Vln,V23 V2n Vn ln,W ll W lm Wn Wnm},
nl n2 t m

n -1 n-2 m m

{’r "r,} 12,3 n, 3,4 n n},
n-2

and the index set M [1 r] then (2.1)can be restated more conveniently as

(2.2) minimizef(x) AiTx bill,
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where the 22n matrix A and the 2 vector bi are defined by

[01 OtiI 02 --OtiI 03],
T [01 CtiI 041,A

I 05,
b

otiPe

i=1 /,

=/+1 r,

i=1

=r/+l

and

I is a 2X2 identity matrix,

01, 02, 03, 04 and 05 are zero matrices of dimension 22(i- 1),
22(3,i- fli- 1), 22(n -"Yi), 22(n -Bi) and 2X respectively,

e (i -r/) mod m and p o m Pro.
In a manner analogous to that of Bartels, Conn and Sinclair [2], define for any

point x in R2n the residual vectors

ri(x A iTx b

the index set

I(x k) {i M ri(x k)ll < f(x k -,)/rj {i itkJ,
the corresponding matrix and vector

(2.3) A =A(xk)= [Ail A. and r(xk)Tttk
and the vector

@fk v(ll ri(xk)ll)

[ril(xk)T ritk(xk)T],

A iri(x 5111  )II.
e M\l(x k) . M\l(x k)

(Note that for 0 the index set l.(x k) corresponds to those terms which are
exactly active (binding) at the point x. Conn [7] gives an account of the necessity
for considering, as we do, "near-active" terms.)

Finally, define Pk as the orthogonal projector onto Ska’, where Sk is the space
spanned by the columns of A(x k). For the present it will be assumed that A(x k)
has full rank.

3. Optimality conditions. For all points x close enough to x k in R2n we have
I (x) I (x k). Furthermore,

f(x ) ri(x )ll + ri(x )ll
(3.1) U\I,(x k) El,(x k)

h l(x ) + h 2(x ).

Assume Pk Vh l(x k) 0 (i.e., Pkfk 0); then for d kffi -Pkfk we have

(3.2a)
h l(xk’l’Xdk) h (x k) + X(dk)rvh (xk) + O()t2)

h l(X k) Xll Pk@fkll 2 -I- O(h2),
and since A/Td k 0 for all I (x k),
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(3.2b) h 2(X k -I- Xd k) h 2(X k).
Combining equations (3.2a) and (3.2b) yields the following rsult:

(3.3) f(xk + Xdk)- f(xk) -Xll Pk @fk 2 + O (2k2).
Therefore for d k -Pkfk 0 .there exists >0 such that f(x + Xd) < f(x) for all
0 < < . Alternativdy, if Pk Vfk 0 then (under the linear independence
assumptio.n) th corresponding point x k is called a (nondegenerate) dead point. In
this case Vfk can be expressed (uniquely) as a linear combination of the columns of
A(x k),
(3.4) fk Au Aiui, uT= [u utTkk].

t(x k)

Then, for any d k,
h I(X k + hd k) h l(X k) + h(d 5Tfk + 0 (h2)

(3.5a)

and

(3.5b)

t(x k)

h 2(X k + ,d k) h 2(X k)+ , Adk

to(x k)

(x o(x k)

h 2(X k) + X h rd kll
ilo(xk)

v T(II r(xk)ll )d k /O(X2)

.t ri(x k)TA iTd k

il,(xk)\Io(xk ri(xk)ll

f(x k + ,dk) f(x k) ,Combining equations (3.5a) and (3.5b) yields the following result:, (urZ?dk/ Ardkll )
to(xk)

(3.6) ri(x k) TA iTd k+ )\ (uiTAiTdk+
il,(x lo(xk

Now, if there exists an index l t I,(x) such that utll > 1, then take

(3.7) d k --Pk/IAlUl,
where k/! is tile orthogonal projector onto Sl and Sk/l is the sace spanned by
the clumns of (x) with columns A! deleted. Then, since Aid= 0 fr all
.I(x) Ill and Ad -AP/Au -u where 0 0 (see Appendix), we
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have, for sufficiently small h > 0,

f(x k + Xdk) f(x k)

rl(x)ru-x uzll 2 + rt(x’)ll

--x uzll (11 uzll 1) < o,

<0, 1El,(x k)\I O(X k) (3.8a)

EIo(x k) (3.8b)

Thus, if there exists lEIe(x k) such that Ul] > then, for d --Pk/lAlUt, there
exists a 6 > 0 such that f(x + hd) <_ f(x) for all 0 < h < 6. What happens if x k is a
dead point and ull < v iI,(x’)?

Case I. I ,(x k)\Io(x k) j.
Under these circumstances we have

(3.9) f(x k + ,d k) f(x k) X .t (uiTAiTdk + AiTdkl[ ) + O(X2),
o(x k)

which is nonnegative for all d k in R2n Thus x k is at least a weak local minimum
and hence a global minimum of the convex function f(x).

Case II. I,(xk)\Io(x ) j.
For any lEI,(xk)\Io(x k) take dk= --Pk/tAlrl(xk). For this choice we have

Aird ’ 0 V iI,(x’) II} and (3.6) becomes

(3.10) f(x k + Xd k) f(x k) hO(u ]’rl(x k) + rl(x k)ll) + O (X2),
which is nonpositive (strictly negative unless u =-z(xk)/llt(xk)ll).The next
section explains a method for avoiding this case.

4. The linear refinement. If we are at the point x k, and l"k fk is "small",
then we may be approaching a dead point, say . We can then obtain estimates {fii}
of the "dual" variables {ui} by finding the least-squares solution to

(4.1) fk a Aiui.
E I e(x k)

Then if ,;11 <1 v I,(x k) we may be near a local minimum (note that if
I,(xk)\Io(x ") --J this is especially clear). We therefore wish to satisfy the
near-active terms exactly. In [8], Conn and Pietrzykowski define a vertical
component, based on linearizations, in an attempt to satisfy their "near-activities"
exactly. Here we wish to find the solution to the already linear system of equations

(4.2) AiT(x k- vk) bi 0 Vi EI,(xk).
This is best accomplished by evaluating the least-squares solution of minimal norm to

(4.3) A(xk)Tvk= r(x),
which is given, algebraically at least, by

(4.4) v k (A(x k)+) Tr (x k),
where A(x)+ is the generalized (Moore-Penrose) inverse of A(x). Note that once a
refinement step is taken the set I(xk)\Io(x k) is nullified and thus Case II above need
not be considered.
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5. Remarks on convergence. The optimality conditions (3) along with the linear
refinement (4) show that either the point x k is optimal or there exists a descent
direction d k such that, for small h > 0,

(5.1) f(x +hd) f(x k) ,(dk)rg with (dk)Tg < O.

We take

(5.2) d k =-Pkfk and g f
if x/ is not a dead point, and

fk hzuz/ll uzll,
(5.3) d k --Pk/IAlul and g fk + hzrz/ll rzll I,(xk)\Io(xk),

(where lI,(x) is an index giving uzll > ) when x k is a dead point. (As in [2],
the vector g will be referred to as the restricted gradient of the function.)

Given a descent direction one is then able to determine a "sufficient" decrease in
f as in [8, Prop. 1] (In practice we use the line search outlined in the next section.)
One may thus analogously ([8, Thm. 3]) prove convergence. It is beyond the scope
of this paper to give the theoretical details of these proofs. Furthermore, we are
ultimately more interested in a second-order version and the subsequent convergence
proofs.

6. The stepsize. Suppose we are at a point x R2n and a direction d has been
chosen as described. Further, suppose our function is of the form

(6. ) ,X,(x) ,e(x)ll,
iM

where the functions i(X) are all linear. Clearly a minimum of , in the direction d,
must be at a point on d where, for at least one M\I,(xk), we have i() 0.
The points " are called "breakpoints". Therefore we determine the stepsize h to the
breakpoint that gives the minimum function value along d. In other words, as long
as the function is decreasing past the breakpoint we continue to move along d
through successive breakpoints.

To extend this idea to the case where the functions i(x) are nonlinear is not
difficult as long as we are: 1) content with estimating the location of breakpoints and,
2) willing to use a linear approximation in evaluating d Tg ().

In the first instance we wish to find the values of hi satisfying

(6.2) AiT(x + Xd) b 0 Vi n\I,(x).

A good approximation to use, in the 12 sense, comes from the equations:

-(AiTd rri(x
(6.3) hi A/Td 2 V . M\Ie(x).

In the second instance we wish to find an expression for d Tg(x + d) which is
linear in h. Using the first-order Taylor series approximation about the point x, we
get

(6.4) d rg( + Xd)= drg(x)+ X ,
M\Ie(x

h id 2

(x)ll
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With these ideas, the following stepsize algorithm (similar in concept to the one
given in [4])can be formulated:

1) Set:

--(A iTd ) Tri(x
ki A iTd 2 " M\I(x ).

2) IF (J ,2f) THEN go to 5.

3) Determine l J such that ),l < ,i V J
4) IF (hl> ) THEN go to 5.

ELSE set J+ *- J [/}
,-+1 and go to 2.

5) Set ;c - x + ,t d.

6) IF (f() < f(x)-X/_16 THEN set x - and return.

ELSE use x and in a successive cubic
interpolation routine to get a
new x, and return.

Notes:

/i0 is some preassigned positive constant.

The cubic line search used in step 6 need not be (and in our present
implementation is not) exact.

7. The minimization algorithm.

1) Choose any x R2n and set k - 1. Initialize ACT,Zpl,Zp2 and . Set
RSOL,--.FALSE.

2) Evaluate all residuals. Identify all index sets, the vector r(x k) and the matrix
A(xk). Evaluate Vfk and construct Pk.

3) Set dk - -Pk fk, and g fk.
4) Consider retaining same ACT active set:

IF(lldkll >61) THEN go to 10.

5) Determine the "duals". Find the least-squares solution.t to:

Au fk.
6) Decide whether or not to drop an activity:
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IF (11 &;ll V . I.ACT(Xk)) THEN go to 8.

7) Drop an activity:

Choose I eACT(X k) with fitll > and set d k - --Pk/lAll
Set

Io(x t)
I ,AcT(x k)\I O(X k).

Go to 10.

8) Consider checking for optimality:

IF (lldk[[ > 2) THEN go to 10.

9) Determine optimality or perform the linear refinement:

IF (RSOL .OR. rk < ) THEN STOP!

ELSE Solve, in the least-squares sense, the system

Arvk= r(xb.
IF (f(x v*) < f(xk)) THEN set

10) Use the line search algorithm to find x
k - k / l, and go to 2.

x k +l,..X k_ v k

RSOL - .TRUE.
k -k / and go to 2.

k +1 Set RSOL - .FALSE.

Notes:

maximurnk)([I ri(xk)ll ).
IAcT(x

eZplf(x k)/r, I,AcT(x k) j,

’zP g II, otherwise.

.zp2f(xk)/r,
I AcT(X k) ,
otherwise.

8o Linear constraints and the penalty function. Consider the
constrained form of the minisum multifacility location problem"

minimize f(x A b;
iM

(8.1) such that ri(x) aiTx- bi > O, r + r’,

ri(x) aiTx --b O, r’ + r".

following
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We can transform this problem into the penalty function of Pietrzykowski [15] and
solve the sequence of unconstrained problems,

(8.2) minimize p (x, ) uf(x) min[O,ri(x)] + ri(x)[,
iLl iLE

where is a positive parameter, LI [r+l r’} and LE {r’+l r"}. It
has been shown [15] that under mild and suitable conditions, an exact minimum of
(8.2) coincides with an exact minimum of (8.1) for all values of sufficiently small.
This suggests the following outer algorithm:

1) Choose > 0.

2) Minimize p (x, ) over x.

3) IF (we are optimal) THEN STOP!

4) Set - /10 and go to 2.

The minimization in step 2 can be performed using obvious extensions of the
techniques already described (see [1]). Some of the details of these extensions are
now given.

For any x k in R2n define the index sets

(8.3)

IA l(xk) li LI ]l ri(xk)l < } litk +1 it’k],

IVl (x k) {i - LI ri(x k) < _} and

IE(x) li LE ]l ri(x*)l < } lit’k+ it"k},

and the vector

@Pk lz@fk a ai + a sgn [ri(xk)]ai.
lVI(x k) .LE\IAE(x k)

Redefine the matrix A(x k), the vector r(x k) and the scalar rk’* as

A(x [A it A itta itk +I
a it,la it,k +r

a it,,,
(xk) T [ri l(xk) Tr ritk (x

k)T (x k),. (x k)],ritk + 1(x k),.. rit,k k),rit,
k + 1(x rit,,k

rk maximum(ll %(xk)ll ).
j =1 t"k

Now, if we replace @fk by @Pk and f(.) by p(., ), then our algorithm can be used
to minimize p (x, ) over x if we make the following changes to steps 6 and 7:

6) Decide whether or not to drop an activity:

IF (11 < Vi I AcT(x k) .AND.

0 < ti < /’ IAI (x k) THEN go to 8.
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7) Drop an activity:

Choose II,AcT(Xk with 11 > and set d * -P,/tAtl
.OR. Choose lIAI(x*) with t < 0 and set d/ P,/tal.

@fk At t/ll  tll,  t0(xk),
Set g --

go to 10.

I ,ACT(X k)\I 0(x ,
1IAI,

(It can be shown that if there exists an index lIAI(xk) with tt > or an index
lIAE(xk) with It’ll >l then the direction d =--sgn(l)Pk/lal is a descent
direction for the penalty function. However, as pointed out by Bartels and Corm [1],
constraint rj! will be violated at x k+ hd k and, rather than do this, we take an
alternative descent direction if one exists. Otherwise, we reduce in order to give
more emphasis to the constraints.)

9. Imlflemeatatioa. Throughout this derivation it was assumed that the matrix
A(x) was full rank in order to uniquely define the solution to various equations. This
can no longer be accomplished when A(x) is rank deficient because of the inherent
degeneracies encountered. Fortunately, this difficulty can be resolved in a
straightforward manner computationally by using a method similar to Bartels et al.
[2]. This involves treating all degeneracies as if they occurred due to the error
introduced through the storage of data on a finite machine. Then the machine
accuracy can be artificially reduced and the problem perturbed so that the
degeneracies are resolved. Finally, after the perturbation, a unique solution can be
attained which satisfies the original problem.

In particular, we do the following. After identifying the current active set, we
randomly perturb all residuals associated with degenerate members of this set in such
a way that those terms are no longer considered active. We then adjust the restricted
gradient appropriately and proceed with the original algorithm. In this way, we
either leave this degenerate neighbourhood, identify a solution among these perturbed
vertices or enter a new degenerate neighbourhood. It should be noted that cycling
cannot occur.

The full rank matrix A(x k) can be factored, by forming a product of Givens
transformations, into the form

(9.1) (x)__ k [ ]

where k is an orthonormal matrix and R is a nonsingular upper-triangular matrix.
This numerically stable decomposition can easily be modified to accommodate the
necessary additions and deletions of column vectors to the matrix A when it is
updated (see [12]).

Since the columns of Q form an orthogonal basis for the space St+/-, the
projection matrix P can be computed as



522 ,. H. CALAMAI AND A. R. CONN

(9.2) Pk (Q) (Q)T,
In addition, the vector required in step 5 of the minimization algorithm can be
obtained efficiently by solving

(9.3)

whereas the vector v

(9.4)

and then forming

(9.5)

R kt (Q {)Tfk,
required in step 10 can easily be obtained by first solving

(R k) Tvk r(x k)

v k Q{vk.

10. Preliminary computational experience. Six small problems were run on a
Honeywell 66/60 computer to compare the performance of this projection technique
with other approaches. The problems used were chosen because of the availability of
comparison data. The other solution methods considered are as follows:

i) Hyperbolic Approximation Procedure (HAP)
ii) Modified HAP (MHAP)

iii) The program of Calamai and Charalambous (MFLPVI)

A description of these methods and references to the data used in the six problems
are given in [3]. A summary of the results is given below. The column labeled
"NEW" refers to the projection algorithm.

#

2

3

4

5
6

TOTAL
OPS

MFLPVI

77+487
34+ 114
16+47
15+16

40+ 183
7+56

1092
112248

Table
Comparative test results

(o) 10

HAP MHAP
1661 1381
647 546
87 70
45 45

142 114
242 164

2824 2320
386592 318426

(0) 10-4
NEW

HAP MHAP
2027 1407 64
4641 2281 17
770 197 8
45 45 17

1763 975 26
374’3 1869 18
12989 6774 150

1647886 922390 77194

Remarks.
(a) Except for the last row, the figures in the table refer to the number of

iterations required to reach the solution. Under the column heading MFLPV1, the
first figure refers to the number of successful iterations whereas the second figure
refers to the number of unsuccessful iterations.

(b) For our algorithm no attempt was made to choose ideal parameters.
choice, for the results shown, was ACT 0.1, ZP1 0.2, ZP2 0.05

7.45E-9.

The
and



MULTIFACILITY LOCATION PROBLEM 523

(c) The last row in the table gives an estimate of the total number of addition
operations required by each of the techniques in solving the six problems. With the
exception of the MFLPV1 approach approximately the same number of
multiplications would be required. There are usually more addition than
multiplication operations in MFLPV1 due to combinatorial situations which
sometimes arise. (For these six problems there are approximately 17 percent more
addition than multiplication operations in MFLPV1.)

(d) The following are formulas for evaluating the number of addition operations
per iteration for the four techniques (with insignificant terms neglected).

where

HAP and MHAP 6r +2n;
(

MFLPV1 t + 3r + 4n + 2m if successful;

w

NEW w + 2t(2t + 1)+ 8nt
w + t(2t +1)+ 8n(n-t)+4(nt +1)

if unsuccessful.

if 7 step 4 satisfied.
if 7 step 6 satisfied.
if {}7 step 6 not satisfied;

w 3r + 4(r t) + 16(n t)2 + 8/2 + 2n.

z-1 (z) z" (z’)4r{Z.z.k k + k k,= ,= for combinatorial case,
v + 5n + 3m otherwise;

and (see [3]):

Z set containing cardinalities of all dusters unsuccessfully tested,

z’

__
cardinality of cluster successfully tested,

z"

__
cardinality of subset moved (z" < z’ < n- 1).

(e) The results and the theory suggest that the new techniques will work well
with larger and/or more difficult problems.

11. Conclusions and recommendations.
(a) The purpose of this paper is to provide a simple stable method for solving the

multifacility location problem involving Euclidean distances; however, the same ideas
can be, and perhaps should be, applied to location problems that use other distance
measures (1 and for example). This would provide a more unified approach to
solving this class of problems.

(b) The method derived for handling linear constraints can be modified to handle
2n._any continuous functions mapping R R by considering local linearizations of

those functions.

(c) Instead of this method that essentially uses steepest descent in a subspace, a
more sophisticated approach would involve the use of second-order information to
derive quasi-Newton steps in a subspace. Such a technique would undoubtedly lead
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to an improvement in the rate of convergence. See [6].
(d) For large problems the sparsity and structure of the matrix A(x) would have

to be given attention. This would suggest the use of decomposition techniques as
well as the use of methods that maintain sparsity in updating these decompositions
whenever columns were added to or deleted from A.

(e) The stepsize algorithm outlined in this paper is not necessarily optimal.
Many alternative schemes are available, including:

1) the reordering of breakpoints based on the magnitude of the least-squares
error in their estimation,
2) the use of a more exact cubic line search either with or without the
breakpoint analysis,
3) the use of a more sophisticated steplength algorithm. See [14].

(f) Step 7 of our algorithm results in the release of an index, associated with an
"out-of-kilter" dual, from the activity set. In our implementation we drop the index
(and thus the corresponding activity) associated with the first "out-of-kilter" dual
encountered. This choice may not result in the optimal descent direction.

All these ideas are currently being investigated.

Appendix. Prove:

A7Pk/lA pl, I > O,

where Pk /l is the orthogonal projector onto Sk+/-/l where Sk/l is the space spanned by
the columns of ". (’ is formed by deleting the columns of A from the full rank
matrix A.)

Proof. First we prove that b rWb =/i > 0, where b is any n-vector outside the
span of B, B is any n t full rank matrix and W is the n n orthogonal projector
onto B +/-. Since B is full rank, there exists an n n orthogonal matrix Q and a t
nonsingular upper-triangular matrix R such that

B [Q1Q2][ Q1R,

where Q1 denotes the first columns and 2 denotes theremaining n-t columns of
Q. It can then be shown that W Q 2Q . Thus

b TWb (Q b )r(Q b >0.
Note that b TWb 0 > Qb 0 > there exists a zR s.t. b Q z

=> b B where =R-lz
=> bspan(B)

> contradiction.

Now define the transformation T:Ruxv -- R2ux2v as follows:

T
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where Oij R for # and j =1 u and I represents the standard 2X2
identity matrix. Obviously there exists a vector b and a matrix B such that
AI T(b)and T(B).

Finally, we note that whenever the product XY is defined then
T(XY) T(X)T(Y) and similiarly, whenever the sum X+Y is defined then
T(X + Y) T(X) + T(Y). Furthermore, if U is an upper-triangular matrix then
T(U) is also upper-triangular and T(I) I. Thus, if we apply this transformation
to the foregoing proof we obtain

AITpk /tA pI with p > 0.

b.eknowledgement. The splendid typesetting was accomplished by Anne Trip-
de-Roche and Brian Finch using the Photon Econosetter and Troff.
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